mirror of https://github.com/bsnes-emu/bsnes.git
3208 lines
170 KiB
GLSL
3208 lines
170 KiB
GLSL
#version 150
|
|
|
|
uniform sampler2D source[];
|
|
uniform vec4 sourceSize[];
|
|
uniform vec4 targetSize;
|
|
|
|
in Vertex {
|
|
vec2 vTexCoord;
|
|
vec2 src_tex_uv_wrap;
|
|
vec2 tile_uv_wrap;
|
|
vec2 resize_magnification_scale;
|
|
vec2 src_dxdy;
|
|
vec2 tile_size_uv;
|
|
vec2 input_tiles_per_texture;
|
|
};
|
|
|
|
out vec4 FragColor;
|
|
|
|
// USER SETTINGS BLOCK //
|
|
|
|
#define crt_gamma 2.500000
|
|
#define lcd_gamma 2.200000
|
|
#define levels_contrast 1.0
|
|
#define halation_weight 0.0
|
|
#define diffusion_weight 0.075
|
|
#define bloom_underestimate_levels 0.8
|
|
#define bloom_excess 0.000000
|
|
#define beam_min_sigma 0.020000
|
|
#define beam_max_sigma 0.300000
|
|
#define beam_spot_power 0.330000
|
|
#define beam_min_shape 2.000000
|
|
#define beam_max_shape 4.000000
|
|
#define beam_shape_power 0.250000
|
|
#define beam_horiz_filter 0.000000
|
|
#define beam_horiz_sigma 0.35
|
|
#define beam_horiz_linear_rgb_weight 1.000000
|
|
#define convergence_offset_x_r -0.000000
|
|
#define convergence_offset_x_g 0.000000
|
|
#define convergence_offset_x_b 0.000000
|
|
#define convergence_offset_y_r 0.000000
|
|
#define convergence_offset_y_g -0.000000
|
|
#define convergence_offset_y_b 0.000000
|
|
#define mask_type 1.000000
|
|
#define mask_sample_mode_desired 0.000000
|
|
#define mask_specify_num_triads 0.000000
|
|
#define mask_triad_size_desired 3.000000
|
|
#define mask_num_triads_desired 480.000000
|
|
#define aa_subpixel_r_offset_x_runtime -0.0
|
|
#define aa_subpixel_r_offset_y_runtime 0.000000
|
|
#define aa_cubic_c 0.500000
|
|
#define aa_gauss_sigma 0.500000
|
|
#define geom_mode_runtime 0.000000
|
|
#define geom_radius 2.000000
|
|
#define geom_view_dist 2.000000
|
|
#define geom_tilt_angle_x 0.000000
|
|
#define geom_tilt_angle_y 0.000000
|
|
#define geom_aspect_ratio_x 432.000000
|
|
#define geom_aspect_ratio_y 329.000000
|
|
#define geom_overscan_x 1.000000
|
|
#define geom_overscan_y 1.000000
|
|
#define border_size 0.015
|
|
#define border_darkness 2.0
|
|
#define border_compress 2.500000
|
|
#define interlace_bff 0.000000
|
|
#define interlace_1080i 0.000000
|
|
|
|
// END USER SETTINGS BLOCK //
|
|
|
|
// compatibility macros for transparently converting HLSLisms into GLSLisms
|
|
#define mul(a,b) (b*a)
|
|
#define lerp(a,b,c) mix(a,b,c)
|
|
#define saturate(c) clamp(c, 0.0, 1.0)
|
|
#define frac(x) (fract(x))
|
|
#define float2 vec2
|
|
#define float3 vec3
|
|
#define float4 vec4
|
|
#define bool2 bvec2
|
|
#define bool3 bvec3
|
|
#define bool4 bvec4
|
|
#define float2x2 mat2x2
|
|
#define float3x3 mat3x3
|
|
#define float4x4 mat4x4
|
|
#define float4x3 mat4x3
|
|
#define float2x4 mat2x4
|
|
#define IN params
|
|
#define texture_size sourceSize[0].xy
|
|
#define video_size sourceSize[0].xy
|
|
#define output_size targetSize.xy
|
|
#define frame_count phase
|
|
#define static
|
|
#define inline
|
|
#define const
|
|
#define fmod(x,y) mod(x,y)
|
|
#define ddx(c) dFdx(c)
|
|
#define ddy(c) dFdy(c)
|
|
#define atan2(x,y) atan(y,x)
|
|
#define rsqrt(c) inversesqrt(c)
|
|
|
|
#define input_texture source[0]
|
|
|
|
#if defined(GL_ES)
|
|
#define COMPAT_PRECISION mediump
|
|
#else
|
|
#define COMPAT_PRECISION
|
|
#endif
|
|
|
|
#if __VERSION__ >= 130
|
|
#define COMPAT_TEXTURE texture
|
|
#else
|
|
#define COMPAT_TEXTURE texture2D
|
|
#endif
|
|
|
|
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
|
|
|
//#include "../user-settings.h"
|
|
|
|
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
|
|
|
|
#ifndef USER_SETTINGS_H
|
|
#define USER_SETTINGS_H
|
|
|
|
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
|
|
|
// The Cg compiler uses different "profiles" with different capabilities.
|
|
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
|
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
|
// or driver capabilities, so instead you must comment or uncomment the lines
|
|
// below with "//" before "#define." Disable an option if you get compilation
|
|
// errors resembling those listed. Generally speaking, all of these options
|
|
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
|
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
|
|
|
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
|
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
|
// with curved manually tiled phosphor mask coords. Related errors:
|
|
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
|
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
|
//#define DRIVERS_ALLOW_DERIVATIVES
|
|
|
|
// Fine derivatives: Unsupported on older ATI cards.
|
|
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
|
// fast single-pass blur operations. If your card uses coarse derivatives and
|
|
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
|
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
|
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
|
#endif
|
|
|
|
// Dynamic looping: Requires an fp30 or newer profile.
|
|
// This makes phosphor mask resampling faster in some cases. Related errors:
|
|
// error C5013: profile does not support "for" statements and "for" could not
|
|
// be unrolled
|
|
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
|
|
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
|
// Using one static loop avoids overhead if the user is right, but if the user
|
|
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
|
// binary search can potentially save some iterations. However, it may fail:
|
|
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
|
// needed to compile program
|
|
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
|
|
|
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
|
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
|
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
|
// this profile
|
|
//#define DRIVERS_ALLOW_TEX2DLOD
|
|
|
|
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
|
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
|
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
|
// in this profile
|
|
//#define DRIVERS_ALLOW_TEX2DBIAS
|
|
|
|
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
|
// impose stricter limitations on register counts and instructions. Enable
|
|
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
|
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
|
// to compile program.
|
|
// Enabling integrated graphics compatibility mode will automatically disable:
|
|
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
|
// (This may be reenabled in a later release.)
|
|
// 2.) RUNTIME_GEOMETRY_MODE
|
|
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
|
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
|
|
|
|
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
|
|
|
// To disable a #define option, turn its line into a comment with "//."
|
|
|
|
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
|
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
|
// many of the options in this file and allow real-time tuning, but many of
|
|
// them are slower. Disabling them and using this text file will boost FPS.
|
|
#define RUNTIME_SHADER_PARAMS_ENABLE
|
|
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
|
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
|
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
|
#define RUNTIME_ANTIALIAS_WEIGHTS
|
|
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
|
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
|
// parameters? This will require more math or dynamic branching.
|
|
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
// Specify the tilt at runtime? This makes things about 3% slower.
|
|
#define RUNTIME_GEOMETRY_TILT
|
|
// Specify the geometry mode at runtime?
|
|
#define RUNTIME_GEOMETRY_MODE
|
|
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
|
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
|
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
|
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
|
|
// PHOSPHOR MASK:
|
|
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
|
// removes the option to do so, but it may be faster without dynamic branches.
|
|
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
|
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
|
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
|
// detect the right blur if the triad size is static or our profile allows
|
|
// dynamic branches, but otherwise we use the largest blur the user indicates
|
|
// they might need:
|
|
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
|
// Here's a helpful chart:
|
|
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
|
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
|
|
|
|
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
|
|
|
// Note: Many of these static parameters are overridden by runtime shader
|
|
// parameters when those are enabled. However, many others are static codepath
|
|
// options that were cleaner or more convert to code as static constants.
|
|
|
|
// GAMMA:
|
|
static const float crt_gamma_static = 2.5; // range [1, 5]
|
|
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
|
|
|
// LEVELS MANAGEMENT:
|
|
// Control the final multiplicative image contrast:
|
|
static const float levels_contrast_static = 1.0; // range [0, 4)
|
|
// We auto-dim to avoid clipping between passes and restore brightness
|
|
// later. Control the dim factor here: Lower values clip less but crush
|
|
// blacks more (static only for now).
|
|
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
|
|
|
|
// HALATION/DIFFUSION/BLOOM:
|
|
// Halation weight: How much energy should be lost to electrons bounding
|
|
// around under the CRT glass and exciting random phosphors?
|
|
static const float halation_weight_static = 0.0; // range [0, 1]
|
|
// Refractive diffusion weight: How much light should spread/diffuse from
|
|
// refracting through the CRT glass?
|
|
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
|
// Underestimate brightness: Bright areas bloom more, but we can base the
|
|
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
|
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
|
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
|
// Blur all colors more than necessary for a softer phosphor bloom?
|
|
static const float bloom_excess_static = 0.0; // range [0, 1]
|
|
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
|
// blurred resize of the input (convergence offsets are applied as well).
|
|
// There are three filter options (static option only for now):
|
|
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
|
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
|
// and beam_max_sigma is low.
|
|
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
|
// always uses a static sigma regardless of beam_max_sigma or
|
|
// mask_num_triads_desired.
|
|
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
|
// These options are more pronounced for the fast, unbloomed shader version.
|
|
#ifndef RADEON_FIX
|
|
static const float bloom_approx_filter_static = 2.0;
|
|
#else
|
|
static const float bloom_approx_filter_static = 1.0;
|
|
#endif
|
|
|
|
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
|
// How many scanlines should contribute light to each pixel? Using more
|
|
// scanlines is slower (especially for a generalized Gaussian) but less
|
|
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
|
// max_beam_sigma at which the closest unused weight is guaranteed <
|
|
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
|
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
|
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
|
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
|
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
|
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
|
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
|
// A generalized Gaussian beam varies shape with color too, now just width.
|
|
// It's slower but more flexible (static option only for now).
|
|
static const bool beam_generalized_gaussian = true;
|
|
// What kind of scanline antialiasing do you want?
|
|
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
|
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
|
// better than 3x antialiasing (static option only for now).
|
|
static const float beam_antialias_level = 1.0; // range [0, 2]
|
|
// Min/max standard deviations for scanline beams: Higher values widen and
|
|
// soften scanlines. Depending on other options, low min sigmas can alias.
|
|
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
|
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
|
// Beam width varies as a function of color: A power function (0) is more
|
|
// configurable, but a spherical function (1) gives the widest beam
|
|
// variability without aliasing (static option only for now).
|
|
static const float beam_spot_shape_function = 0.0;
|
|
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
|
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
|
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
|
// Generalized Gaussian max shape parameters: Higher values give flatter
|
|
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
|
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
|
// values > ~40.0 cause artifacts with integrals.
|
|
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
|
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
|
// Generalized Gaussian shape power: Affects how quickly the distribution
|
|
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
|
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
|
// appear sharper for most colors.
|
|
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
|
// What filter should be used to sample scanlines horizontally?
|
|
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
|
static const float beam_horiz_filter_static = 0.0;
|
|
// Standard deviation for horizontal Gaussian resampling:
|
|
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
|
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
|
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
|
// limiting circuitry in some CRT's), or a weighted avg.?
|
|
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
|
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
|
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
|
// later passes (static option only for now).
|
|
static const bool beam_misconvergence = true;
|
|
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
|
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
|
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
|
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
|
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
|
// Detect interlacing (static option only for now)?
|
|
static const bool interlace_detect = true;
|
|
// Assume 1080-line sources are interlaced?
|
|
static const bool interlace_1080i_static = false;
|
|
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
|
// (Whether this matters depends on the nature of the interlaced input.)
|
|
static const bool interlace_bff_static = false;
|
|
|
|
// ANTIALIASING:
|
|
// What AA level do you want for curvature/overscan/subpixels? Options:
|
|
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
|
// (Static option only for now)
|
|
static const float aa_level = 12.0; // range [0, 24]
|
|
// What antialiasing filter do you want (static option only)? Options:
|
|
// 0: Box (separable), 1: Box (cylindrical),
|
|
// 2: Tent (separable), 3: Tent (cylindrical),
|
|
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
|
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
|
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
|
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
|
static const float aa_filter = 6.0; // range [0, 9]
|
|
// Flip the sample grid on odd/even frames (static option only for now)?
|
|
static const bool aa_temporal = false;
|
|
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
|
// the blue offset is the negative r offset; range [0, 0.5]
|
|
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
|
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
|
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
|
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
|
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
|
// 4.) C = 0.0 is a soft spline filter.
|
|
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
|
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
|
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
|
|
|
// PHOSPHOR MASK:
|
|
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
|
static const float mask_type_static = 1.0; // range [0, 2]
|
|
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
|
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
|
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
|
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
|
// is halfway decent with LUT mipmapping but atrocious without it.
|
|
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
|
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
|
// This mode reuses the same masks, so triads will be enormous unless
|
|
// you change the mask LUT filenames in your .cgp file.
|
|
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
|
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
|
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
|
// will always be used to calculate the full bloom sigma statically.
|
|
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
|
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
|
// triads) will be rounded to the nearest integer tile size and clamped to
|
|
// obey minimum size constraints (imposed to reduce downsize taps) and
|
|
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
|
// To increase the size limit, double the viewport-relative scales for the
|
|
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
|
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
|
// final size will be rounded and constrained as above); default 480.0
|
|
static const float mask_num_triads_desired_static = 480.0;
|
|
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
|
// more samples and avoid moire a bit better, but some is unavoidable
|
|
// depending on the destination size (static option for now).
|
|
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
|
// The mask is resized using a variable number of taps in each dimension,
|
|
// but some Cg profiles always fetch a constant number of taps no matter
|
|
// what (no dynamic branching). We can limit the maximum number of taps if
|
|
// we statically limit the minimum phosphor triad size. Larger values are
|
|
// faster, but the limit IS enforced (static option only, forever);
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
// TODO: Make this 1.0 and compensate with smarter sampling!
|
|
static const float mask_min_allowed_triad_size = 2.0;
|
|
|
|
// GEOMETRY:
|
|
// Geometry mode:
|
|
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
|
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
|
static const float geom_mode_static = 0.0; // range [0, 3]
|
|
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
|
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
|
// View dist is the distance from the player to their physical screen, in
|
|
// units of the viewport's diagonal size. It controls the field of view.
|
|
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
|
// Tilt angle in radians (clockwise around up and right vectors):
|
|
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
|
// Aspect ratio: When the true viewport size is unknown, this value is used
|
|
// to help convert between the phosphor triad size and count, along with
|
|
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
|
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
|
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
|
// default (256/224)*(54/47) = 1.313069909 (see below)
|
|
static const float geom_aspect_ratio_static = 1.313069909;
|
|
// Before getting into overscan, here's some general aspect ratio info:
|
|
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
|
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
|
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
|
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
|
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
|
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
|
// a.) Enable Retroarch's "Crop Overscan"
|
|
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
|
// Real consoles use horizontal black padding in the signal, but emulators
|
|
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
|
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
|
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
|
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
|
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
|
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
|
// without doing a. or b., but horizontal image borders will be tighter
|
|
// than vertical ones, messing up curvature and overscan. Fixing the
|
|
// padding first corrects this.
|
|
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
|
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
|
// above: Values < 1.0 zoom out; range (0, inf)
|
|
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
|
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
|
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
|
// with strong curvature (static option only for now).
|
|
static const bool geom_force_correct_tangent_matrix = true;
|
|
|
|
// BORDERS:
|
|
// Rounded border size in texture uv coords:
|
|
static const float border_size_static = 0.015; // range [0, 0.5]
|
|
// Border darkness: Moderate values darken the border smoothly, and high
|
|
// values make the image very dark just inside the border:
|
|
static const float border_darkness_static = 2.0; // range [0, inf)
|
|
// Border compression: High numbers compress border transitions, narrowing
|
|
// the dark border area.
|
|
static const float border_compress_static = 2.5; // range [1, inf)
|
|
|
|
|
|
#endif // USER_SETTINGS_H
|
|
|
|
//////////////////////////// END USER-SETTINGS //////////////////////////
|
|
|
|
//#include "derived-settings-and-constants.h"
|
|
|
|
//////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
|
|
|
|
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
|
|
#define DERIVED_SETTINGS_AND_CONSTANTS_H
|
|
|
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
|
|
|
// crt-royale: A full-featured CRT shader, with cheese.
|
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by the Free
|
|
// Software Foundation; either version 2 of the License, or any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
// more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with
|
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
|
|
|
// These macros and constants can be used across the whole codebase.
|
|
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
|
|
|
|
|
|
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
|
|
|
|
//#include "../user-settings.h"
|
|
|
|
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
|
|
|
|
#ifndef USER_SETTINGS_H
|
|
#define USER_SETTINGS_H
|
|
|
|
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
|
|
|
// The Cg compiler uses different "profiles" with different capabilities.
|
|
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
|
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
|
// or driver capabilities, so instead you must comment or uncomment the lines
|
|
// below with "//" before "#define." Disable an option if you get compilation
|
|
// errors resembling those listed. Generally speaking, all of these options
|
|
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
|
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
|
|
|
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
|
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
|
// with curved manually tiled phosphor mask coords. Related errors:
|
|
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
|
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
|
//#define DRIVERS_ALLOW_DERIVATIVES
|
|
|
|
// Fine derivatives: Unsupported on older ATI cards.
|
|
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
|
// fast single-pass blur operations. If your card uses coarse derivatives and
|
|
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
|
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
|
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
|
#endif
|
|
|
|
// Dynamic looping: Requires an fp30 or newer profile.
|
|
// This makes phosphor mask resampling faster in some cases. Related errors:
|
|
// error C5013: profile does not support "for" statements and "for" could not
|
|
// be unrolled
|
|
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
|
|
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
|
// Using one static loop avoids overhead if the user is right, but if the user
|
|
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
|
// binary search can potentially save some iterations. However, it may fail:
|
|
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
|
// needed to compile program
|
|
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
|
|
|
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
|
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
|
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
|
// this profile
|
|
//#define DRIVERS_ALLOW_TEX2DLOD
|
|
|
|
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
|
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
|
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
|
// in this profile
|
|
//#define DRIVERS_ALLOW_TEX2DBIAS
|
|
|
|
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
|
// impose stricter limitations on register counts and instructions. Enable
|
|
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
|
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
|
// to compile program.
|
|
// Enabling integrated graphics compatibility mode will automatically disable:
|
|
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
|
// (This may be reenabled in a later release.)
|
|
// 2.) RUNTIME_GEOMETRY_MODE
|
|
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
|
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
|
|
|
|
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
|
|
|
// To disable a #define option, turn its line into a comment with "//."
|
|
|
|
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
|
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
|
// many of the options in this file and allow real-time tuning, but many of
|
|
// them are slower. Disabling them and using this text file will boost FPS.
|
|
#define RUNTIME_SHADER_PARAMS_ENABLE
|
|
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
|
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
|
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
|
#define RUNTIME_ANTIALIAS_WEIGHTS
|
|
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
|
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
|
// parameters? This will require more math or dynamic branching.
|
|
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
// Specify the tilt at runtime? This makes things about 3% slower.
|
|
#define RUNTIME_GEOMETRY_TILT
|
|
// Specify the geometry mode at runtime?
|
|
#define RUNTIME_GEOMETRY_MODE
|
|
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
|
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
|
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
|
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
|
|
// PHOSPHOR MASK:
|
|
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
|
// removes the option to do so, but it may be faster without dynamic branches.
|
|
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
|
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
|
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
|
// detect the right blur if the triad size is static or our profile allows
|
|
// dynamic branches, but otherwise we use the largest blur the user indicates
|
|
// they might need:
|
|
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
|
// Here's a helpful chart:
|
|
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
|
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
|
|
|
|
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
|
|
|
// Note: Many of these static parameters are overridden by runtime shader
|
|
// parameters when those are enabled. However, many others are static codepath
|
|
// options that were cleaner or more convert to code as static constants.
|
|
|
|
// GAMMA:
|
|
static const float crt_gamma_static = 2.5; // range [1, 5]
|
|
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
|
|
|
// LEVELS MANAGEMENT:
|
|
// Control the final multiplicative image contrast:
|
|
static const float levels_contrast_static = 1.0; // range [0, 4)
|
|
// We auto-dim to avoid clipping between passes and restore brightness
|
|
// later. Control the dim factor here: Lower values clip less but crush
|
|
// blacks more (static only for now).
|
|
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
|
|
|
|
// HALATION/DIFFUSION/BLOOM:
|
|
// Halation weight: How much energy should be lost to electrons bounding
|
|
// around under the CRT glass and exciting random phosphors?
|
|
static const float halation_weight_static = 0.0; // range [0, 1]
|
|
// Refractive diffusion weight: How much light should spread/diffuse from
|
|
// refracting through the CRT glass?
|
|
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
|
// Underestimate brightness: Bright areas bloom more, but we can base the
|
|
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
|
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
|
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
|
// Blur all colors more than necessary for a softer phosphor bloom?
|
|
static const float bloom_excess_static = 0.0; // range [0, 1]
|
|
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
|
// blurred resize of the input (convergence offsets are applied as well).
|
|
// There are three filter options (static option only for now):
|
|
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
|
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
|
// and beam_max_sigma is low.
|
|
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
|
// always uses a static sigma regardless of beam_max_sigma or
|
|
// mask_num_triads_desired.
|
|
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
|
// These options are more pronounced for the fast, unbloomed shader version.
|
|
#ifndef RADEON_FIX
|
|
static const float bloom_approx_filter_static = 2.0;
|
|
#else
|
|
static const float bloom_approx_filter_static = 1.0;
|
|
#endif
|
|
|
|
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
|
// How many scanlines should contribute light to each pixel? Using more
|
|
// scanlines is slower (especially for a generalized Gaussian) but less
|
|
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
|
// max_beam_sigma at which the closest unused weight is guaranteed <
|
|
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
|
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
|
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
|
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
|
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
|
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
|
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
|
// A generalized Gaussian beam varies shape with color too, now just width.
|
|
// It's slower but more flexible (static option only for now).
|
|
static const bool beam_generalized_gaussian = true;
|
|
// What kind of scanline antialiasing do you want?
|
|
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
|
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
|
// better than 3x antialiasing (static option only for now).
|
|
static const float beam_antialias_level = 1.0; // range [0, 2]
|
|
// Min/max standard deviations for scanline beams: Higher values widen and
|
|
// soften scanlines. Depending on other options, low min sigmas can alias.
|
|
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
|
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
|
// Beam width varies as a function of color: A power function (0) is more
|
|
// configurable, but a spherical function (1) gives the widest beam
|
|
// variability without aliasing (static option only for now).
|
|
static const float beam_spot_shape_function = 0.0;
|
|
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
|
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
|
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
|
// Generalized Gaussian max shape parameters: Higher values give flatter
|
|
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
|
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
|
// values > ~40.0 cause artifacts with integrals.
|
|
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
|
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
|
// Generalized Gaussian shape power: Affects how quickly the distribution
|
|
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
|
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
|
// appear sharper for most colors.
|
|
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
|
// What filter should be used to sample scanlines horizontally?
|
|
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
|
static const float beam_horiz_filter_static = 0.0;
|
|
// Standard deviation for horizontal Gaussian resampling:
|
|
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
|
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
|
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
|
// limiting circuitry in some CRT's), or a weighted avg.?
|
|
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
|
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
|
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
|
// later passes (static option only for now).
|
|
static const bool beam_misconvergence = true;
|
|
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
|
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
|
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
|
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
|
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
|
// Detect interlacing (static option only for now)?
|
|
static const bool interlace_detect = true;
|
|
// Assume 1080-line sources are interlaced?
|
|
static const bool interlace_1080i_static = false;
|
|
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
|
// (Whether this matters depends on the nature of the interlaced input.)
|
|
static const bool interlace_bff_static = false;
|
|
|
|
// ANTIALIASING:
|
|
// What AA level do you want for curvature/overscan/subpixels? Options:
|
|
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
|
// (Static option only for now)
|
|
static const float aa_level = 12.0; // range [0, 24]
|
|
// What antialiasing filter do you want (static option only)? Options:
|
|
// 0: Box (separable), 1: Box (cylindrical),
|
|
// 2: Tent (separable), 3: Tent (cylindrical),
|
|
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
|
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
|
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
|
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
|
static const float aa_filter = 6.0; // range [0, 9]
|
|
// Flip the sample grid on odd/even frames (static option only for now)?
|
|
static const bool aa_temporal = false;
|
|
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
|
// the blue offset is the negative r offset; range [0, 0.5]
|
|
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
|
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
|
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
|
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
|
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
|
// 4.) C = 0.0 is a soft spline filter.
|
|
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
|
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
|
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
|
|
|
// PHOSPHOR MASK:
|
|
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
|
static const float mask_type_static = 1.0; // range [0, 2]
|
|
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
|
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
|
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
|
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
|
// is halfway decent with LUT mipmapping but atrocious without it.
|
|
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
|
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
|
// This mode reuses the same masks, so triads will be enormous unless
|
|
// you change the mask LUT filenames in your .cgp file.
|
|
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
|
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
|
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
|
// will always be used to calculate the full bloom sigma statically.
|
|
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
|
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
|
// triads) will be rounded to the nearest integer tile size and clamped to
|
|
// obey minimum size constraints (imposed to reduce downsize taps) and
|
|
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
|
// To increase the size limit, double the viewport-relative scales for the
|
|
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
|
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
|
// final size will be rounded and constrained as above); default 480.0
|
|
static const float mask_num_triads_desired_static = 480.0;
|
|
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
|
// more samples and avoid moire a bit better, but some is unavoidable
|
|
// depending on the destination size (static option for now).
|
|
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
|
// The mask is resized using a variable number of taps in each dimension,
|
|
// but some Cg profiles always fetch a constant number of taps no matter
|
|
// what (no dynamic branching). We can limit the maximum number of taps if
|
|
// we statically limit the minimum phosphor triad size. Larger values are
|
|
// faster, but the limit IS enforced (static option only, forever);
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
// TODO: Make this 1.0 and compensate with smarter sampling!
|
|
static const float mask_min_allowed_triad_size = 2.0;
|
|
|
|
// GEOMETRY:
|
|
// Geometry mode:
|
|
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
|
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
|
static const float geom_mode_static = 0.0; // range [0, 3]
|
|
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
|
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
|
// View dist is the distance from the player to their physical screen, in
|
|
// units of the viewport's diagonal size. It controls the field of view.
|
|
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
|
// Tilt angle in radians (clockwise around up and right vectors):
|
|
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
|
// Aspect ratio: When the true viewport size is unknown, this value is used
|
|
// to help convert between the phosphor triad size and count, along with
|
|
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
|
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
|
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
|
// default (256/224)*(54/47) = 1.313069909 (see below)
|
|
static const float geom_aspect_ratio_static = 1.313069909;
|
|
// Before getting into overscan, here's some general aspect ratio info:
|
|
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
|
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
|
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
|
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
|
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
|
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
|
// a.) Enable Retroarch's "Crop Overscan"
|
|
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
|
// Real consoles use horizontal black padding in the signal, but emulators
|
|
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
|
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
|
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
|
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
|
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
|
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
|
// without doing a. or b., but horizontal image borders will be tighter
|
|
// than vertical ones, messing up curvature and overscan. Fixing the
|
|
// padding first corrects this.
|
|
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
|
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
|
// above: Values < 1.0 zoom out; range (0, inf)
|
|
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
|
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
|
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
|
// with strong curvature (static option only for now).
|
|
static const bool geom_force_correct_tangent_matrix = true;
|
|
|
|
// BORDERS:
|
|
// Rounded border size in texture uv coords:
|
|
static const float border_size_static = 0.015; // range [0, 0.5]
|
|
// Border darkness: Moderate values darken the border smoothly, and high
|
|
// values make the image very dark just inside the border:
|
|
static const float border_darkness_static = 2.0; // range [0, inf)
|
|
// Border compression: High numbers compress border transitions, narrowing
|
|
// the dark border area.
|
|
static const float border_compress_static = 2.5; // range [1, inf)
|
|
|
|
|
|
#endif // USER_SETTINGS_H
|
|
|
|
///////////////////////////// END USER-SETTINGS ////////////////////////////
|
|
|
|
//#include "user-cgp-constants.h"
|
|
|
|
///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
|
|
|
|
#ifndef USER_CGP_CONSTANTS_H
|
|
#define USER_CGP_CONSTANTS_H
|
|
|
|
// IMPORTANT:
|
|
// These constants MUST be set appropriately for the settings in crt-royale.cgp
|
|
// (or whatever related .cgp file you're using). If they aren't, you're likely
|
|
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
|
|
// set directly in the .cgp file to make things easier, but...they can't.
|
|
|
|
// PASS SCALES AND RELATED CONSTANTS:
|
|
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
|
|
// this shader: One does a viewport-scale bloom, and the other skips it. The
|
|
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
|
|
static const float bloom_approx_size_x = 320.0;
|
|
static const float bloom_approx_size_x_for_fake = 400.0;
|
|
// Copy the viewport-relative scales of the phosphor mask resize passes
|
|
// (MASK_RESIZE and the pass immediately preceding it):
|
|
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
|
|
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
|
|
static const float geom_max_aspect_ratio = 4.0/3.0;
|
|
|
|
// PHOSPHOR MASK TEXTURE CONSTANTS:
|
|
// Set the following constants to reflect the properties of the phosphor mask
|
|
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
|
|
// based on user settings, then repeats a single tile until filling the screen.
|
|
// The shader must know the input texture size (default 64x64), and to manually
|
|
// resize, it must also know the horizontal triads per tile (default 8).
|
|
static const float2 mask_texture_small_size = float2(64.0, 64.0);
|
|
static const float2 mask_texture_large_size = float2(512.0, 512.0);
|
|
static const float mask_triads_per_tile = 8.0;
|
|
// We need the average brightness of the phosphor mask to compensate for the
|
|
// dimming it causes. The following four values are roughly correct for the
|
|
// masks included with the shader. Update the value for any LUT texture you
|
|
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
|
|
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
|
|
//#define PHOSPHOR_MASK_GRILLE14
|
|
static const float mask_grille14_avg_color = 50.6666666/255.0;
|
|
// TileableLinearApertureGrille14Wide7d33Spacing*.png
|
|
// TileableLinearApertureGrille14Wide10And6Spacing*.png
|
|
static const float mask_grille15_avg_color = 53.0/255.0;
|
|
// TileableLinearApertureGrille15Wide6d33Spacing*.png
|
|
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
|
|
static const float mask_slot_avg_color = 46.0/255.0;
|
|
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
|
|
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
|
|
static const float mask_shadow_avg_color = 41.0/255.0;
|
|
// TileableLinearShadowMask*.png
|
|
// TileableLinearShadowMaskEDP*.png
|
|
|
|
#ifdef PHOSPHOR_MASK_GRILLE14
|
|
static const float mask_grille_avg_color = mask_grille14_avg_color;
|
|
#else
|
|
static const float mask_grille_avg_color = mask_grille15_avg_color;
|
|
#endif
|
|
|
|
|
|
#endif // USER_CGP_CONSTANTS_H
|
|
|
|
////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
|
|
|
|
//////////////////////////////// END INCLUDES ////////////////////////////////
|
|
|
|
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
|
|
|
|
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
|
|
#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
|
|
|
|
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
|
|
#ifndef SIMULATE_CRT_ON_LCD
|
|
#define SIMULATE_CRT_ON_LCD
|
|
#endif
|
|
|
|
// Manually tiling a manually resized texture creates texture coord derivative
|
|
// discontinuities and confuses anisotropic filtering, causing discolored tile
|
|
// seams in the phosphor mask. Workarounds:
|
|
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
|
|
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
|
|
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
|
|
// b.) "Tile flat twice" requires drawing two full tiles without border padding
|
|
// to the resized mask FBO, and it's incompatible with same-pass curvature.
|
|
// (Same-pass curvature isn't used but could be in the future...maybe.)
|
|
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
|
|
// border padding to the resized mask FBO, but it works with same-pass
|
|
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
|
|
// Precedence: a, then, b, then c (if multiple strategies are #defined).
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
|
|
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
|
|
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
|
|
// Also, manually resampling the phosphor mask is slightly blurrier with
|
|
// anisotropic filtering. (Resampling with mipmapping is even worse: It
|
|
// creates artifacts, but only with the fully bloomed shader.) The difference
|
|
// is subtle with small triads, but you can fix it for a small cost.
|
|
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
|
|
|
|
////////////////////////////// DERIVED SETTINGS //////////////////////////////
|
|
|
|
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
|
|
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
|
|
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
|
|
// #defined by either user-settings.h or a wrapper .cg that #includes the
|
|
// current .cg pass.)
|
|
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
#endif
|
|
#ifdef RUNTIME_GEOMETRY_MODE
|
|
#undef RUNTIME_GEOMETRY_MODE
|
|
#endif
|
|
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
|
|
// inferior in most cases, so replace 2.0 with 0.0:
|
|
static const float bloom_approx_filter =
|
|
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
|
|
#else
|
|
static const float bloom_approx_filter = bloom_approx_filter_static;
|
|
#endif
|
|
|
|
// Disable slow runtime paths if static parameters are used. Most of these
|
|
// won't be a problem anyway once the params are disabled, but some will.
|
|
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
|
|
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
#endif
|
|
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
|
#undef RUNTIME_ANTIALIAS_WEIGHTS
|
|
#endif
|
|
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
#endif
|
|
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
#endif
|
|
#ifdef RUNTIME_GEOMETRY_TILT
|
|
#undef RUNTIME_GEOMETRY_TILT
|
|
#endif
|
|
#ifdef RUNTIME_GEOMETRY_MODE
|
|
#undef RUNTIME_GEOMETRY_MODE
|
|
#endif
|
|
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#endif
|
|
#endif
|
|
|
|
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
// Rule out unavailable anisotropic compatibility strategies:
|
|
#ifndef DRIVERS_ALLOW_DERIVATIVES
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#endif
|
|
#ifndef DRIVERS_ALLOW_TEX2DLOD
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#endif
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#endif
|
|
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
|
|
#undef ANTIALIAS_DISABLE_ANISOTROPIC
|
|
#endif
|
|
#endif
|
|
#ifndef DRIVERS_ALLOW_TEX2DBIAS
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#endif
|
|
// Prioritize anisotropic tiling compatibility strategies by performance and
|
|
// disable unused strategies. This concentrates all the nesting in one place.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#else
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#else
|
|
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
|
|
// flat texture coords in the same pass, but that's all we use.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
|
|
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
|
#endif
|
|
// Prioritize anisotropic resampling compatibility strategies the same way:
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
|
|
|
|
// If we can use the large mipmapped LUT without mipmapping artifacts, we
|
|
// should: It gives us more options for using fewer samples.
|
|
#ifdef DRIVERS_ALLOW_TEX2DLOD
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
// TODO: Take advantage of this!
|
|
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
|
|
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
|
|
#else
|
|
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
|
#endif
|
|
#else
|
|
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
|
#endif
|
|
|
|
|
|
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
|
|
// main_fragment, or a static alias of one of the above. This makes it hard
|
|
// to select the phosphor mask at runtime: We can't even assign to a uniform
|
|
// global in the vertex shader or select a sampler2D in the vertex shader and
|
|
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
|
|
// because it just gives us the input texture or a black screen. However, we
|
|
// can get around these limitations by calling tex2D three times with different
|
|
// uniform samplers (or resizing the phosphor mask three times altogether).
|
|
// With dynamic branches, we can process only one of these branches on top of
|
|
// quickly discarding fragments we don't need (cgc seems able to overcome
|
|
// limigations around dependent texture fetches inside of branches). Without
|
|
// dynamic branches, we have to process every branch for every fragment...which
|
|
// is slower. Runtime sampling mode selection is slower without dynamic
|
|
// branches as well. Let the user's static #defines decide if it's worth it.
|
|
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#else
|
|
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#endif
|
|
#endif
|
|
|
|
// We need to render some minimum number of tiles in the resize passes.
|
|
// We need at least 1.0 just to repeat a single tile, and we need extra
|
|
// padding beyond that for anisotropic filtering, discontinuitity fixing,
|
|
// antialiasing, same-pass curvature (not currently used), etc. First
|
|
// determine how many border texels and tiles we need, based on how the result
|
|
// will be sampled:
|
|
#ifdef GEOMETRY_EARLY
|
|
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
|
|
// Most antialiasing filters have a base radius of 4.0 pixels:
|
|
static const float max_aa_base_pixel_border = 4.0 +
|
|
max_subpixel_offset;
|
|
#else
|
|
static const float max_aa_base_pixel_border = 0.0;
|
|
#endif
|
|
// Anisotropic filtering adds about 0.5 to the pixel border:
|
|
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
|
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
|
|
#else
|
|
static const float max_aniso_pixel_border = max_aa_base_pixel_border;
|
|
#endif
|
|
// Fixing discontinuities adds 1.0 more to the pixel border:
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
|
|
#else
|
|
static const float max_tiled_pixel_border = max_aniso_pixel_border;
|
|
#endif
|
|
// Convert the pixel border to an integer texel border. Assume same-pass
|
|
// curvature about triples the texel frequency:
|
|
#ifdef GEOMETRY_EARLY
|
|
static const float max_mask_texel_border =
|
|
ceil(max_tiled_pixel_border * 3.0);
|
|
#else
|
|
static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
|
|
#endif
|
|
// Convert the texel border to a tile border using worst-case assumptions:
|
|
static const float max_mask_tile_border = max_mask_texel_border/
|
|
(mask_min_allowed_triad_size * mask_triads_per_tile);
|
|
|
|
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
|
|
// the starting texel (inside borders) for sampling it.
|
|
#ifndef GEOMETRY_EARLY
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
// Special case: Render two tiles without borders. Anisotropic
|
|
// filtering doesn't seem to be a problem here.
|
|
static const float mask_resize_num_tiles = 1.0 + 1.0;
|
|
static const float mask_start_texels = 0.0;
|
|
#else
|
|
static const float mask_resize_num_tiles = 1.0 +
|
|
2.0 * max_mask_tile_border;
|
|
static const float mask_start_texels = max_mask_texel_border;
|
|
#endif
|
|
#else
|
|
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
|
|
static const float mask_start_texels = max_mask_texel_border;
|
|
#endif
|
|
|
|
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
|
|
// mask_resize_viewport_scale. This limits the maximum final triad size.
|
|
// Estimate the minimum number of triads we can split the screen into in each
|
|
// dimension (we'll be as correct as mask_resize_viewport_scale is):
|
|
static const float mask_resize_num_triads =
|
|
mask_resize_num_tiles * mask_triads_per_tile;
|
|
static const float2 min_allowed_viewport_triads =
|
|
float2(mask_resize_num_triads) / mask_resize_viewport_scale;
|
|
|
|
|
|
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
|
|
|
|
static const float pi = 3.141592653589;
|
|
// We often want to find the location of the previous texel, e.g.:
|
|
// const float2 curr_texel = uv * texture_size;
|
|
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
|
|
// const float2 prev_texel_uv = prev_texel / texture_size;
|
|
// However, many GPU drivers round incorrectly around exact texel locations.
|
|
// We need to subtract a little less than 0.5 before flooring, and some GPU's
|
|
// require this value to be farther from 0.5 than others; define it here.
|
|
// const float2 prev_texel =
|
|
// floor(curr_texel - float2(under_half)) + float2(0.5);
|
|
static const float under_half = 0.4995;
|
|
|
|
|
|
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
|
|
|
|
///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
|
|
|
|
//#include "bind-shader-h"
|
|
|
|
///////////////////////////// BEGIN BIND-SHADER-PARAMS ////////////////////////////
|
|
|
|
#ifndef BIND_SHADER_PARAMS_H
|
|
#define BIND_SHADER_PARAMS_H
|
|
|
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
|
|
|
// crt-royale: A full-featured CRT shader, with cheese.
|
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by the Free
|
|
// Software Foundation; either version 2 of the License, or any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
// more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with
|
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
|
|
|
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
|
|
|
|
//#include "../user-settings.h"
|
|
|
|
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
|
|
|
|
#ifndef USER_SETTINGS_H
|
|
#define USER_SETTINGS_H
|
|
|
|
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
|
|
|
// The Cg compiler uses different "profiles" with different capabilities.
|
|
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
|
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
|
// or driver capabilities, so instead you must comment or uncomment the lines
|
|
// below with "//" before "#define." Disable an option if you get compilation
|
|
// errors resembling those listed. Generally speaking, all of these options
|
|
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
|
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
|
|
|
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
|
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
|
// with curved manually tiled phosphor mask coords. Related errors:
|
|
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
|
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
|
//#define DRIVERS_ALLOW_DERIVATIVES
|
|
|
|
// Fine derivatives: Unsupported on older ATI cards.
|
|
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
|
// fast single-pass blur operations. If your card uses coarse derivatives and
|
|
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
|
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
|
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
|
#endif
|
|
|
|
// Dynamic looping: Requires an fp30 or newer profile.
|
|
// This makes phosphor mask resampling faster in some cases. Related errors:
|
|
// error C5013: profile does not support "for" statements and "for" could not
|
|
// be unrolled
|
|
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
|
|
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
|
// Using one static loop avoids overhead if the user is right, but if the user
|
|
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
|
// binary search can potentially save some iterations. However, it may fail:
|
|
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
|
// needed to compile program
|
|
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
|
|
|
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
|
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
|
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
|
// this profile
|
|
//#define DRIVERS_ALLOW_TEX2DLOD
|
|
|
|
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
|
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
|
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
|
// in this profile
|
|
//#define DRIVERS_ALLOW_TEX2DBIAS
|
|
|
|
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
|
// impose stricter limitations on register counts and instructions. Enable
|
|
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
|
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
|
// to compile program.
|
|
// Enabling integrated graphics compatibility mode will automatically disable:
|
|
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
|
// (This may be reenabled in a later release.)
|
|
// 2.) RUNTIME_GEOMETRY_MODE
|
|
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
|
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
|
|
|
|
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
|
|
|
// To disable a #define option, turn its line into a comment with "//."
|
|
|
|
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
|
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
|
// many of the options in this file and allow real-time tuning, but many of
|
|
// them are slower. Disabling them and using this text file will boost FPS.
|
|
#define RUNTIME_SHADER_PARAMS_ENABLE
|
|
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
|
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
|
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
|
#define RUNTIME_ANTIALIAS_WEIGHTS
|
|
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
|
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
|
// parameters? This will require more math or dynamic branching.
|
|
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
// Specify the tilt at runtime? This makes things about 3% slower.
|
|
#define RUNTIME_GEOMETRY_TILT
|
|
// Specify the geometry mode at runtime?
|
|
#define RUNTIME_GEOMETRY_MODE
|
|
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
|
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
|
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
|
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
|
|
// PHOSPHOR MASK:
|
|
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
|
// removes the option to do so, but it may be faster without dynamic branches.
|
|
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
|
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
|
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
|
// detect the right blur if the triad size is static or our profile allows
|
|
// dynamic branches, but otherwise we use the largest blur the user indicates
|
|
// they might need:
|
|
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
|
// Here's a helpful chart:
|
|
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
|
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
|
|
|
|
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
|
|
|
// Note: Many of these static parameters are overridden by runtime shader
|
|
// parameters when those are enabled. However, many others are static codepath
|
|
// options that were cleaner or more convert to code as static constants.
|
|
|
|
// GAMMA:
|
|
static const float crt_gamma_static = 2.5; // range [1, 5]
|
|
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
|
|
|
// LEVELS MANAGEMENT:
|
|
// Control the final multiplicative image contrast:
|
|
static const float levels_contrast_static = 1.0; // range [0, 4)
|
|
// We auto-dim to avoid clipping between passes and restore brightness
|
|
// later. Control the dim factor here: Lower values clip less but crush
|
|
// blacks more (static only for now).
|
|
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
|
|
|
|
// HALATION/DIFFUSION/BLOOM:
|
|
// Halation weight: How much energy should be lost to electrons bounding
|
|
// around under the CRT glass and exciting random phosphors?
|
|
static const float halation_weight_static = 0.0; // range [0, 1]
|
|
// Refractive diffusion weight: How much light should spread/diffuse from
|
|
// refracting through the CRT glass?
|
|
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
|
// Underestimate brightness: Bright areas bloom more, but we can base the
|
|
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
|
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
|
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
|
// Blur all colors more than necessary for a softer phosphor bloom?
|
|
static const float bloom_excess_static = 0.0; // range [0, 1]
|
|
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
|
// blurred resize of the input (convergence offsets are applied as well).
|
|
// There are three filter options (static option only for now):
|
|
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
|
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
|
// and beam_max_sigma is low.
|
|
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
|
// always uses a static sigma regardless of beam_max_sigma or
|
|
// mask_num_triads_desired.
|
|
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
|
// These options are more pronounced for the fast, unbloomed shader version.
|
|
#ifndef RADEON_FIX
|
|
static const float bloom_approx_filter_static = 2.0;
|
|
#else
|
|
static const float bloom_approx_filter_static = 1.0;
|
|
#endif
|
|
|
|
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
|
// How many scanlines should contribute light to each pixel? Using more
|
|
// scanlines is slower (especially for a generalized Gaussian) but less
|
|
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
|
// max_beam_sigma at which the closest unused weight is guaranteed <
|
|
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
|
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
|
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
|
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
|
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
|
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
|
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
|
// A generalized Gaussian beam varies shape with color too, now just width.
|
|
// It's slower but more flexible (static option only for now).
|
|
static const bool beam_generalized_gaussian = true;
|
|
// What kind of scanline antialiasing do you want?
|
|
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
|
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
|
// better than 3x antialiasing (static option only for now).
|
|
static const float beam_antialias_level = 1.0; // range [0, 2]
|
|
// Min/max standard deviations for scanline beams: Higher values widen and
|
|
// soften scanlines. Depending on other options, low min sigmas can alias.
|
|
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
|
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
|
// Beam width varies as a function of color: A power function (0) is more
|
|
// configurable, but a spherical function (1) gives the widest beam
|
|
// variability without aliasing (static option only for now).
|
|
static const float beam_spot_shape_function = 0.0;
|
|
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
|
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
|
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
|
// Generalized Gaussian max shape parameters: Higher values give flatter
|
|
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
|
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
|
// values > ~40.0 cause artifacts with integrals.
|
|
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
|
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
|
// Generalized Gaussian shape power: Affects how quickly the distribution
|
|
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
|
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
|
// appear sharper for most colors.
|
|
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
|
// What filter should be used to sample scanlines horizontally?
|
|
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
|
static const float beam_horiz_filter_static = 0.0;
|
|
// Standard deviation for horizontal Gaussian resampling:
|
|
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
|
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
|
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
|
// limiting circuitry in some CRT's), or a weighted avg.?
|
|
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
|
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
|
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
|
// later passes (static option only for now).
|
|
static const bool beam_misconvergence = true;
|
|
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
|
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
|
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
|
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
|
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
|
// Detect interlacing (static option only for now)?
|
|
static const bool interlace_detect = true;
|
|
// Assume 1080-line sources are interlaced?
|
|
static const bool interlace_1080i_static = false;
|
|
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
|
// (Whether this matters depends on the nature of the interlaced input.)
|
|
static const bool interlace_bff_static = false;
|
|
|
|
// ANTIALIASING:
|
|
// What AA level do you want for curvature/overscan/subpixels? Options:
|
|
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
|
// (Static option only for now)
|
|
static const float aa_level = 12.0; // range [0, 24]
|
|
// What antialiasing filter do you want (static option only)? Options:
|
|
// 0: Box (separable), 1: Box (cylindrical),
|
|
// 2: Tent (separable), 3: Tent (cylindrical),
|
|
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
|
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
|
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
|
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
|
static const float aa_filter = 6.0; // range [0, 9]
|
|
// Flip the sample grid on odd/even frames (static option only for now)?
|
|
static const bool aa_temporal = false;
|
|
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
|
// the blue offset is the negative r offset; range [0, 0.5]
|
|
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
|
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
|
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
|
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
|
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
|
// 4.) C = 0.0 is a soft spline filter.
|
|
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
|
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
|
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
|
|
|
// PHOSPHOR MASK:
|
|
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
|
static const float mask_type_static = 1.0; // range [0, 2]
|
|
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
|
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
|
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
|
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
|
// is halfway decent with LUT mipmapping but atrocious without it.
|
|
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
|
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
|
// This mode reuses the same masks, so triads will be enormous unless
|
|
// you change the mask LUT filenames in your .cgp file.
|
|
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
|
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
|
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
|
// will always be used to calculate the full bloom sigma statically.
|
|
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
|
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
|
// triads) will be rounded to the nearest integer tile size and clamped to
|
|
// obey minimum size constraints (imposed to reduce downsize taps) and
|
|
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
|
// To increase the size limit, double the viewport-relative scales for the
|
|
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
|
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
|
// final size will be rounded and constrained as above); default 480.0
|
|
static const float mask_num_triads_desired_static = 480.0;
|
|
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
|
// more samples and avoid moire a bit better, but some is unavoidable
|
|
// depending on the destination size (static option for now).
|
|
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
|
// The mask is resized using a variable number of taps in each dimension,
|
|
// but some Cg profiles always fetch a constant number of taps no matter
|
|
// what (no dynamic branching). We can limit the maximum number of taps if
|
|
// we statically limit the minimum phosphor triad size. Larger values are
|
|
// faster, but the limit IS enforced (static option only, forever);
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
// TODO: Make this 1.0 and compensate with smarter sampling!
|
|
static const float mask_min_allowed_triad_size = 2.0;
|
|
|
|
// GEOMETRY:
|
|
// Geometry mode:
|
|
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
|
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
|
static const float geom_mode_static = 0.0; // range [0, 3]
|
|
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
|
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
|
// View dist is the distance from the player to their physical screen, in
|
|
// units of the viewport's diagonal size. It controls the field of view.
|
|
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
|
// Tilt angle in radians (clockwise around up and right vectors):
|
|
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
|
// Aspect ratio: When the true viewport size is unknown, this value is used
|
|
// to help convert between the phosphor triad size and count, along with
|
|
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
|
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
|
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
|
// default (256/224)*(54/47) = 1.313069909 (see below)
|
|
static const float geom_aspect_ratio_static = 1.313069909;
|
|
// Before getting into overscan, here's some general aspect ratio info:
|
|
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
|
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
|
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
|
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
|
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
|
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
|
// a.) Enable Retroarch's "Crop Overscan"
|
|
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
|
// Real consoles use horizontal black padding in the signal, but emulators
|
|
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
|
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
|
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
|
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
|
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
|
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
|
// without doing a. or b., but horizontal image borders will be tighter
|
|
// than vertical ones, messing up curvature and overscan. Fixing the
|
|
// padding first corrects this.
|
|
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
|
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
|
// above: Values < 1.0 zoom out; range (0, inf)
|
|
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
|
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
|
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
|
// with strong curvature (static option only for now).
|
|
static const bool geom_force_correct_tangent_matrix = true;
|
|
|
|
// BORDERS:
|
|
// Rounded border size in texture uv coords:
|
|
static const float border_size_static = 0.015; // range [0, 0.5]
|
|
// Border darkness: Moderate values darken the border smoothly, and high
|
|
// values make the image very dark just inside the border:
|
|
static const float border_darkness_static = 2.0; // range [0, inf)
|
|
// Border compression: High numbers compress border transitions, narrowing
|
|
// the dark border area.
|
|
static const float border_compress_static = 2.5; // range [1, inf)
|
|
|
|
|
|
#endif // USER_SETTINGS_H
|
|
|
|
///////////////////////////// END USER-SETTINGS ////////////////////////////
|
|
|
|
//#include "derived-settings-and-constants.h"
|
|
|
|
///////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
|
|
|
|
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
|
|
#define DERIVED_SETTINGS_AND_CONSTANTS_H
|
|
|
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
|
|
|
// crt-royale: A full-featured CRT shader, with cheese.
|
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by the Free
|
|
// Software Foundation; either version 2 of the License, or any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
// more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with
|
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
|
|
|
// These macros and constants can be used across the whole codebase.
|
|
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
|
|
|
|
|
|
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
|
|
|
|
//#include "../user-settings.h"
|
|
|
|
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
|
|
|
|
#ifndef USER_SETTINGS_H
|
|
#define USER_SETTINGS_H
|
|
|
|
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
|
|
|
// The Cg compiler uses different "profiles" with different capabilities.
|
|
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
|
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
|
// or driver capabilities, so instead you must comment or uncomment the lines
|
|
// below with "//" before "#define." Disable an option if you get compilation
|
|
// errors resembling those listed. Generally speaking, all of these options
|
|
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
|
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
|
|
|
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
|
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
|
// with curved manually tiled phosphor mask coords. Related errors:
|
|
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
|
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
|
//#define DRIVERS_ALLOW_DERIVATIVES
|
|
|
|
// Fine derivatives: Unsupported on older ATI cards.
|
|
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
|
// fast single-pass blur operations. If your card uses coarse derivatives and
|
|
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
|
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
|
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
|
#endif
|
|
|
|
// Dynamic looping: Requires an fp30 or newer profile.
|
|
// This makes phosphor mask resampling faster in some cases. Related errors:
|
|
// error C5013: profile does not support "for" statements and "for" could not
|
|
// be unrolled
|
|
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
|
|
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
|
// Using one static loop avoids overhead if the user is right, but if the user
|
|
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
|
// binary search can potentially save some iterations. However, it may fail:
|
|
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
|
// needed to compile program
|
|
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
|
|
|
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
|
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
|
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
|
// this profile
|
|
//#define DRIVERS_ALLOW_TEX2DLOD
|
|
|
|
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
|
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
|
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
|
// in this profile
|
|
//#define DRIVERS_ALLOW_TEX2DBIAS
|
|
|
|
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
|
// impose stricter limitations on register counts and instructions. Enable
|
|
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
|
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
|
// to compile program.
|
|
// Enabling integrated graphics compatibility mode will automatically disable:
|
|
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
|
// (This may be reenabled in a later release.)
|
|
// 2.) RUNTIME_GEOMETRY_MODE
|
|
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
|
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
|
|
|
|
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
|
|
|
// To disable a #define option, turn its line into a comment with "//."
|
|
|
|
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
|
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
|
// many of the options in this file and allow real-time tuning, but many of
|
|
// them are slower. Disabling them and using this text file will boost FPS.
|
|
#define RUNTIME_SHADER_PARAMS_ENABLE
|
|
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
|
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
|
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
|
#define RUNTIME_ANTIALIAS_WEIGHTS
|
|
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
|
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
|
// parameters? This will require more math or dynamic branching.
|
|
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
// Specify the tilt at runtime? This makes things about 3% slower.
|
|
#define RUNTIME_GEOMETRY_TILT
|
|
// Specify the geometry mode at runtime?
|
|
#define RUNTIME_GEOMETRY_MODE
|
|
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
|
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
|
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
|
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
|
|
// PHOSPHOR MASK:
|
|
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
|
// removes the option to do so, but it may be faster without dynamic branches.
|
|
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
|
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
|
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
|
// detect the right blur if the triad size is static or our profile allows
|
|
// dynamic branches, but otherwise we use the largest blur the user indicates
|
|
// they might need:
|
|
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
|
// Here's a helpful chart:
|
|
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
|
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
|
|
|
|
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
|
|
|
// Note: Many of these static parameters are overridden by runtime shader
|
|
// parameters when those are enabled. However, many others are static codepath
|
|
// options that were cleaner or more convert to code as static constants.
|
|
|
|
// GAMMA:
|
|
static const float crt_gamma_static = 2.5; // range [1, 5]
|
|
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
|
|
|
// LEVELS MANAGEMENT:
|
|
// Control the final multiplicative image contrast:
|
|
static const float levels_contrast_static = 1.0; // range [0, 4)
|
|
// We auto-dim to avoid clipping between passes and restore brightness
|
|
// later. Control the dim factor here: Lower values clip less but crush
|
|
// blacks more (static only for now).
|
|
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
|
|
|
|
// HALATION/DIFFUSION/BLOOM:
|
|
// Halation weight: How much energy should be lost to electrons bounding
|
|
// around under the CRT glass and exciting random phosphors?
|
|
static const float halation_weight_static = 0.0; // range [0, 1]
|
|
// Refractive diffusion weight: How much light should spread/diffuse from
|
|
// refracting through the CRT glass?
|
|
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
|
// Underestimate brightness: Bright areas bloom more, but we can base the
|
|
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
|
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
|
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
|
// Blur all colors more than necessary for a softer phosphor bloom?
|
|
static const float bloom_excess_static = 0.0; // range [0, 1]
|
|
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
|
// blurred resize of the input (convergence offsets are applied as well).
|
|
// There are three filter options (static option only for now):
|
|
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
|
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
|
// and beam_max_sigma is low.
|
|
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
|
// always uses a static sigma regardless of beam_max_sigma or
|
|
// mask_num_triads_desired.
|
|
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
|
// These options are more pronounced for the fast, unbloomed shader version.
|
|
#ifndef RADEON_FIX
|
|
static const float bloom_approx_filter_static = 2.0;
|
|
#else
|
|
static const float bloom_approx_filter_static = 1.0;
|
|
#endif
|
|
|
|
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
|
// How many scanlines should contribute light to each pixel? Using more
|
|
// scanlines is slower (especially for a generalized Gaussian) but less
|
|
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
|
// max_beam_sigma at which the closest unused weight is guaranteed <
|
|
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
|
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
|
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
|
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
|
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
|
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
|
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
|
// A generalized Gaussian beam varies shape with color too, now just width.
|
|
// It's slower but more flexible (static option only for now).
|
|
static const bool beam_generalized_gaussian = true;
|
|
// What kind of scanline antialiasing do you want?
|
|
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
|
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
|
// better than 3x antialiasing (static option only for now).
|
|
static const float beam_antialias_level = 1.0; // range [0, 2]
|
|
// Min/max standard deviations for scanline beams: Higher values widen and
|
|
// soften scanlines. Depending on other options, low min sigmas can alias.
|
|
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
|
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
|
// Beam width varies as a function of color: A power function (0) is more
|
|
// configurable, but a spherical function (1) gives the widest beam
|
|
// variability without aliasing (static option only for now).
|
|
static const float beam_spot_shape_function = 0.0;
|
|
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
|
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
|
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
|
// Generalized Gaussian max shape parameters: Higher values give flatter
|
|
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
|
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
|
// values > ~40.0 cause artifacts with integrals.
|
|
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
|
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
|
// Generalized Gaussian shape power: Affects how quickly the distribution
|
|
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
|
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
|
// appear sharper for most colors.
|
|
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
|
// What filter should be used to sample scanlines horizontally?
|
|
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
|
static const float beam_horiz_filter_static = 0.0;
|
|
// Standard deviation for horizontal Gaussian resampling:
|
|
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
|
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
|
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
|
// limiting circuitry in some CRT's), or a weighted avg.?
|
|
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
|
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
|
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
|
// later passes (static option only for now).
|
|
static const bool beam_misconvergence = true;
|
|
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
|
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
|
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
|
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
|
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
|
// Detect interlacing (static option only for now)?
|
|
static const bool interlace_detect = true;
|
|
// Assume 1080-line sources are interlaced?
|
|
static const bool interlace_1080i_static = false;
|
|
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
|
// (Whether this matters depends on the nature of the interlaced input.)
|
|
static const bool interlace_bff_static = false;
|
|
|
|
// ANTIALIASING:
|
|
// What AA level do you want for curvature/overscan/subpixels? Options:
|
|
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
|
// (Static option only for now)
|
|
static const float aa_level = 12.0; // range [0, 24]
|
|
// What antialiasing filter do you want (static option only)? Options:
|
|
// 0: Box (separable), 1: Box (cylindrical),
|
|
// 2: Tent (separable), 3: Tent (cylindrical),
|
|
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
|
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
|
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
|
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
|
static const float aa_filter = 6.0; // range [0, 9]
|
|
// Flip the sample grid on odd/even frames (static option only for now)?
|
|
static const bool aa_temporal = false;
|
|
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
|
// the blue offset is the negative r offset; range [0, 0.5]
|
|
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
|
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
|
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
|
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
|
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
|
// 4.) C = 0.0 is a soft spline filter.
|
|
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
|
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
|
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
|
|
|
// PHOSPHOR MASK:
|
|
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
|
static const float mask_type_static = 1.0; // range [0, 2]
|
|
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
|
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
|
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
|
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
|
// is halfway decent with LUT mipmapping but atrocious without it.
|
|
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
|
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
|
// This mode reuses the same masks, so triads will be enormous unless
|
|
// you change the mask LUT filenames in your .cgp file.
|
|
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
|
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
|
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
|
// will always be used to calculate the full bloom sigma statically.
|
|
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
|
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
|
// triads) will be rounded to the nearest integer tile size and clamped to
|
|
// obey minimum size constraints (imposed to reduce downsize taps) and
|
|
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
|
// To increase the size limit, double the viewport-relative scales for the
|
|
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
|
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
|
// final size will be rounded and constrained as above); default 480.0
|
|
static const float mask_num_triads_desired_static = 480.0;
|
|
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
|
// more samples and avoid moire a bit better, but some is unavoidable
|
|
// depending on the destination size (static option for now).
|
|
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
|
// The mask is resized using a variable number of taps in each dimension,
|
|
// but some Cg profiles always fetch a constant number of taps no matter
|
|
// what (no dynamic branching). We can limit the maximum number of taps if
|
|
// we statically limit the minimum phosphor triad size. Larger values are
|
|
// faster, but the limit IS enforced (static option only, forever);
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
// TODO: Make this 1.0 and compensate with smarter sampling!
|
|
static const float mask_min_allowed_triad_size = 2.0;
|
|
|
|
// GEOMETRY:
|
|
// Geometry mode:
|
|
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
|
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
|
static const float geom_mode_static = 0.0; // range [0, 3]
|
|
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
|
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
|
// View dist is the distance from the player to their physical screen, in
|
|
// units of the viewport's diagonal size. It controls the field of view.
|
|
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
|
// Tilt angle in radians (clockwise around up and right vectors):
|
|
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
|
// Aspect ratio: When the true viewport size is unknown, this value is used
|
|
// to help convert between the phosphor triad size and count, along with
|
|
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
|
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
|
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
|
// default (256/224)*(54/47) = 1.313069909 (see below)
|
|
static const float geom_aspect_ratio_static = 1.313069909;
|
|
// Before getting into overscan, here's some general aspect ratio info:
|
|
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
|
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
|
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
|
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
|
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
|
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
|
// a.) Enable Retroarch's "Crop Overscan"
|
|
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
|
// Real consoles use horizontal black padding in the signal, but emulators
|
|
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
|
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
|
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
|
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
|
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
|
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
|
// without doing a. or b., but horizontal image borders will be tighter
|
|
// than vertical ones, messing up curvature and overscan. Fixing the
|
|
// padding first corrects this.
|
|
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
|
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
|
// above: Values < 1.0 zoom out; range (0, inf)
|
|
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
|
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
|
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
|
// with strong curvature (static option only for now).
|
|
static const bool geom_force_correct_tangent_matrix = true;
|
|
|
|
// BORDERS:
|
|
// Rounded border size in texture uv coords:
|
|
static const float border_size_static = 0.015; // range [0, 0.5]
|
|
// Border darkness: Moderate values darken the border smoothly, and high
|
|
// values make the image very dark just inside the border:
|
|
static const float border_darkness_static = 2.0; // range [0, inf)
|
|
// Border compression: High numbers compress border transitions, narrowing
|
|
// the dark border area.
|
|
static const float border_compress_static = 2.5; // range [1, inf)
|
|
|
|
|
|
#endif // USER_SETTINGS_H
|
|
|
|
///////////////////////////// END USER-SETTINGS ////////////////////////////
|
|
|
|
//#include "user-cgp-constants.h"
|
|
|
|
///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
|
|
|
|
#ifndef USER_CGP_CONSTANTS_H
|
|
#define USER_CGP_CONSTANTS_H
|
|
|
|
// IMPORTANT:
|
|
// These constants MUST be set appropriately for the settings in crt-royale.cgp
|
|
// (or whatever related .cgp file you're using). If they aren't, you're likely
|
|
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
|
|
// set directly in the .cgp file to make things easier, but...they can't.
|
|
|
|
// PASS SCALES AND RELATED CONSTANTS:
|
|
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
|
|
// this shader: One does a viewport-scale bloom, and the other skips it. The
|
|
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
|
|
static const float bloom_approx_size_x = 320.0;
|
|
static const float bloom_approx_size_x_for_fake = 400.0;
|
|
// Copy the viewport-relative scales of the phosphor mask resize passes
|
|
// (MASK_RESIZE and the pass immediately preceding it):
|
|
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
|
|
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
|
|
static const float geom_max_aspect_ratio = 4.0/3.0;
|
|
|
|
// PHOSPHOR MASK TEXTURE CONSTANTS:
|
|
// Set the following constants to reflect the properties of the phosphor mask
|
|
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
|
|
// based on user settings, then repeats a single tile until filling the screen.
|
|
// The shader must know the input texture size (default 64x64), and to manually
|
|
// resize, it must also know the horizontal triads per tile (default 8).
|
|
static const float2 mask_texture_small_size = float2(64.0, 64.0);
|
|
static const float2 mask_texture_large_size = float2(512.0, 512.0);
|
|
static const float mask_triads_per_tile = 8.0;
|
|
// We need the average brightness of the phosphor mask to compensate for the
|
|
// dimming it causes. The following four values are roughly correct for the
|
|
// masks included with the shader. Update the value for any LUT texture you
|
|
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
|
|
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
|
|
//#define PHOSPHOR_MASK_GRILLE14
|
|
static const float mask_grille14_avg_color = 50.6666666/255.0;
|
|
// TileableLinearApertureGrille14Wide7d33Spacing*.png
|
|
// TileableLinearApertureGrille14Wide10And6Spacing*.png
|
|
static const float mask_grille15_avg_color = 53.0/255.0;
|
|
// TileableLinearApertureGrille15Wide6d33Spacing*.png
|
|
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
|
|
static const float mask_slot_avg_color = 46.0/255.0;
|
|
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
|
|
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
|
|
static const float mask_shadow_avg_color = 41.0/255.0;
|
|
// TileableLinearShadowMask*.png
|
|
// TileableLinearShadowMaskEDP*.png
|
|
|
|
#ifdef PHOSPHOR_MASK_GRILLE14
|
|
static const float mask_grille_avg_color = mask_grille14_avg_color;
|
|
#else
|
|
static const float mask_grille_avg_color = mask_grille15_avg_color;
|
|
#endif
|
|
|
|
|
|
#endif // USER_CGP_CONSTANTS_H
|
|
|
|
////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
|
|
|
|
//////////////////////////////// END INCLUDES ////////////////////////////////
|
|
|
|
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
|
|
|
|
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
|
|
#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
|
|
|
|
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
|
|
#ifndef SIMULATE_CRT_ON_LCD
|
|
#define SIMULATE_CRT_ON_LCD
|
|
#endif
|
|
|
|
// Manually tiling a manually resized texture creates texture coord derivative
|
|
// discontinuities and confuses anisotropic filtering, causing discolored tile
|
|
// seams in the phosphor mask. Workarounds:
|
|
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
|
|
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
|
|
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
|
|
// b.) "Tile flat twice" requires drawing two full tiles without border padding
|
|
// to the resized mask FBO, and it's incompatible with same-pass curvature.
|
|
// (Same-pass curvature isn't used but could be in the future...maybe.)
|
|
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
|
|
// border padding to the resized mask FBO, but it works with same-pass
|
|
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
|
|
// Precedence: a, then, b, then c (if multiple strategies are #defined).
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
|
|
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
|
|
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
|
|
// Also, manually resampling the phosphor mask is slightly blurrier with
|
|
// anisotropic filtering. (Resampling with mipmapping is even worse: It
|
|
// creates artifacts, but only with the fully bloomed shader.) The difference
|
|
// is subtle with small triads, but you can fix it for a small cost.
|
|
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
|
|
|
|
////////////////////////////// DERIVED SETTINGS //////////////////////////////
|
|
|
|
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
|
|
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
|
|
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
|
|
// #defined by either user-settings.h or a wrapper .cg that #includes the
|
|
// current .cg pass.)
|
|
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
#endif
|
|
#ifdef RUNTIME_GEOMETRY_MODE
|
|
#undef RUNTIME_GEOMETRY_MODE
|
|
#endif
|
|
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
|
|
// inferior in most cases, so replace 2.0 with 0.0:
|
|
static const float bloom_approx_filter =
|
|
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
|
|
#else
|
|
static const float bloom_approx_filter = bloom_approx_filter_static;
|
|
#endif
|
|
|
|
// Disable slow runtime paths if static parameters are used. Most of these
|
|
// won't be a problem anyway once the params are disabled, but some will.
|
|
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
|
|
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
#endif
|
|
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
|
#undef RUNTIME_ANTIALIAS_WEIGHTS
|
|
#endif
|
|
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
#endif
|
|
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
#endif
|
|
#ifdef RUNTIME_GEOMETRY_TILT
|
|
#undef RUNTIME_GEOMETRY_TILT
|
|
#endif
|
|
#ifdef RUNTIME_GEOMETRY_MODE
|
|
#undef RUNTIME_GEOMETRY_MODE
|
|
#endif
|
|
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#endif
|
|
#endif
|
|
|
|
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
// Rule out unavailable anisotropic compatibility strategies:
|
|
#ifndef DRIVERS_ALLOW_DERIVATIVES
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#endif
|
|
#ifndef DRIVERS_ALLOW_TEX2DLOD
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#endif
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#endif
|
|
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
|
|
#undef ANTIALIAS_DISABLE_ANISOTROPIC
|
|
#endif
|
|
#endif
|
|
#ifndef DRIVERS_ALLOW_TEX2DBIAS
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#endif
|
|
// Prioritize anisotropic tiling compatibility strategies by performance and
|
|
// disable unused strategies. This concentrates all the nesting in one place.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#else
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#else
|
|
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
|
|
// flat texture coords in the same pass, but that's all we use.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
|
|
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
|
#endif
|
|
// Prioritize anisotropic resampling compatibility strategies the same way:
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
|
|
|
|
// If we can use the large mipmapped LUT without mipmapping artifacts, we
|
|
// should: It gives us more options for using fewer samples.
|
|
#ifdef DRIVERS_ALLOW_TEX2DLOD
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
// TODO: Take advantage of this!
|
|
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
|
|
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
|
|
#else
|
|
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
|
#endif
|
|
#else
|
|
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
|
#endif
|
|
|
|
|
|
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
|
|
// main_fragment, or a static alias of one of the above. This makes it hard
|
|
// to select the phosphor mask at runtime: We can't even assign to a uniform
|
|
// global in the vertex shader or select a sampler2D in the vertex shader and
|
|
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
|
|
// because it just gives us the input texture or a black screen. However, we
|
|
// can get around these limitations by calling tex2D three times with different
|
|
// uniform samplers (or resizing the phosphor mask three times altogether).
|
|
// With dynamic branches, we can process only one of these branches on top of
|
|
// quickly discarding fragments we don't need (cgc seems able to overcome
|
|
// limigations around dependent texture fetches inside of branches). Without
|
|
// dynamic branches, we have to process every branch for every fragment...which
|
|
// is slower. Runtime sampling mode selection is slower without dynamic
|
|
// branches as well. Let the user's static #defines decide if it's worth it.
|
|
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#else
|
|
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#endif
|
|
#endif
|
|
|
|
// We need to render some minimum number of tiles in the resize passes.
|
|
// We need at least 1.0 just to repeat a single tile, and we need extra
|
|
// padding beyond that for anisotropic filtering, discontinuitity fixing,
|
|
// antialiasing, same-pass curvature (not currently used), etc. First
|
|
// determine how many border texels and tiles we need, based on how the result
|
|
// will be sampled:
|
|
#ifdef GEOMETRY_EARLY
|
|
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
|
|
// Most antialiasing filters have a base radius of 4.0 pixels:
|
|
static const float max_aa_base_pixel_border = 4.0 +
|
|
max_subpixel_offset;
|
|
#else
|
|
static const float max_aa_base_pixel_border = 0.0;
|
|
#endif
|
|
// Anisotropic filtering adds about 0.5 to the pixel border:
|
|
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
|
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
|
|
#else
|
|
static const float max_aniso_pixel_border = max_aa_base_pixel_border;
|
|
#endif
|
|
// Fixing discontinuities adds 1.0 more to the pixel border:
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
|
|
#else
|
|
static const float max_tiled_pixel_border = max_aniso_pixel_border;
|
|
#endif
|
|
// Convert the pixel border to an integer texel border. Assume same-pass
|
|
// curvature about triples the texel frequency:
|
|
#ifdef GEOMETRY_EARLY
|
|
static const float max_mask_texel_border =
|
|
ceil(max_tiled_pixel_border * 3.0);
|
|
#else
|
|
static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
|
|
#endif
|
|
// Convert the texel border to a tile border using worst-case assumptions:
|
|
static const float max_mask_tile_border = max_mask_texel_border/
|
|
(mask_min_allowed_triad_size * mask_triads_per_tile);
|
|
|
|
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
|
|
// the starting texel (inside borders) for sampling it.
|
|
#ifndef GEOMETRY_EARLY
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
// Special case: Render two tiles without borders. Anisotropic
|
|
// filtering doesn't seem to be a problem here.
|
|
static const float mask_resize_num_tiles = 1.0 + 1.0;
|
|
static const float mask_start_texels = 0.0;
|
|
#else
|
|
static const float mask_resize_num_tiles = 1.0 +
|
|
2.0 * max_mask_tile_border;
|
|
static const float mask_start_texels = max_mask_texel_border;
|
|
#endif
|
|
#else
|
|
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
|
|
static const float mask_start_texels = max_mask_texel_border;
|
|
#endif
|
|
|
|
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
|
|
// mask_resize_viewport_scale. This limits the maximum final triad size.
|
|
// Estimate the minimum number of triads we can split the screen into in each
|
|
// dimension (we'll be as correct as mask_resize_viewport_scale is):
|
|
static const float mask_resize_num_triads =
|
|
mask_resize_num_tiles * mask_triads_per_tile;
|
|
static const float2 min_allowed_viewport_triads =
|
|
float2(mask_resize_num_triads) / mask_resize_viewport_scale;
|
|
|
|
|
|
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
|
|
|
|
static const float pi = 3.141592653589;
|
|
// We often want to find the location of the previous texel, e.g.:
|
|
// const float2 curr_texel = uv * texture_size;
|
|
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
|
|
// const float2 prev_texel_uv = prev_texel / texture_size;
|
|
// However, many GPU drivers round incorrectly around exact texel locations.
|
|
// We need to subtract a little less than 0.5 before flooring, and some GPU's
|
|
// require this value to be farther from 0.5 than others; define it here.
|
|
// const float2 prev_texel =
|
|
// floor(curr_texel - float2(under_half)) + float2(0.5);
|
|
static const float under_half = 0.4995;
|
|
|
|
|
|
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
|
|
|
|
//////////////////// END DERIVED-SETTINGS-AND-CONSTANTS /////////////////////
|
|
|
|
//////////////////////////////// END INCLUDES ////////////////////////////////
|
|
|
|
// Override some parameters for gamma-management.h and tex2Dantialias.h:
|
|
#define OVERRIDE_DEVICE_GAMMA
|
|
static const float gba_gamma = 3.5; // Irrelevant but necessary to define.
|
|
#define ANTIALIAS_OVERRIDE_BASICS
|
|
#define ANTIALIAS_OVERRIDE_PARAMETERS
|
|
|
|
// Provide accessors for vector constants that pack scalar uniforms:
|
|
inline float2 get_aspect_vector(const float geom_aspect_ratio)
|
|
{
|
|
// Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent
|
|
// the absolute scale from affecting the uv-mapping for curvature:
|
|
const float geom_clamped_aspect_ratio =
|
|
min(geom_aspect_ratio, geom_max_aspect_ratio);
|
|
const float2 geom_aspect =
|
|
normalize(float2(geom_clamped_aspect_ratio, 1.0));
|
|
return geom_aspect;
|
|
}
|
|
|
|
inline float2 get_geom_overscan_vector()
|
|
{
|
|
return float2(geom_overscan_x, geom_overscan_y);
|
|
}
|
|
|
|
inline float2 get_geom_tilt_angle_vector()
|
|
{
|
|
return float2(geom_tilt_angle_x, geom_tilt_angle_y);
|
|
}
|
|
|
|
inline float3 get_convergence_offsets_x_vector()
|
|
{
|
|
return float3(convergence_offset_x_r, convergence_offset_x_g,
|
|
convergence_offset_x_b);
|
|
}
|
|
|
|
inline float3 get_convergence_offsets_y_vector()
|
|
{
|
|
return float3(convergence_offset_y_r, convergence_offset_y_g,
|
|
convergence_offset_y_b);
|
|
}
|
|
|
|
inline float2 get_convergence_offsets_r_vector()
|
|
{
|
|
return float2(convergence_offset_x_r, convergence_offset_y_r);
|
|
}
|
|
|
|
inline float2 get_convergence_offsets_g_vector()
|
|
{
|
|
return float2(convergence_offset_x_g, convergence_offset_y_g);
|
|
}
|
|
|
|
inline float2 get_convergence_offsets_b_vector()
|
|
{
|
|
return float2(convergence_offset_x_b, convergence_offset_y_b);
|
|
}
|
|
|
|
inline float2 get_aa_subpixel_r_offset()
|
|
{
|
|
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
|
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
// WARNING: THIS IS EXTREMELY EXPENSIVE.
|
|
return float2(aa_subpixel_r_offset_x_runtime,
|
|
aa_subpixel_r_offset_y_runtime);
|
|
#else
|
|
return aa_subpixel_r_offset_static;
|
|
#endif
|
|
#else
|
|
return aa_subpixel_r_offset_static;
|
|
#endif
|
|
}
|
|
|
|
// Provide accessors settings which still need "cooking:"
|
|
inline float get_mask_amplify()
|
|
{
|
|
static const float mask_grille_amplify = 1.0/mask_grille_avg_color;
|
|
static const float mask_slot_amplify = 1.0/mask_slot_avg_color;
|
|
static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color;
|
|
return mask_type < 0.5 ? mask_grille_amplify :
|
|
mask_type < 1.5 ? mask_slot_amplify :
|
|
mask_shadow_amplify;
|
|
}
|
|
|
|
inline float get_mask_sample_mode()
|
|
{
|
|
#ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
return mask_sample_mode_desired;
|
|
#else
|
|
return clamp(mask_sample_mode_desired, 1.0, 2.0);
|
|
#endif
|
|
#else
|
|
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
return mask_sample_mode_static;
|
|
#else
|
|
return clamp(mask_sample_mode_static, 1.0, 2.0);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#endif // BIND_SHADER_PARAMS_H
|
|
|
|
//////////////////////////// END BIND-SHADER-PARAMS ///////////////////////////
|
|
|
|
////////////////////////////////// INCLUDES //////////////////////////////////
|
|
|
|
//#include "phosphor-mask-resizing.h"
|
|
|
|
//////////////////////// BEGIN PHOSPHOR-MASK-RESIZING ////////////////////////
|
|
|
|
#ifndef PHOSPHOR_MASK_RESIZING_H
|
|
#define PHOSPHOR_MASK_RESIZING_H
|
|
|
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
|
|
|
// crt-royale: A full-featured CRT shader, with cheese.
|
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by the Free
|
|
// Software Foundation; either version 2 of the License, or any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
// more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with
|
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
////////////////////////////////// INCLUDES //////////////////////////////////
|
|
|
|
//#include "../user-settings.h"
|
|
//#include "derived-settings-and-constants.h"
|
|
|
|
///////////////////////////// CODEPATH SELECTION /////////////////////////////
|
|
|
|
// Choose a looping strategy based on what's allowed:
|
|
// Dynamic loops not allowed: Use a flat static loop.
|
|
// Dynamic loops accomodated: Coarsely branch around static loops.
|
|
// Dynamic loops assumed allowed: Use a flat dynamic loop.
|
|
#ifndef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
#ifdef ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
|
#define BREAK_LOOPS_INTO_PIECES
|
|
#else
|
|
#define USE_SINGLE_STATIC_LOOP
|
|
#endif
|
|
#endif // No else needed: Dynamic loops assumed.
|
|
|
|
|
|
////////////////////////////////// CONSTANTS /////////////////////////////////
|
|
|
|
// The larger the resized tile, the fewer samples we'll need for downsizing.
|
|
// See if we can get a static min tile size > mask_min_allowed_tile_size:
|
|
static const float mask_min_allowed_tile_size = ceil(
|
|
mask_min_allowed_triad_size * mask_triads_per_tile);
|
|
static const float mask_min_expected_tile_size =
|
|
mask_min_allowed_tile_size;
|
|
// Limit the number of sinc resize taps by the maximum minification factor:
|
|
static const float pi_over_lobes = pi/mask_sinc_lobes;
|
|
static const float max_sinc_resize_samples_float = 2.0 * mask_sinc_lobes *
|
|
mask_resize_src_lut_size.x/mask_min_expected_tile_size;
|
|
// Vectorized loops sample in multiples of 4. Round up to be safe:
|
|
static const float max_sinc_resize_samples_m4 = ceil(
|
|
max_sinc_resize_samples_float * 0.25) * 4.0;
|
|
|
|
|
|
///////////////////////// RESAMPLING FUNCTION HELPERS ////////////////////////
|
|
|
|
inline float get_dynamic_loop_size(const float magnification_scale)
|
|
{
|
|
// Requires: The following global constants must be defined:
|
|
// 1.) mask_sinc_lobes
|
|
// 2.) max_sinc_resize_samples_m4
|
|
// Returns: The minimum number of texture samples for a correct downsize
|
|
// at magnification_scale.
|
|
// We're downsizing, so the filter is sized across 2*lobes output pixels
|
|
// (not 2*lobes input texels). This impacts distance measurements and the
|
|
// minimum number of input samples needed.
|
|
const float min_samples_float = 2.0 * mask_sinc_lobes / magnification_scale;
|
|
const float min_samples_m4 = ceil(min_samples_float * 0.25) * 4.0;
|
|
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
const float max_samples_m4 = max_sinc_resize_samples_m4;
|
|
#else // ifdef BREAK_LOOPS_INTO_PIECES
|
|
// Simulating loops with branches imposes a 128-sample limit.
|
|
const float max_samples_m4 = min(128.0, max_sinc_resize_samples_m4);
|
|
#endif
|
|
return min(min_samples_m4, max_samples_m4);
|
|
}
|
|
|
|
float2 get_first_texel_tile_uv_and_dist(const float2 tex_uv,
|
|
const float2 tex_size, const float dr,
|
|
const float input_tiles_per_texture_r, const float samples,
|
|
static const bool vertical)
|
|
{
|
|
// Requires: 1.) dr == du == 1.0/texture_size.x or
|
|
// dr == dv == 1.0/texture_size.y
|
|
// (whichever direction we're resampling in).
|
|
// It's a scalar to save register space.
|
|
// 2.) input_tiles_per_texture_r is the number of input tiles
|
|
// that can fit in the input texture in the direction we're
|
|
// resampling this pass.
|
|
// 3.) vertical indicates whether we're resampling vertically
|
|
// this pass (or horizontally).
|
|
// Returns: Pack and return the first sample's tile_uv coord in [0, 1]
|
|
// and its texel distance from the destination pixel, in the
|
|
// resized dimension only.
|
|
// We'll start with the topmost or leftmost sample and work down or right,
|
|
// so get the first sample location and distance. Modify both dimensions
|
|
// as if we're doing a one-pass 2D resize; we'll throw away the unneeded
|
|
// (and incorrect) dimension at the end.
|
|
const float2 curr_texel = tex_uv * tex_size;
|
|
const float2 prev_texel =
|
|
floor(curr_texel - float2(under_half)) + float2(0.5);
|
|
const float2 first_texel = prev_texel - float2(samples/2.0 - 1.0);
|
|
const float2 first_texel_uv_wrap_2D = first_texel * dr;
|
|
const float2 first_texel_dist_2D = curr_texel - first_texel;
|
|
// Convert from tex_uv to tile_uv coords so we can sub fracs for fmods.
|
|
const float2 first_texel_tile_uv_wrap_2D =
|
|
first_texel_uv_wrap_2D * input_tiles_per_texture_r;
|
|
// Project wrapped coordinates to the [0, 1] range. We'll do this with all
|
|
// samples,but the first texel is special, since it might be negative.
|
|
const float2 coord_negative =
|
|
float2((first_texel_tile_uv_wrap_2D.x < 0.),(first_texel_tile_uv_wrap_2D.y < 0.));
|
|
const float2 first_texel_tile_uv_2D =
|
|
frac(first_texel_tile_uv_wrap_2D) + coord_negative;
|
|
// Pack the first texel's tile_uv coord and texel distance in 1D:
|
|
const float2 tile_u_and_dist =
|
|
float2(first_texel_tile_uv_2D.x, first_texel_dist_2D.x);
|
|
const float2 tile_v_and_dist =
|
|
float2(first_texel_tile_uv_2D.y, first_texel_dist_2D.y);
|
|
return vertical ? tile_v_and_dist : tile_u_and_dist;
|
|
//return lerp(tile_u_and_dist, tile_v_and_dist, float(vertical));
|
|
}
|
|
|
|
inline float4 tex2Dlod0try(const sampler2D tex, const float2 tex_uv)
|
|
{
|
|
// Mipmapping and anisotropic filtering get confused by sinc-resampling.
|
|
// One [slow] workaround is to select the lowest mip level:
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
return textureLod(tex, float4(tex_uv, 0.0, 0.0).xy);
|
|
#else
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
return tex2Dbias(tex, float4(tex_uv, 0.0, -16.0));
|
|
#else
|
|
return texture(tex, tex_uv);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
|
|
////////////////////////////// LOOP BODY MACROS //////////////////////////////
|
|
|
|
// Using inline functions can exceed the temporary register limit, so we're
|
|
// stuck with #define macros (I'm TRULY sorry). They're declared here instead
|
|
// of above to be closer to the actual invocation sites. Steps:
|
|
// 1.) Get the exact texel location.
|
|
// 2.) Sample the phosphor mask (already assumed encoded in linear RGB).
|
|
// 3.) Get the distance from the current pixel and sinc weight:
|
|
// sinc(dist) = sin(pi * dist)/(pi * dist)
|
|
// We can also use the slower/smoother Lanczos instead:
|
|
// L(x) = sinc(dist) * sinc(dist / lobes)
|
|
// 4.) Accumulate the weight sum in weights, and accumulate the weighted texels
|
|
// in pixel_color (we'll normalize outside the loop at the end).
|
|
// We vectorize the loop to help reduce the Lanczos window's cost.
|
|
|
|
// The r coord is the coord in the dimension we're resizing along (u or v),
|
|
// and first_texel_tile_uv_rrrr is a float4 of the first texel's u or v
|
|
// tile_uv coord in [0, 1]. tex_uv_r will contain the tile_uv u or v coord
|
|
// for four new texel samples.
|
|
#define CALCULATE_R_COORD_FOR_4_SAMPLES \
|
|
const float4 true_i = float4(i_base + i) + float4(0.0, 1.0, 2.0, 3.0); \
|
|
const float4 tile_uv_r = frac( \
|
|
first_texel_tile_uv_rrrr + true_i * tile_dr); \
|
|
const float4 tex_uv_r = tile_uv_r * tile_size_uv_r;
|
|
|
|
#ifdef PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
|
#define CALCULATE_SINC_RESAMPLE_WEIGHTS \
|
|
const float4 pi_dist_over_lobes = pi_over_lobes * dist; \
|
|
const float4 weights = min(sin(pi_dist) * sin(pi_dist_over_lobes) /\
|
|
(pi_dist*pi_dist_over_lobes), float4(1.0));
|
|
#else
|
|
#define CALCULATE_SINC_RESAMPLE_WEIGHTS \
|
|
const float4 weights = min(sin(pi_dist)/pi_dist, float4(1.0));
|
|
#endif
|
|
|
|
#define UPDATE_COLOR_AND_WEIGHT_SUMS \
|
|
const float4 dist = magnification_scale * \
|
|
abs(first_dist_unscaled - true_i); \
|
|
const float4 pi_dist = pi * dist; \
|
|
CALCULATE_SINC_RESAMPLE_WEIGHTS; \
|
|
pixel_color += new_sample0 * weights.xxx; \
|
|
pixel_color += new_sample1 * weights.yyy; \
|
|
pixel_color += new_sample2 * weights.zzz; \
|
|
pixel_color += new_sample3 * weights.www; \
|
|
weight_sum += weights;
|
|
|
|
#define VERTICAL_SINC_RESAMPLE_LOOP_BODY \
|
|
CALCULATE_R_COORD_FOR_4_SAMPLES; \
|
|
const float3 new_sample0 = tex2Dlod0try(tex, \
|
|
float2(tex_uv.x, tex_uv_r.x)).rgb; \
|
|
const float3 new_sample1 = tex2Dlod0try(tex, \
|
|
float2(tex_uv.x, tex_uv_r.y)).rgb; \
|
|
const float3 new_sample2 = tex2Dlod0try(tex, \
|
|
float2(tex_uv.x, tex_uv_r.z)).rgb; \
|
|
const float3 new_sample3 = tex2Dlod0try(tex, \
|
|
float2(tex_uv.x, tex_uv_r.w)).rgb; \
|
|
UPDATE_COLOR_AND_WEIGHT_SUMS;
|
|
|
|
#define HORIZONTAL_SINC_RESAMPLE_LOOP_BODY \
|
|
CALCULATE_R_COORD_FOR_4_SAMPLES; \
|
|
const float3 new_sample0 = tex2Dlod0try(tex, \
|
|
float2(tex_uv_r.x, tex_uv.y)).rgb; \
|
|
const float3 new_sample1 = tex2Dlod0try(tex, \
|
|
float2(tex_uv_r.y, tex_uv.y)).rgb; \
|
|
const float3 new_sample2 = tex2Dlod0try(tex, \
|
|
float2(tex_uv_r.z, tex_uv.y)).rgb; \
|
|
const float3 new_sample3 = tex2Dlod0try(tex, \
|
|
float2(tex_uv_r.w, tex_uv.y)).rgb; \
|
|
UPDATE_COLOR_AND_WEIGHT_SUMS;
|
|
|
|
|
|
//////////////////////////// RESAMPLING FUNCTIONS ////////////////////////////
|
|
|
|
float3 downsample_vertical_sinc_tiled(const sampler2D tex,
|
|
const float2 tex_uv, const float2 tex_size, static const float dr,
|
|
const float magnification_scale, static const float tile_size_uv_r)
|
|
{
|
|
// Requires: 1.) dr == du == 1.0/texture_size.x or
|
|
// dr == dv == 1.0/texture_size.y
|
|
// (whichever direction we're resampling in).
|
|
// It's a scalar to save register space.
|
|
// 2.) tile_size_uv_r is the number of texels an input tile
|
|
// takes up in the input texture, in the direction we're
|
|
// resampling this pass.
|
|
// 3.) magnification_scale must be <= 1.0.
|
|
// Returns: Return a [Lanczos] sinc-resampled pixel of a vertically
|
|
// downsized input tile embedded in an input texture. (The
|
|
// vertical version is special-cased though: It assumes the
|
|
// tile size equals the [static] texture size, since it's used
|
|
// on an LUT texture input containing one tile. For more
|
|
// generic use, eliminate the "static" in the parameters.)
|
|
// The "r" in "dr," "tile_size_uv_r," etc. refers to the dimension
|
|
// we're resizing along, e.g. "dy" in this case.
|
|
#ifdef USE_SINGLE_STATIC_LOOP
|
|
// A static loop can be faster, but it might blur too much from using
|
|
// more samples than it should.
|
|
static const int samples = int(max_sinc_resize_samples_m4);
|
|
#else
|
|
const int samples = int(get_dynamic_loop_size(magnification_scale));
|
|
#endif
|
|
|
|
// Get the first sample location (scalar tile uv coord along the resized
|
|
// dimension) and distance from the output location (in texels):
|
|
static const float input_tiles_per_texture_r = 1.0/tile_size_uv_r;
|
|
// true = vertical resize:
|
|
const float2 first_texel_tile_r_and_dist = get_first_texel_tile_uv_and_dist(
|
|
tex_uv, tex_size, dr, input_tiles_per_texture_r, samples, true);
|
|
const float4 first_texel_tile_uv_rrrr = first_texel_tile_r_and_dist.xxxx;
|
|
const float4 first_dist_unscaled = first_texel_tile_r_and_dist.yyyy;
|
|
// Get the tile sample offset:
|
|
static const float tile_dr = dr * input_tiles_per_texture_r;
|
|
|
|
// Sum up each weight and weighted sample color, varying the looping
|
|
// strategy based on our expected dynamic loop capabilities. See the
|
|
// loop body macros above.
|
|
int i_base = 0;
|
|
float4 weight_sum = float4(0.0);
|
|
float3 pixel_color = float3(0.0);
|
|
static const int i_step = 4;
|
|
#ifdef BREAK_LOOPS_INTO_PIECES
|
|
if(samples - i_base >= 64)
|
|
{
|
|
for(int i = 0; i < 64; i += i_step)
|
|
{
|
|
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
i_base += 64;
|
|
}
|
|
if(samples - i_base >= 32)
|
|
{
|
|
for(int i = 0; i < 32; i += i_step)
|
|
{
|
|
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
i_base += 32;
|
|
}
|
|
if(samples - i_base >= 16)
|
|
{
|
|
for(int i = 0; i < 16; i += i_step)
|
|
{
|
|
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
i_base += 16;
|
|
}
|
|
if(samples - i_base >= 8)
|
|
{
|
|
for(int i = 0; i < 8; i += i_step)
|
|
{
|
|
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
i_base += 8;
|
|
}
|
|
if(samples - i_base >= 4)
|
|
{
|
|
for(int i = 0; i < 4; i += i_step)
|
|
{
|
|
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
i_base += 4;
|
|
}
|
|
// Do another 4-sample block for a total of 128 max samples.
|
|
if(samples - i_base > 0)
|
|
{
|
|
for(int i = 0; i < 4; i += i_step)
|
|
{
|
|
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
}
|
|
#else
|
|
for(int i = 0; i < samples; i += i_step)
|
|
{
|
|
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
#endif
|
|
// Normalize so the weight_sum == 1.0, and return:
|
|
const float2 weight_sum_reduce = weight_sum.xy + weight_sum.zw;
|
|
const float3 scalar_weight_sum = float3(weight_sum_reduce.x +
|
|
weight_sum_reduce.y);
|
|
return (pixel_color/scalar_weight_sum);
|
|
}
|
|
|
|
float3 downsample_horizontal_sinc_tiled(const sampler2D tex,
|
|
const float2 tex_uv, const float2 tex_size, const float dr,
|
|
const float magnification_scale, const float tile_size_uv_r)
|
|
{
|
|
// Differences from downsample_horizontal_sinc_tiled:
|
|
// 1.) The dr and tile_size_uv_r parameters are not static consts.
|
|
// 2.) The "vertical" parameter to get_first_texel_tile_uv_and_dist is
|
|
// set to false instead of true.
|
|
// 3.) The horizontal version of the loop body is used.
|
|
// TODO: If we can get guaranteed compile-time dead code elimination,
|
|
// we can combine the vertical/horizontal downsampling functions by:
|
|
// 1.) Add an extra static const bool parameter called "vertical."
|
|
// 2.) Supply it with the result of get_first_texel_tile_uv_and_dist().
|
|
// 3.) Use a conditional assignment in the loop body macro. This is the
|
|
// tricky part: We DO NOT want to incur the extra conditional
|
|
// assignment in the inner loop at runtime!
|
|
// The "r" in "dr," "tile_size_uv_r," etc. refers to the dimension
|
|
// we're resizing along, e.g. "dx" in this case.
|
|
#ifdef USE_SINGLE_STATIC_LOOP
|
|
// If we have to load all samples, we might as well use them.
|
|
static const int samples = int(max_sinc_resize_samples_m4);
|
|
#else
|
|
const int samples = int(get_dynamic_loop_size(magnification_scale));
|
|
#endif
|
|
|
|
// Get the first sample location (scalar tile uv coord along resized
|
|
// dimension) and distance from the output location (in texels):
|
|
const float input_tiles_per_texture_r = 1.0/tile_size_uv_r;
|
|
// false = horizontal resize:
|
|
const float2 first_texel_tile_r_and_dist = get_first_texel_tile_uv_and_dist(
|
|
tex_uv, tex_size, dr, input_tiles_per_texture_r, samples, false);
|
|
const float4 first_texel_tile_uv_rrrr = first_texel_tile_r_and_dist.xxxx;
|
|
const float4 first_dist_unscaled = first_texel_tile_r_and_dist.yyyy;
|
|
// Get the tile sample offset:
|
|
const float tile_dr = dr * input_tiles_per_texture_r;
|
|
|
|
// Sum up each weight and weighted sample color, varying the looping
|
|
// strategy based on our expected dynamic loop capabilities. See the
|
|
// loop body macros above.
|
|
int i_base = 0;
|
|
float4 weight_sum = float4(0.0);
|
|
float3 pixel_color = float3(0.0);
|
|
static const int i_step = 4;
|
|
#ifdef BREAK_LOOPS_INTO_PIECES
|
|
if(samples - i_base >= 64)
|
|
{
|
|
for(int i = 0; i < 64; i += i_step)
|
|
{
|
|
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
i_base += 64;
|
|
}
|
|
if(samples - i_base >= 32)
|
|
{
|
|
for(int i = 0; i < 32; i += i_step)
|
|
{
|
|
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
i_base += 32;
|
|
}
|
|
if(samples - i_base >= 16)
|
|
{
|
|
for(int i = 0; i < 16; i += i_step)
|
|
{
|
|
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
i_base += 16;
|
|
}
|
|
if(samples - i_base >= 8)
|
|
{
|
|
for(int i = 0; i < 8; i += i_step)
|
|
{
|
|
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
i_base += 8;
|
|
}
|
|
if(samples - i_base >= 4)
|
|
{
|
|
for(int i = 0; i < 4; i += i_step)
|
|
{
|
|
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
i_base += 4;
|
|
}
|
|
// Do another 4-sample block for a total of 128 max samples.
|
|
if(samples - i_base > 0)
|
|
{
|
|
for(int i = 0; i < 4; i += i_step)
|
|
{
|
|
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
}
|
|
#else
|
|
for(int i = 0; i < samples; i += i_step)
|
|
{
|
|
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
|
}
|
|
#endif
|
|
// Normalize so the weight_sum == 1.0, and return:
|
|
const float2 weight_sum_reduce = weight_sum.xy + weight_sum.zw;
|
|
const float3 scalar_weight_sum = float3(weight_sum_reduce.x +
|
|
weight_sum_reduce.y);
|
|
return (pixel_color/scalar_weight_sum);
|
|
}
|
|
|
|
|
|
//////////////////////////// TILE SIZE CALCULATION ///////////////////////////
|
|
|
|
float2 get_resized_mask_tile_size(const float2 estimated_viewport_size,
|
|
const float2 estimated_mask_resize_output_size,
|
|
const bool solemnly_swear_same_inputs_for_every_pass)
|
|
{
|
|
// Requires: The following global constants must be defined according to
|
|
// certain constraints:
|
|
// 1.) mask_resize_num_triads: Must be high enough that our
|
|
// mask sampling method won't have artifacts later
|
|
// (long story; see derived-settings-and-constants.h)
|
|
// 2.) mask_resize_src_lut_size: Texel size of our mask LUT
|
|
// 3.) mask_triads_per_tile: Num horizontal triads in our LUT
|
|
// 4.) mask_min_allowed_triad_size: User setting (the more
|
|
// restrictive it is, the faster the resize will go)
|
|
// 5.) mask_min_allowed_tile_size_x < mask_resize_src_lut_size.x
|
|
// 6.) mask_triad_size_desired_{runtime, static}
|
|
// 7.) mask_num_triads_desired_{runtime, static}
|
|
// 8.) mask_specify_num_triads must be 0.0/1.0 (false/true)
|
|
// The function parameters must be defined as follows:
|
|
// 1.) estimated_viewport_size == (final viewport size);
|
|
// If mask_specify_num_triads is 1.0/true and the viewport
|
|
// estimate is wrong, the number of triads will differ from
|
|
// the user's preference by about the same factor.
|
|
// 2.) estimated_mask_resize_output_size: Must equal the
|
|
// output size of the MASK_RESIZE pass.
|
|
// Exception: The x component may be estimated garbage if
|
|
// and only if the caller throws away the x result.
|
|
// 3.) solemnly_swear_same_inputs_for_every_pass: Set to false,
|
|
// unless you can guarantee that every call across every
|
|
// pass will use the same sizes for the other parameters.
|
|
// When calling this across multiple passes, always use the
|
|
// same y viewport size/scale, and always use the same x
|
|
// viewport size/scale when using the x result.
|
|
// Returns: Return the final size of a manually resized mask tile, after
|
|
// constraining the desired size to avoid artifacts. Under
|
|
// unusual circumstances, tiles may become stretched vertically
|
|
// (see wall of text below).
|
|
// Stated tile properties must be correct:
|
|
static const float tile_aspect_ratio_inv =
|
|
mask_resize_src_lut_size.y/mask_resize_src_lut_size.x;
|
|
static const float tile_aspect_ratio = 1.0/tile_aspect_ratio_inv;
|
|
static const float2 tile_aspect = float2(1.0, tile_aspect_ratio_inv);
|
|
// If mask_specify_num_triads is 1.0/true and estimated_viewport_size.x is
|
|
// wrong, the user preference will be misinterpreted:
|
|
const float desired_tile_size_x = mask_triads_per_tile * lerp(
|
|
mask_triad_size_desired,
|
|
estimated_viewport_size.x / mask_num_triads_desired,
|
|
mask_specify_num_triads);
|
|
if(get_mask_sample_mode() > 0.5)
|
|
{
|
|
// We don't need constraints unless we're sampling MASK_RESIZE.
|
|
return desired_tile_size_x * tile_aspect;
|
|
}
|
|
// Make sure we're not upsizing:
|
|
const float temp_tile_size_x =
|
|
min(desired_tile_size_x, mask_resize_src_lut_size.x);
|
|
// Enforce min_tile_size and max_tile_size in both dimensions:
|
|
const float2 temp_tile_size = temp_tile_size_x * tile_aspect;
|
|
static const float2 min_tile_size =
|
|
mask_min_allowed_tile_size * tile_aspect;
|
|
const float2 max_tile_size =
|
|
estimated_mask_resize_output_size / mask_resize_num_tiles;
|
|
const float2 clamped_tile_size =
|
|
clamp(temp_tile_size, min_tile_size, max_tile_size);
|
|
// Try to maintain tile_aspect_ratio. This is the tricky part:
|
|
// If we're currently resizing in the y dimension, the x components
|
|
// could be MEANINGLESS. (If estimated_mask_resize_output_size.x is
|
|
// bogus, then so is max_tile_size.x and clamped_tile_size.x.)
|
|
// We can't adjust the y size based on clamped_tile_size.x. If it
|
|
// clamps when it shouldn't, it won't clamp again when later passes
|
|
// call this function with the correct sizes, and the discrepancy will
|
|
// break the sampling coords in MASKED_SCANLINES. Instead, we'll limit
|
|
// the x size based on the y size, but not vice versa, unless the
|
|
// caller swears the parameters were the same (correct) in every pass.
|
|
// As a result, triads could appear vertically stretched if:
|
|
// a.) mask_resize_src_lut_size.x > mask_resize_src_lut_size.y: Wide
|
|
// LUT's might clamp x more than y (all provided LUT's are square)
|
|
// b.) true_viewport_size.x < true_viewport_size.y: The user is playing
|
|
// with a vertically oriented screen (not accounted for anyway)
|
|
// c.) mask_resize_viewport_scale.x < masked_resize_viewport_scale.y:
|
|
// Viewport scales are equal by default.
|
|
// If any of these are the case, you can fix the stretching by setting:
|
|
// mask_resize_viewport_scale.x = mask_resize_viewport_scale.y *
|
|
// (1.0 / min_expected_aspect_ratio) *
|
|
// (mask_resize_src_lut_size.x / mask_resize_src_lut_size.y)
|
|
const float x_tile_size_from_y =
|
|
clamped_tile_size.y * tile_aspect_ratio;
|
|
const float y_tile_size_from_x = lerp(clamped_tile_size.y,
|
|
clamped_tile_size.x * tile_aspect_ratio_inv,
|
|
float(solemnly_swear_same_inputs_for_every_pass));
|
|
const float2 reclamped_tile_size = float2(
|
|
min(clamped_tile_size.x, x_tile_size_from_y),
|
|
min(clamped_tile_size.y, y_tile_size_from_x));
|
|
// We need integer tile sizes in both directions for tiled sampling to
|
|
// work correctly. Use floor (to make sure we don't round up), but be
|
|
// careful to avoid a rounding bug where floor decreases whole numbers:
|
|
const float2 final_resized_tile_size =
|
|
floor(reclamped_tile_size + float2(FIX_ZERO(0.0)));
|
|
return final_resized_tile_size;
|
|
}
|
|
|
|
|
|
///////////////////////// FINAL MASK SAMPLING HELPERS ////////////////////////
|
|
|
|
float4 get_mask_sampling_parameters(const float2 mask_resize_texture_size,
|
|
const float2 mask_resize_video_size, const float2 true_viewport_size,
|
|
out float2 mask_tiles_per_screen)
|
|
{
|
|
// Requires: 1.) Requirements of get_resized_mask_tile_size() must be
|
|
// met, particularly regarding global constants.
|
|
// The function parameters must be defined as follows:
|
|
// 1.) mask_resize_texture_size == MASK_RESIZE.texture_size
|
|
// if get_mask_sample_mode() is 0 (otherwise anything)
|
|
// 2.) mask_resize_video_size == MASK_RESIZE.video_size
|
|
// if get_mask_sample_mode() is 0 (otherwise anything)
|
|
// 3.) true_viewport_size == output_size for a pass set to
|
|
// 1.0 viewport scale (i.e. it must be correct)
|
|
// Returns: Return a float4 containing:
|
|
// xy: tex_uv coords for the start of the mask tile
|
|
// zw: tex_uv size of the mask tile from start to end
|
|
// mask_tiles_per_screen is an out parameter containing the
|
|
// number of mask tiles that will fit on the screen.
|
|
// First get the final resized tile size. The viewport size and mask
|
|
// resize viewport scale must be correct, but don't solemnly swear they
|
|
// were correct in both mask resize passes unless you know it's true.
|
|
// (We can better ensure a correct tile aspect ratio if the parameters are
|
|
// guaranteed correct in all passes...but if we lie, we'll get inconsistent
|
|
// sizes across passes, resulting in broken texture coordinates.)
|
|
const float mask_sample_mode = get_mask_sample_mode();
|
|
const float2 mask_resize_tile_size = get_resized_mask_tile_size(
|
|
true_viewport_size, mask_resize_video_size, false);
|
|
if(mask_sample_mode < 0.5)
|
|
{
|
|
// Sample MASK_RESIZE: The resized tile is a fraction of the texture
|
|
// size and starts at a nonzero offset to allow for border texels:
|
|
const float2 mask_tile_uv_size = mask_resize_tile_size /
|
|
mask_resize_texture_size;
|
|
const float2 skipped_tiles = mask_start_texels/mask_resize_tile_size;
|
|
const float2 mask_tile_start_uv = skipped_tiles * mask_tile_uv_size;
|
|
// mask_tiles_per_screen must be based on the *true* viewport size:
|
|
mask_tiles_per_screen = true_viewport_size / mask_resize_tile_size;
|
|
return float4(mask_tile_start_uv, mask_tile_uv_size);
|
|
}
|
|
else
|
|
{
|
|
// If we're tiling at the original size (1:1 pixel:texel), redefine a
|
|
// "tile" to be the full texture containing many triads. Otherwise,
|
|
// we're hardware-resampling an LUT, and the texture truly contains a
|
|
// single unresized phosphor mask tile anyway.
|
|
static const float2 mask_tile_uv_size = float2(1.0);
|
|
static const float2 mask_tile_start_uv = float2(0.0);
|
|
if(mask_sample_mode > 1.5)
|
|
{
|
|
// Repeat the full LUT at a 1:1 pixel:texel ratio without resizing:
|
|
mask_tiles_per_screen = true_viewport_size/mask_texture_large_size;
|
|
}
|
|
else
|
|
{
|
|
// Hardware-resize the original LUT:
|
|
mask_tiles_per_screen = true_viewport_size / mask_resize_tile_size;
|
|
}
|
|
return float4(mask_tile_start_uv, mask_tile_uv_size);
|
|
}
|
|
}
|
|
/*
|
|
float2 fix_tiling_discontinuities_normalized(const float2 tile_uv,
|
|
float2 duv_dx, float2 duv_dy)
|
|
{
|
|
// Requires: 1.) duv_dx == ddx(tile_uv)
|
|
// 2.) duv_dy == ddy(tile_uv)
|
|
// 3.) tile_uv contains tile-relative uv coords in [0, 1],
|
|
// such that (0.5, 0.5) is the center of a tile, etc.
|
|
// ("Tile" can mean texture, the video embedded in the
|
|
// texture, or some other "tile" embedded in a texture.)
|
|
// Returns: Return new tile_uv coords that contain no discontinuities
|
|
// across a 2x2 pixel quad.
|
|
// Description:
|
|
// When uv coords wrap from 1.0 to 0.0, they create a discontinuity in the
|
|
// derivatives, which we assume happened if the absolute difference between
|
|
// any fragment in a 2x2 block is > ~half a tile. If the current block has
|
|
// a u or v discontinuity and the current fragment is in the first half of
|
|
// the tile along that axis (i.e. it wrapped from 1.0 to 0.0), add a tile
|
|
// to that coord to make the 2x2 block continuous. (It will now have a
|
|
// coord > 1.0 in the padding area beyond the tile.) This function takes
|
|
// derivatives as parameters so the caller can reuse them.
|
|
// In case we're using high-quality (nVidia-style) derivatives, ensure
|
|
// diagonically opposite fragments see each other for correctness:
|
|
duv_dx = abs(duv_dx) + abs(ddy(duv_dx));
|
|
duv_dy = abs(duv_dy) + abs(ddx(duv_dy));
|
|
const float2 pixel_in_first_half_tile = float2((tile_uv.x < 0.5),(tile_uv.y < 0.5));
|
|
const float2 jump_exists = float2(((duv_dx + duv_dy).x > 0.5),((duv_dx + duv_dy).y > 0.5));
|
|
return tile_uv + jump_exists * pixel_in_first_half_tile;
|
|
}
|
|
*/
|
|
float2 convert_phosphor_tile_uv_wrap_to_tex_uv(const float2 tile_uv_wrap,
|
|
const float4 mask_tile_start_uv_and_size)
|
|
{
|
|
// Requires: 1.) tile_uv_wrap contains tile-relative uv coords, where the
|
|
// tile spans from [0, 1], such that (0.5, 0.5) is at the
|
|
// tile center. The input coords can range from [0, inf],
|
|
// and their fractional parts map to a repeated tile.
|
|
// ("Tile" can mean texture, the video embedded in the
|
|
// texture, or some other "tile" embedded in a texture.)
|
|
// 2.) mask_tile_start_uv_and_size.xy contains tex_uv coords
|
|
// for the start of the embedded tile in the full texture.
|
|
// 3.) mask_tile_start_uv_and_size.zw contains the [fractional]
|
|
// tex_uv size of the embedded tile in the full texture.
|
|
// Returns: Return tex_uv coords (used for texture sampling)
|
|
// corresponding to tile_uv_wrap.
|
|
if(get_mask_sample_mode() < 0.5)
|
|
{
|
|
// Manually repeat the resized mask tile to fill the screen:
|
|
// First get fractional tile_uv coords. Using frac/fmod on coords
|
|
// confuses anisotropic filtering; fix it as user options dictate.
|
|
// derived-settings-and-constants.h disables incompatible options.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
float2 tile_uv = frac(tile_uv_wrap * 0.5) * 2.0;
|
|
#else
|
|
float2 tile_uv = frac(tile_uv_wrap);
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
const float2 tile_uv_dx = ddx(tile_uv);
|
|
const float2 tile_uv_dy = ddy(tile_uv);
|
|
tile_uv = fix_tiling_discontinuities_normalized(tile_uv,
|
|
tile_uv_dx, tile_uv_dy);
|
|
#endif
|
|
// The tile is embedded in a padded FBO, and it may start at a
|
|
// nonzero offset if border texels are used to avoid artifacts:
|
|
const float2 mask_tex_uv = mask_tile_start_uv_and_size.xy +
|
|
tile_uv * mask_tile_start_uv_and_size.zw;
|
|
return mask_tex_uv;
|
|
}
|
|
else
|
|
{
|
|
// Sample from the input phosphor mask texture with hardware tiling.
|
|
// If we're tiling at the original size (mode 2), the "tile" is the
|
|
// whole texture, and it contains a large number of triads mapped with
|
|
// a 1:1 pixel:texel ratio. OTHERWISE, the texture contains a single
|
|
// unresized tile. tile_uv_wrap already has correct coords for both!
|
|
return tile_uv_wrap;
|
|
}
|
|
}
|
|
|
|
|
|
#endif // PHOSPHOR_MASK_RESIZING_H
|
|
|
|
///////////////////////// END PHOSPHOR-MASK-RESIZING /////////////////////////
|
|
|
|
#undef COMPAT_PRECISION
|
|
#undef COMPAT_TEXTURE
|
|
|
|
void main() {
|
|
// The input contains one mask tile horizontally and a number vertically.
|
|
// Resize the tile horizontally to its final screen size and repeat it
|
|
// until drawing at least mask_resize_num_tiles, leaving it unchanged
|
|
// vertically. Lanczos-resizing the phosphor mask achieves much sharper
|
|
// results than mipmapping, outputting >= mask_resize_num_tiles makes for
|
|
// easier tiled sampling later.
|
|
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
// Discard unneeded fragments in case our profile allows real branches.
|
|
//const float2 tile_uv_wrap = tile_uv_wrap;
|
|
if(get_mask_sample_mode() < 0.5 &&
|
|
max(tile_uv_wrap.x, tile_uv_wrap.y) <= mask_resize_num_tiles)
|
|
{
|
|
const float src_dx = src_dxdy.x;
|
|
const float2 src_tex_uv = frac(src_tex_uv_wrap);
|
|
const float3 pixel_color = downsample_horizontal_sinc_tiled(input_texture,
|
|
src_tex_uv, texture_size, src_dxdy.x,
|
|
resize_magnification_scale.x, tile_size_uv.x);
|
|
// The input LUT was linear RGB, and so is our output:
|
|
FragColor = float4(pixel_color, 1.0);
|
|
}
|
|
else
|
|
{
|
|
discard;
|
|
}
|
|
#else
|
|
discard;
|
|
FragColor = float4(1.0,1.0,1.0,1.0);
|
|
#endif
|
|
} |