byuu says:
Changelog:
- improved attenuation of biquad filter by computing butterworth Q
coefficients correctly (instead of using the same constant)
- adding 1e-25 to each input sample into the biquad filters to try and
prevent denormalization
- updated normalization from [0.0 to 1.0] to [-1.0 to +1.0]; volume/reverb
happen in floating-point mode now
- good amount of work to make the base Emulator::Audio support any number
of output channels
- so that we don't have to do separate work on left/right channels;
and can instead share the code for each channel
- Emulator::Interface::audioSample(int16 left, int16 right); changed to:
- Emulator::Interface::audioSample(double* samples, uint channels);
- samples are normalized [-1.0 to +1.0]
- for now at least, channels will be the value given to
Emulator::Audio::reset()
- fixed GUI crash on startup when audio driver is set to None
I'm probably going to be updating ruby to accept normalized doubles as
well; but I'm not sure if I will try and support anything other 2-channel
audio output. It'll depend on how easy it is to do so; perhaps it'll be
a per-driver setting.
The denormalization thing is fierce. If that happens, it drops the
emulator framerate from 220fps to about 20fps for Game Boy emulation. And
that happens basically whenever audio output is silent. I'm probably
also going to make a nall/denormal.hpp file at some point with
platform-specific functionality to set the CPU state to "denormals as
zero" where applicable. I'll still add the 1e-25 offset (inaudible)
as another fallback.
byuu says:
Changelog:
- nall/dsp returns with new iir/biquad.hpp and resampler/cubic.hpp files
- nall/queue.hpp added (simple ring buffer ... nall/vector wouldn't
cause too many moves with FIFO)
- audio streams now only buffer 20ms; so even if multiple audio streams
desync, latency can never exceed 20ms
- replaced blackman windwed sinc FIR hermite audio filter with transposed
direct form II biquadratic sixth-order IIR butterworth filter (better
attenuation of frequencies above 20KHz, faster, no need for decimation,
less code)
- put in experimental eight-tap echo filter (a lot better than what I
had before, but still rather weak)
- substantial cleanups to the SuperFX GSU processor core (slightly
faster, 479KB->100KB object file, 42.7KB->33.4KB source code size,
way less code duplication)
We'll definitely want to test the whole SuperFX library (not many games)
just to make sure there's no regressions caused by this one.
Not sure what I want to do with audio processing effects yet. I've always
really wanted lots of fun controls to customize audio, and now finally
with this new biquad filter, I can finally start implementing real
effects. For instance, an equalizer wouldn't be too complicated anymore.
The new reverb effect is still a poor man's version. I need to find human
readable source for implementing a comb-filter properly. I'm pretty sure
I can already treat nall::queue as an all-pass filter since all that
does is phase shift (fancy audio term for "delay audio"). What's really
going to be hard is figuring out how to expose user-friendly settings for
controlling it. It looks like you need a bunch of coprime coefficients,
and I don't think casual users are going to be able to hand-enter coprime
values to get the echo effect they want. I uh ... don't even know how
to calculate coprime values dynamically right now >_> But we're going
to have to, as they are correlated to the output sampling rate.
We'll definitely want to make some audio profiles so that users can
quickly select pre-configured themes that sound nice, but expose the
underlying coefficients so that they can tweak stuff to their liking. This
isn't just about higan, this is about me trying to learn digital signal
processing, so please don't be too upset about feature creep or anything
on this.
Anyway ... I'm having some difficulties with my audio right now. When
the reverb effect is enabled, there's a bunch of static on system
reset for just a moment. But this should not be possible. nall::queue
is initializing all previous reverb sample elements to 0.0. I don't
understand where static is coming in from. Further, we have the same
issue with both the windowed sinc and the biquad filters ... a bit of
a popping sound when starting a game. Any help tracking this down would
be appreciated.
There's also one really annoying issue ... I can't seem to do reverb
or volume adjustments with normalized samples. If I say "volume *= 0.5"
in higan/audio/audio.cpp line 68, it doesn't just halve the volume, it
adds a whole bunch of distortion. This makes absolutely zero sense to
me. The sample values are between 0.0 (mute) and 1.0 (full volume) here,
so multiplying a double by 0.5 shouldn't cause distortion. So right now,
I'm doing these adjustments with less precision after denormalizing back
to int16. Anyone ever see something like that? :/
byuu says:
Changelog:
- fixed nall/path.hpp compilation issue
- fixed ruby/audio/xaudio header declaration compilation issue (again)
- cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the
file was whitespace overkill)
- added null terminator entry to nall/windows/utf8.hpp argc[] array
- nall/windows/guid.hpp uses the Windows API for generating the GUID
- this should stop all the bug reports where two nall users were
generating GUIDs at the exact same second
- fixed hiro/cocoa compilation issue with uint# types
- fixed major higan/sfc Super Game Boy audio latency issue
- fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions
- major cleanups to higan/processor/r65816 core
- merged emulation/native-mode opcodes
- use camel-case naming on memory.hpp functions
- simplify address masking code for memory.hpp functions
- simplify a few opcodes themselves (avoid redundant copies, etc)
- rename regs.* to r.* to match modern convention of other CPU cores
- removed device.order<> concept from Emulator::Interface
- cores will now do the translation to make the job of the UI easier
- fixed plurality naming of arrays in Emulator::Interface
- example: emulator.ports[p].devices[d].inputs[i]
- example: vector<Medium> media
- probably more surprises
Major show-stoppers to the next official release:
- we need to work on GB core improvements: LY=153/0 case, multiple STAT
IRQs case, GBC audio output regs, etc.
- we need to re-add software cursors for light guns (Super Scope,
Justifier)
- after the above, we need to fix the turbo button for the Super Scope
I really have no idea how I want to implement the light guns. Ideally,
we'd want it in higan/video, so we can support the NES Zapper with the
same code. But this isn't going to be easy, because only the SNES knows
when its output is interlaced, and its resolutions can vary as
{256,512}x{224,240,448,480} which requires pixel doubling that was
hard-coded to the SNES-specific behavior, but isn't appropriate to be
exposed in higan/video.
byuu says:
Changelog:
- nall/vector rewritten from scratch
- higan/audio uses nall/vector instead of raw pointers
- higan/sfc/coprocessor/sdd1 updated with new research information
- ruby/video/glx and ruby/video/glx2: fuck salt glXSwapIntervalEXT!
The big change here is definitely nall/vector. The Windows, OS X and Qt
ports won't compile until you change some first/last strings to
left/right, but GTK will compile.
I'd be really grateful if anyone could stress-test nall/vector. Pretty
much everything I do relies on this class. If we introduce a bug, the
worst case scenario is my entire SFC game dump database gets corrupted,
or the byuu.org server gets compromised. So it's really critical that we
test the hell out of this right now.
The S-DD1 changes mean you need to update your installation of icarus
again. Also, even though the Lunar FMV never really worked on the
accuracy core anyway (it didn't initialize the PPU properly), it really
won't work now that we emulate the hard-limit of 16MiB for S-DD1 games.
byuu says:
Changelog:
- emulation cores now refresh video from host thread instead of
cothreads (fix AMD crash)
- SFC: fixed another bug with leap year months in SharpRTC emulation
- SFC: cleaned up camelCase on function names for
armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes
- GB: added MBC1M emulation (requires manually setting mapper=MBC1M in
manifest.bml for now, sorry)
- audio: implemented Emulator::Audio mixer and effects processor
- audio: implemented Emulator::Stream interface
- it is now possible to have more than two audio streams: eg SNES
+ SGB + MSU1 + Voicer-Kun (eventually)
- audio: added reverb delay + reverb level settings; exposed balance
configuration in UI
- video: reworked palette generation to re-enable saturation, gamma,
luminance adjustments
- higan/emulator.cpp is gone since there was nothing left in it
I know you guys are going to say the color adjust/balance/reverb stuff
is pointless. And indeed it mostly is. But I like the idea of allowing
some fun special effects and configurability that isn't system-wide.
Note: there seems to be some kind of added audio lag in the SGB
emulation now, and I don't really understand why. The code should be
effectively identical to what I had before. The only main thing is that
I'm sampling things to 48000hz instead of 32040hz before mixing. There's
no point where I'm intentionally introducing added latency though. I'm
kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be
much appreciated :/
I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as
well, and that would be very bad.
byuu says:
Changelog:
- WS/WSC: re-added support for screen rotation (code is inside WS core)
- ruby: changed sample(uint16_t left, uint16_t right) to sample(int16_t
left, int16_t right);
- requires casting to uint prior to shifting in each driver, but
I felt it was misleading to use uint16_t just to avoid that
- ruby: WASAPI is now built in by default; has wareya's improvements,
and now supports latency adjust
- tomoko: audio settings panel has new "Exclusive Mode" checkbox for
WASAPI driver only
- note: although the setting *does* take effect in real-time, I'd
suggest restarting the emulator after changing it
- tomoko: audio latency can now be set to 0ms (which in reality means
"the minimum supported by the driver")
- all: increased cothread size from 512KiB to 2MiB to see if it fixes
bullshit AMD driver crashes
- this appears to cause a slight speed penalty due to cache locality
going down between threads, though
byuu says:
It took several hours, but I've rebuilt much of the SNES' bus memory
mapping architecture.
The new design unifies the cartridge string-based mapping
("00-3f,80-bf:8000-ffff") and internal bus.map calls. The map() function
now has an accompanying unmap() function, and instead of a fixed 256
callbacks, it'll scan to find the first available slot. unmap() will
free slots up when zero addresses reference a given slot.
The controllers and expansion port are now both entirely dynamic.
Instead of load/unload/power/reset, they only have the constructor
(power/reset/load) and destructor (unload). What this means is you can
now dynamically change even expansion port devices after the system is
loaded.
Note that this is incredibly dangerous and stupid, but ... oh well. The
whole point of this was for 21fx. There's no way to change the expansion
port device prior to loading a game, but if the 21fx isn't active, then
the reset vector hijack won't work. Now you can load a 21fx game, change
the expansion port device, and simply reset the system to active the
device.
The unification of design between controller port devices and expansion
port devices is nice, and overall this results in a reduction of code
(all of the Mapping stuff in Cartridge is gone, replaced with direct bus
mapping.) And there's always the potential to expand this system more in
the future now.
The big missing feature right now is the ability to push/pop mappings.
So if you look at how the 21fx does the reset vector, you might vomit
a little bit. But ... it works.
Also changed exit(0) to _exit(0) in the POSIX version of nall::execute.
[The _exit(0) thing is an attempt to make higan not crash when it tries
to launch icarus and it's not on $PATH. The theory is that higan forks,
then the child tries to exec icarus and fails, so it exits, all the
unique_ptrs clean up their resources and tell the X server to free
things the parent process is still using. Calling _exit() prevents
destructors from running, and seems to prevent the problem. -Ed.]
byuu says:
Changelog:
- SFC: balanced profile removed
- SFC: performance profile removed
- SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed
- SFC: Coprocessor, Controller (and expansion port) shared Thread code
merged to SFC::Cothread
- Cothread here just means "Thread with CPU affinity" (couldn't think
of a better name, sorry)
- SFC: CPU now has vector<Thread*> coprocessors, peripherals;
- this is the beginning of work to allow expansion port devices to be
dynamically changed at run-time
- ruby: all audio drivers default to 48000hz instead of 22050hz now if
no frequency is assigned
- note: the WASAPI driver can default to whatever the native frequency
is; doesn't have to be 48000hz
- tomoko: removed the ability to change the frequency from the UI (but
it will display the frequency used)
- tomoko: removed the timing settings panel
- the goal is to work toward smooth video via adaptive sync
- the model is broken by not being in control of the audio frequency
anyway
- it's further broken by PAL running at 50hz and WSC running at 75hz
- it was always broken anyway by SNES interlace timing varying from
progressive timing
- higan: audio/ stub created (for now, it's just nall/dsp/ moved here
and included as a header)
- higan: video/ stub created
- higan/GNUmakefile: now includes build rules for essential components
(libco, emulator, audio, video)
The audio changes are in preparation to merge wareya's awesome WASAPI
work without the need for the nall/dsp resampler.
byuu says:
Changelog:
- icarus: WS/C detects RAM type/size heuristically now
- icarus: WS/C uses ram type=$type instead of $type
- WS: use back color instead of white for backdrop
- WS: fixed sprite count limit; removes all the garbled sprites from
GunPey
- WS: hopefully fixed sprite priority with screen 2
- WS: implemented keypad polling; GunPey is now fully playable
- SNES: added Super Disc expansion port device (doesn't do anything,
just for testing)
Note: WS is hard-coded to vertical orientation right now. But there's
basic code in there for all the horizontal stuff.
byuu says:
Changelog:
- fixed nall/windows/guard.hpp
- fixed hiro/(windows,gtk)/header.hpp
- fixed Famicom PPU OAM reads (mask the correct bits when writing)
[hex_usr]
- removed the need for (system := system) lines from higan/GNUmakefile
- added "All" option to filetype dropdown for ROM loading
- allows loading GBC games in SGB mode (and technically non-GB(C)
games, which will obviously fail to do anything)
- loki can load and play game folders now (command-line only) (extremely
unimpressive; don't waste your time :P)
- the input is extremely hacked in as a quick placeholder; not sure
how I'm going to do mapping yet for it
byuu says:
Got it. Wow, that didn't hurt nearly as much as I thought it was going
to.
Dropped from 127.5fps to 123.5fps to use Natural/Integer for
(u)int(8,16,32,64).
That's totally worth the cost.
byuu says:
This is a few days old, but oh well.
This WIP changes nall,hiro,ruby,icarus back to (u)int(8,16,32,64)_t.
I'm slowly pushing for (u)int(8,16,32,64) to use my custom
Integer<Size>/Natural<Size> classes instead. But it's going to be one
hell of a struggle to get that into higan.
byuu says:
Nothing WS-related this time.
First, I fixed expansion port device mapping. On first load, it was
mapping the expansion port device too late, so it ended up not taking
effect. I had to spin out the logic for that into
Program::connectDevices(). This was proving to be quite annoying while
testing eBoot (SNES-Hook simulation.)
Second, I fixed the audio->set(Frequency, Latency) functions to take
(uint) parameters from the configuration file, so the weird behavior
around changing settings in the audio panel should hopefully be gone
now.
Third, I rewrote the interface->load,unload functions to call into the
(Emulator)::System::load,unload functions. And I have those call out to
Cartridge::load,unload. Before, this was inverted, and Cartridge::load()
was invoking System::load(), which I felt was kind of backward.
The Super Game Boy really didn't like this change, however. And it took
me a few hours to power through it. Before, I had the Game Boy core
dummying out all the interface->(load,save)Request calls, and having the
SNES core make them for it. This is because the folder paths and IDs
will be different between the two cores.
I've redesigned things so that ICD2's Emulator::Interface overloads
loadRequest and saveRequest, and translates the requests into new
requests for the SuperFamicom core. This allows the Game Boy code to do
its own loading for everything without a bunch of Super Game Boy special
casing, and without any awkwardness around powering on with no cartridge
inserted.
This also lets the SNES side of things simply call into higher-level
GameBoy::interface->load,save(id, stream) functions instead of stabbing
at the raw underlying state inside of various Game Boy core emulation
classes. So things are a lot better abstracted now.
byuu says:
So, this WIP starts work on something new for higan. Obviously, I can't
keep it a secret until it's ready, because I want to continue daily WIP
releases, and of course, solicit feedback as I go along.
byuu says:
Note: balanced/performance profiles still broken, sorry.
Changelog:
- added nall/GNUmakefile unique() function; used on linking phase of
higan
- added nall/unique_pointer
- target-tomoko and {System}::Video updated to use
unique_pointer<ClassName> instead of ClassName* [1]
- locate() updated to search multiple paths [2]
- GB: pass gekkio's if_ie_registers and boot_hwio-G test ROMs
- FC, GB, GBA: merge video/ into the PPU cores
- ruby: fixed ~AudioXAudio2() typo
[1] I expected this to cause new crashes on exit due to changing the
order of destruction of objects (and deleting things that weren't
deleted before), but ... so far, so good. I guess we'll see what crops
up, especially on OS X (which is already crashing for unknown reasons on
exit.)
[2] right now, the search paths are: programpath(), {configpath(),
"higan/"}, {localpath(), "higan/"}; but we can add as many more as we
want, and we can also add platform-specific versions.
byuu says:
Changelog:
- configuration files are now stored in localpath() instead of configpath()
- Video gamma/saturation/luminance sliders are gone now, sorry
- added Video Filter->Blur Emulation [1]
- added Video Filter->Scanline Emulation [2]
- improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn]
[1] For the Famicom, this does nothing. For the Super Famicom, this
performs horizontal blending for proper pseudo-hires translucency. For
the Game Boy, Game Boy Color, and Game Boy Advance, this performs
interframe blending (each frame is the average of the current and
previous frame), which is important for things like the GBVideoPlayer.
[2] Right now, this only applies to the Super Famicom, but it'll come to
the Famicom in the future. For the Super Famicom, this option doesn't
just add scanlines, it simulates the phosphor decay that's visible in
interlace mode. If you observe an interlaced game like RPM Racing on
a real SNES, you'll notice that even on perfectly still screens, the
image appears to shake. This option emulates that effect.
Note 1: the buffering right now is a little sub-optimal, so there will
be a slight speed hit with this new support. Since the core is now
generating native ARGB8888 colors, it might as well call out to the
interface to lock/unlock/refresh the video, that way it can render
directly to the screen. Although ... that might not be such a hot idea,
since the GBx interframe blending reads from the target buffer, and that
tends to be a catastrophic option for performance.
Note 2: the balanced and performance profiles for the SNES are
completely busted again. This WIP took 6 1/2 hours, and I'm exhausted.
Very much not looking forward to working on those, since those two have
all kinds of fucked up speedup tricks for non-interlaced and/or
non-hires video modes.
Note 3: if you're on Windows and you saved your system folders somewhere
else, now'd be a good time to move them to %localappdata%/higan
byuu says:
This WIP finally achieves the vision I've had for icarus.
I also fixed a mapping issue with Cx4 that, oddly enough, only caused
the "2" from the Mega Man X2 title screen to disappear.
[Editor's note - "the vision for icarus" was described in a separate,
public forum post: http://board.byuu.org/phpbb3/viewtopic.php?p=20584
Quoting for posterity:
icarus is now a full-fledged part of higan, and will be bundled with
each higan WIP as well. This will ensure that in the future, the
exact version of icarus you need to run higan will be included right
along with it. As of this WIP, physical manifest files are now truly
and entirely optional.
From now on, you can associate your ROM image files with higan's
main binary, or drop them directly on top of it, to load and play
your games.
Furthermore, there are two new menu options that appear under the
library menu when icarus is present:
- "Load ROM File ..." => gives you a single-file selection dialog to
import (and if possible) run the game
- "Import ROM Files ..." => gives you a multi-file import dialog
with checkboxes to pull in multiple games at once
Finally, as before, icarus can generate manifest.bml files for
folders that lack them.
For people who like the game folder and library system, nothing's
changed. Keep using higan as you have been.
For people who hate it, you can now use higan like your classic
emulators. Treat the "Library->{System Name}" entries as your
"favorites" list: the games you actually play. Treat the
"Library->Load ROM" as your standard open file dialog in other
emulators. And finally, treat "Advanced->Game Library" as your save
data path for cheat codes, save states, save RAM, etc.
]
byuu says:
Changelog:
- restructured the project and removed a whole bunch of old/dead
directives from higan/GNUmakefile
- huge amounts of work on hiro/cocoa (compiles but ~70% of the
functionality is commented out)
- fixed a masking error in my ARM CPU disassembler [Lioncash]
- SFC: decided to change board cic=(411,413) back to board
region=(ntsc,pal) ... the former was too obtuse
If you rename Boolean (it's a problem with an include from ruby, not
from hiro) and disable all the ruby drivers, you can compile an
OS X binary, but obviously it's not going to do anything.
It's a boring WIP, I just wanted to push out the project structure
change now at the start of this WIP cycle.