mirror of https://github.com/bsnes-emu/bsnes.git
98 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Tim Allen | 6e8406291c |
Update to v102r24 release.
byuu says Changelog: - FC: fixed three MOS6502 regressions [hex\_usr] - GBA: return fetched instruction instead of 0 for unmapped MMIO (passes all of endrift's I/O tests) - MD: fix VDP control port read Vblank bit to test screen height instead of hard-code 240 (fixes Phantasy Star IV) - MD: swap USP,SSP when executing an exception (allows Super Street Fighter II to run; but no sprites visible yet) - MD: grant 68K access to Z80 bus on reset (fixes vdpdoc demo ROM from freezing immediately) - SFC: reads from $00-3f,80-bf:4000-43ff no longer update MDR [p4plus2] - SFC: massive, eight-hour cleanup of WDC65816 CPU core ... still not complete The big change this time around is the SFC CPU core. I've renamed everything from R65816 to WDC65816, and then went through and tried to clean up the code as much as possible. This core is so much larger than the 6502 core that I chose cleaning up the code to rewriting it. First off, I really don't care for the BitRange style functionality. It was an interesting experiment, but its fatal flaw are that the types are just bizarre, which makes them hard to pass around generically to other functions as arguments. So I went back to the list of bools for flags, and union/struct blocks for the registers. Next, I renamed all of the functions to be more descriptive: eg `op_read_idpx_w` becomes `instructionIndexedIndirectRead16`. `op_adc_b` becomes `algorithmADC8`. And so forth. I eliminated about ten instructions because they were functionally identical sans the index, so I just added a uint index=0 parameter to said functions. I added a few new ones (adjust→INC,DEC; pflag→REP,SEP) where it seemed appropriate. I cleaned up the disaster of the instruction switch table into something a whole lot more elegant without all the weird argument decoding nonsense (still need M vs X variants to avoid having to have 4-5 separate switch tables, but all the F/I flags are gone now); and made some things saner, like the flag clear/set and branch conditions, now that I have normal types for flags and registers once again. I renamed all of the memory access functions to be more descriptive to what they're doing: eg writeSP→push, readPC→fetch, writeDP→writeDirect, etc. Eliminated some of the special read/write modes that were only used in one single instruction. I started to clean up some of the actual instructions themselves, but haven't really accomplished much here. The big thing I want to do is get rid of the global state (aa, rd, iaddr, etc) and instead use local variables like I am doing with my other 65xx CPU cores now. But this will take some time ... the algorithm functions depend on rd to be set to work on them, rather than taking arguments. So I'll need to rework that. And then lastly, the disassembler is still a mess. I want to finish the CPU cleanups, and then post a new WIP, and then rewrite the disassembler after that. The reason being ... I want a WIP that can generate identical trace logs to older versions, in case the CPU cleanup causes any regressions. That way I can more easily spot the errors. Oh ... and a bit of good news. v102 was running at ~140fps on the SNES core. With the new support to suspend/resume WAI/STP, plus the internal CPU registers not updating the MDR, the framerate dropped to ~132fps. But with the CPU cleanups, performance went back to ~140fps. So, hooray. Of course, without those two other improvements, we'd have ended up at possibly ~146-148fps, but oh well. |
|
Tim Allen | cea64b9991 |
Update to v102r23 release.
byuu says: Changelog: - rewrote the 6502 CPU core from scratch. Now called MOS6502, supported BCD mode - Famicom core disables BCD mode via MOS6502::BCD = 0; - renamed r65816 folder to wdc65816 (still need to rename the actual class, though ...) Note: need to remove build rules for the now renamed r6502, r65816 objects from processor/GNUmakefile. So this'll seem like a small WIP, but it was a solid five hours to rewrite the entire 6502 core. The reason I wanted to do this was because the old 6502 core was pretty sloppy. My coding style improved a lot, and I really liked how the HuC6280 CPU core came out, so I wanted the 6502 core to be like that one. The core can now support BCD mode, so hopefully that will prove useful to hex\_usr and allow one core to run both the NES and his Atari 2600 cores at some point. Note that right now, the core doesn't support any illegal instructions. The old core supported a small number of them, but were mostly the no operation ones. The goal is support all of the illegal instructions at some point. It's very possible the rewrite introduced some regressions, so thorough testing of the NES core would be appreciated if anyone were up for it. |
|
Tim Allen | 8af3e4a6e2 |
Update to v102r22 release.
byuu says: Changelog: - higan: Emulator::Interface::videoSize() renamed to videoResolution() - higan: Emulator::Interface::rtcsync() renamed to rtcSynchronize() - higan: added video display rotation support to Video - GBA: substantially improved audio mixing - fixed bug with FIFO 50%/100% volume setting - now properly using SOUNDBIAS amplitude to control output frequencies - reduced quantization noise - corrected relative volumes between PSG and FIFO channels - both PSG and FIFO values cached based on amplitude; resulting in cleaner PCM samples - treating PSG volume=3 as 200% volume instead of 0% volume now (unverified: to match mGBA) - GBA: properly initialize ALL CPU state; including the vital prefetch.wait=1 (fixes Classic NES series games) - GBA: added video rotation with automatic key translation support - PCE: reduced output resolution scalar from 285x242 to 285x240 - the extra two scanlines won't be visible on most TVs; and they make all other cores look worse - this is because all other cores output at 240p or less; so they were all receiving black bars in windowed mode - tomoko: added "Rotate Display" hotkey setting - tomoko: changed hotkey multi-key logic to OR instead of AND - left support for flipping it back inside the core; for those so inclined; by uncommenting one line in input.hpp - tomoko: when choosing Settings→Configuration, it will automatically select the currently loaded system - for instance, if you're playing a Game Gear game, it'll take you to the Game Gear input settings - if no games are loaded, it will take you to the hotkeys panel instead - WS(C): merged "Hardware-Vertical", "Hardware-Horizontal" controls into combined "Hardware" - WS(C): converted rotation support from being inside the core to using Emulator::Video - this lets WS(C) video content scale larger now that it's not bounded by a 224x224 square box - WS(C): added automatic key rotation support - WS(C): removed emulator "Rotate" key (use the general hotkey instead; I recommend F8 for this) - nall: added serializer support for nall::Boolean (boolean) types - although I will probably prefer the usage of uint1 in most cases |
|
Tim Allen | a4629e1f64 |
Update to v102r21 release.
byuu says: Changelog: - GBA: fixed WININ2 reads, BG3PB writes [Jonas Quinn] - R65816: added support for yielding/resuming from WAI/STP¹ - SFC: removed status.dmaCounter functionality (also fixes possible TAS desync issue) - tomoko: added support for combinatorial inputs [hex\_usr\]² - nall: fixed missing return value from Arithmetic::operator-- [Hendricks266] Now would be the time to start looking for major regressions with the new GBA PPU renderer, I suppose ... ¹: this doesn't matter for the master thread (SNES CPU), but is important for slave threads (SNES SA1). If you try to save a state and the SA1 is inside of a WAI instruction, it will get stuck there forever. This was causing attempts to create a save state in Super Bomberman - Panic Bomber W to deadlock the emulator and crash it. This is now finally fixed. Note that I still need to implement similar functionality into the Mega Drive 68K and Z80 cores. They still have the possibility of deadlocking. The SNES implementation was more a dry-run test for this new functionality. This possible crashing bug in the Mega Drive core is the major blocking bug for a new official release. ²: many, many thanks to hex\_usr for coming up with a really nice design. I mostly implemented it the exact same way, but with a few tiny differences that don't really matter (display " and ", " or " instead of " & ", " | " in the input settings windows; append → bind; assignmentName changed to displayName.) The actual functionality is identical to the old higan v094 and earlier builds. Emulated digital inputs let you combine multiple possible keys to trigger the buttons. This is OR logic, so you can map to eg keyboard.up OR gamepad.up for instance. Emulated analog inputs always sum together. Emulated rumble outputs will cause all mapped devices to rumble, which is probably not at all useful but whatever. Hotkeys use AND logic, so you have to press every key mapped to trigger them. Useful for eg Ctrl+F to trigger fullscreen. Obviously, there are cases where OR logic would be nice for hotkeys, too. Eg if you want both F11 and your gamepad's guide button to trigger the fullscreen toggle. Unfortunately, this isn't supported, and likely won't ever be in tomoko. Something I might consider is a throw switch in the configuration file to swap between AND or OR logic for hotkeys, but I'm not going to allow construction of mappings like "(Keyboard.Ctrl and Keyboard.F) or Gamepad.Guide", as that's just too complicated to code, and too complicated to make a nice GUI to set up the mappings for. |
|
Tim Allen | 3bcf3c24c9 |
Update to v102r20 release.
byuu says: Changelog: - nall: `#undef OUT` on Windows platform - GBA: add missing CPU prefetch state to serialization (this was breaking serialization in games using ROM prefetch) - GBA: reset all PPU data in the power() function (some things were missing before, causing issues on reset) - GBA: restored horizontal mosaic emulation to the new pixel-based renderer - GBA: fixed tilemap background horizontal flipping (Legend of Spyro - warning screen) - GBA: fixed d8 bits of scroll registers (ATV - Thunder Ridge Racers - menu screen) - SFC: DRAM refresh ticks the ALU MUL/DIV registers five steps forward [reported by kevtris] - SFC: merged dmaCounter and autoJoypadCounter into new shared clockCounter - left stub for old dmaCounter so that I can do some traces to ensure the new code's 100% identical GBA save states would have been broken since whenever I emulated ROM prefetch. I guess not many people are using the GBA core ... |
|
Tim Allen | 1ca4609079 |
Update to v102r18 release.
byuu says: This WIP fixes all the critical pending issues I had open. I'm sure there's many more that simply didn't make their way into said list. So by all means, please report important issues you're aware of so they can get fixed. Changelog: - ruby: add variable texture support to GDI video driver [bug reported by Cydrak] - ruby: minor cleanups to XShm video driver - ruby: fix handling of up+down, left+right hat cases for XInput driver [bug reported by Cydrak] - nall: fixed vector class so that compilation with GCC 7.1 should succeed [SuperMikeMan] - sfc: initialize most DSP registers to random values to fix Magical Drop [Jonas Quinn] - sfc: lower PPU brightness when luma=0 from 50% scale to 25% scale; helps scenes like Final Fantasy III's intro |
|
Tim Allen | 04072b278b |
Update to v102r16 release.
byuu says: Changelog: - Emulator::Stream now allows adding low-pass and high-pass filters dynamically - also accepts a pass# count; each pass is a second-order biquad butterworth IIR filter - Emulator::Stream no longer automatically filters out >20KHz frequencies for all streams - FC: added 20Hz high-pass filter; 20KHz low-pass filter - GB: removed simple 'magic constant' high-pass filter of unknown cutoff frequency (missed this one in the last WIP) - GB,SGB,GBC: added 20Hz high-pass filter; 20KHz low-pass filter - MS,GG,MD/PSG: added 20Hz high-pass filter; 20KHz low-pass filter - MD: added save state support (but it's completely broken for now; sorry) - MD/YM2612: fixed Voice#3 per-operator pitch support (fixes sound effects in Streets of Rage, etc) - PCE: added 20Hz high-pass filter; 20KHz low-pass filter - WS,WSC: added 20Hz high-pass filter; 20KHz low-pass filter So, the point of the low-pass filters is to remove frequencies above human hearing. If we don't do this, then resampling will introduce aliasing that results in sounds that are audible to the human ear. Which basically an annoying buzzing sound. You'll definitely hear the improvement from these in games like Mega Man 2 on the NES. Of course, these already existed before, so this WIP won't sound better than previous WIPs. The high-pass filters are a little more complicated. Their main role is to remove DC bias and help to center the audio stream. I don't understand how they do this at all, but ... that's what everyone who knows what they're talking about says, thus ... so be it. I have set all of the high-pass filters to 20Hz, which is below the limit of human hearing. Now this is where it gets really interesting ... technically, some of these systems actually cut off a lot of range. For instance, the GBA should technically use an 800Hz high-pass filter when output is done through the system's speakers. But of course, if you plug in headphones, you can hear the lower frequencies. Now 800Hz ... you definitely can hear. At that level, nearly all of the bass is stripped out and the audio is very tinny. Just like the real system. But for now, I don't want to emulate the audio being crushed that badly. I'm sticking with 20Hz everywhere since it won't negatively affect audio quality. In fact, you should not be able to hear any difference between this WIP and the previous WIP. But theoretically, DC bias should mostly be removed as a result of these new filters. It may be that we need to raise the values on some cores in the future, but I don't want to do that until we know for certain that we have to. What I can say is that compared to even older WIPs than r15 ... the removal of the simple one-pole low-pass and high-pass filters with the newer three-pass, second-order filters should result in much better attenuation (less distortion of audible frequencies.) Probably not enough to be noticeable in a blind test, though. |
|
Tim Allen | 0bf2c9d4e1 |
Update to v102r13 release.
byuu says: Changelog: - removed Emulator::Interface::videoFrequency(), audioFrequency()¹ - (MS,GG,MD)/PSG: removed inversion on noise channel LFSR update [mic_] - MD/PSG: lowered volume to match YM2612 volume - MD/YM2612: added Cydrak's emulation of FM channels and LFO² ¹: These were no longer used by the UI. The video frequency is adaptive on many systems. And the audio frequency is meaningless due to Emulator::Audio always outputting a consistent frequency specified by the UI. Plus, take the Genesis where there's two sound chips running at different frequencies. So, these had to go. ²: Due to some lurking bugs, the audio is completely broken unfortunately. Will need to be debugged :( First pass looking for any typos didn't yield any obvious results. |
|
Tim Allen | 68f04c3bb8 |
Update to v102r10 release.
byuu says: Changelog: - removed Emulator::Interface::Capabilities¹ - MS: improved the PSG emulation a bit - MS: added cheat code support - MS: added save state support² - MD: emulated the PSG³ ¹: there's really no point to it anymore. I intend to add cheat codes to the GBA core, as well as both cheat codes and save states to the Mega Drive core. I no longer intend to emulate any new systems, so these values will always be true. Further, the GUI doesn't respond to these values to disable those features anymore ever since the hiro rewrite, so they're double useless. ²: right now, the Z80 core is using a pointer for HL-\>(IX,IY) overrides. But I can't reliably serialize pointers, so I need to convert the Z80 core to use an integer here. The save states still appear to work fine, but there's the potential for an instruction to execute incorrectly if you're incredibly unlucky, so this needs to be fixed as soon as possible. Further, I still need a way to serialize array<T, Size> objects, and I should also add nall::Boolean serialization support. ³: I don't have a system in place to share identical sound chips. But this chip is so incredibly simple that it's not really much trouble to duplicate it. Further, I can strip out the stereo sound support code from the Game Gear portion, so it's even tinier. Note that the Mega Drive only just barely uses the PSG. Not at all in Altered Beast, and only for a tiny part of the BGM music on Sonic 1, plus his jump sound effect. |
|
Tim Allen | fa6cbac251 |
Update to v102r06 release.
byuu says: Changelog: - added higan/emulator/platform.hpp (moved out Emulator::Platform from emulator/interface.hpp) - moved gmake build paramter to nall/GNUmakefile; both higan and icarus use it now - added build=profile mode - MD: added the region select I/O register - MD: started to add region selection support internally (still no external select or PAL support) - PCE: added cycle stealing when reading/writing to the VDC or VCE; and when using ST# instructions - PCE: cleaned up PSG to match the behavior of Mednafen (doesn't improve sound at all ;_;) - note: need to remove loadWaveSample, loadWavePeriod - HuC6280: ADC/SBC decimal mode consumes an extra cycle; does not set V flag - HuC6280: block transfer instructions were taking one cycle too many - icarus: added code to strip out PC Engine ROM headers - hiro: added options support to BrowserDialog The last one sure ended in failure. The plan was to put a region dropdown directly onto hiro::BrowserDialog, and I had all the code for it working. But I forgot one important detail: the system loads cartridges AFTER powering on, so even though I could technically change the system region post-boot, I'd rather not do so. So that means we have to know what region we want before we even select a game. Shit. |
|
Tim Allen | ee7662a8be |
Update to v102r04 release.
byuu says: Changelog: - Super Game Boy support is functional once again - new GameBoy::SuperGameBoyInterface class - system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC Engine - merged WonderSwanInterface, WonderSwanColorInterface shared functions to WonderSwan::Interface - merged GameBoyInterface, GameBoyColorInterface shared functions to GameBoy::Interface - Interface::unload() now calls Interface::save() for Master System, Game Gear, Mega Drive, PC Engine, SuperGrafx - PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB file) - this means you can now save your progress in games like Neutopia - the PCE-CD I/O registers like BRAM write protect are not emulated yet - PCE: IRQ sources now hold the IRQ line state, instead of the CPU holding it - this fixes most SuperGrafx games, which were fighting over the VDC IRQ line previously - PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs are disabled - PCE: VCE and the VDCs now synchronize to each other; fixes pixel widths in all games - PCE: greatly increased the accuracy of the VPC priority selection code (windows may be buggy still) - HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs [Jonas Quinn] The big thing I wanted to do was enslave the VDC(s) to the VCE. But unfortunately, I forgot about the asynchronous DMA channels that each VDC supports, so this isn't going to be possible I'm afraid. In the most demanding case, Daimakaimura in-game, we're looking at 85fps on my Xeon E3 1276v3. So ... not great, and we don't even have sound connected yet. We are going to have to profile and optimize this code once sound emulation and save states are in. Basically, think of it like this: the VCE, VDC0, and VDC1 all have the same overhead, scheduling wise (which is the bulk of the performance loss) as the dot-renderer for the SNES core. So it's like there's three bsnes-accuracy PPU threads running just for video. ----- Oh, just a fair warning ... the hooks for the SGB are a work in progress. If anyone is working on higan or a fork and want to do something similar to it, don't use it as a template, at least not yet. Right now, higan looks like this: - Emulator::Video handles the platform→videoRefresh calls - Emulator::Audio handles the platform→audioSample calls - each core hard-codes the platform→inputPoll, inputRumble calls - each core hard-codes calls to path, open, load to process files - dipSettings and notify are specialty hacks, neither are even hooked up right now to anything With the SGB, it's an emulation core inside an emulation core, so ideally you want to hook all of those functions. Emulator::Video and Emulator::Audio aren't really abstractions over that, as the GB core calls them and we have to special case not calling them in SGB mode. The path, open, load can be implemented without hooks, thanks to the UI only using one instance of Emulator::Platform for all cores. All we have to do is override the folder path ID for the "Game Boy.sys" folder, so that it picks "Super Game Boy.sfc/" and loads its boot ROM instead. That's just a simple argument to GameBoy::System::load() and we're done. dipSettings, notify and inputRumble don't matter. But we do also have to hook inputPoll as well. The nice idea would be for SuperFamicom::ICD2 to inherit from Emulator::Platform and provide the desired functions that we need to overload. After that, we'd just need the GB core to keep an abstraction over the global Emulator::platform\* handle, to select between the UI version and the SFC::ICD2 version. However ... that doesn't work because of Emulator::Video and Emulator::Audio. They would also have to gain an abstraction over Emulator::platform\*, and even worse ... you'd have to constantly swap between the two so that the SFC core uses the UI, and the GB core uses the ICD2. And so, for right now, I'm checking Model::SuperGameBoy() -> bool everywhere, and choosing between the UI and ICD2 targets that way. And as such, the ICD2 doesn't really need Emulator::Platform inheritance, although it certainly could do that and just use the functions it needs. But the SGB is even weirder, because we need additional new signals beyond just Emulator::Platform, like joypWrite(), etc. I'd also like to work on the Emulator::Stream for the SGB core. I don't see why we can't have the GB core create its own stream, and let the ICD2 just use that instead. We just have to be careful about the ICD2's CPU soft reset function, to make sure the GB core's Stream object remains valid. What I think that needs is a way to release an Emulator::Stream individually, rather than calling Emulator::Audio::reset() to do it. They are shared\_pointer objects, so I think if I added a destructor function to remove it from Emulator::Audio::streams, then that should work. |
|
Tim Allen | bdc100e123 |
Update to v102r02 release.
byuu says: Changelog: - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it - if it's really invalid C++, then GCC needs to stop accepting it in strict `-std=c++14` mode - Emulator::Interface::Information::resettable is gone - Emulator::Interface::reset() is gone - FC, SFC, MD cores updated to remove soft reset behavior - split GameBoy::Interface into GameBoyInterface, GameBoyColorInterface - split WonderSwan::Interface into WonderSwanInterface, WonderSwanColorInterface - PCE: fixed off-by-one scanline error [hex_usr] - PCE: temporary hack to prevent crashing when VDS is set to < 2 - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#) types to (u)int_(#)t types - icarus: replaced usage of unique with strip instead (so we don't mess up frameworks on macOS) - libco: added macOS-specific section marker [Ryphecha] So ... the major news this time is the removal of the soft reset behavior. This is a major!! change that results in a 100KiB diff file, and it's very prone to accidental mistakes!! If anyone is up for testing, or even better -- looking over the code changes between v102r01 and v102r02 and looking for any issues, please do so. Ideally we'll want to test every NES mapper type and every SNES coprocessor type by loading said games and power cycling to make sure the games are all cleanly resetting. It's too big of a change for me to cover there not being any issues on my own, but this is truly critical code, so yeah ... please help if you can. We technically lose a bit of hardware documentation here. The soft reset events do all kinds of interesting things in all kinds of different chips -- or at least they do on the SNES. This is obviously not ideal. But in the process of removing these portions of code, I found a few mistakes I had made previously. It simplifies resetting the system state a lot when not trying to have all the power() functions call the reset() functions to share partial functionality. In the future, the goal will be to come up with a way to add back in the soft reset behavior via keyboard binding as with the Master System core. What's going to have to happen is that the key binding will have to send a "reset pulse" to every emulated chip, and those chips are going to have to act independently to power() instead of reusing functionality. We'll get there eventually, but there's many things of vastly greater importance to work on right now, so it'll be a while. The information isn't lost ... we'll just have to pull it out of v102 when we are ready. Note that I left the SNES reset vector simulation code in, even though it's not possible to trigger, for the time being. Also ... the Super Game Boy core is still disconnected. To be honest, it totally slipped my mind when I released v102 that it wasn't connected again yet. This one's going to be pretty tricky to be honest. I'm thinking about making a third GameBoy::Interface class just for SGB, and coming up with some way of bypassing platform-> calls when in this mode. |
|
Tim Allen | bf90bdfcc8 |
Update to v101r31 release.
byuu says: Changelog: - converted Emulator::Interface::Bind to Emulator::Platform - temporarily disabled SGB hooks - SMS: emulated Game Gear palette (latching word-write behavior not implemented yet) - SMS: emulated Master System 'Reset' button, Game Gear 'Start' button - SMS: removed reset() functionality, driven by the mappable input now instead - SMS: split interface class in two: one for Master System, one for Game Gear - SMS: emulated Game Gear video cropping to 160x144 - PCE: started on HuC6280 CPU core—so far only registers, NOP instruction has been implemented Errata: - Super Game Boy support is broken and thus disabled - if you switch between Master System and Game Gear without restarting, bad things happen: - SMS→GG, no video output on the GG - GG→SMS, no input on the SMS I'm not sure what's causing the SMS\<-\>GG switch bug, having a hard time debugging it. Help would be very much appreciated, if anyone's up for it. Otherwise I'll keep trying to track it down on my end. |
|
Tim Allen | 0ad70a30f8 |
Update to v101r30 release.
byuu says: Changelog: - SMS: added cartridge ROM/RAM mirroring (fixes Alex Kidd) - SMS: fixed 8x16 sprite mode (fixes Wonder Boy, Ys graphics) - Z80: emulated "ex (sp),hl" instruction - Z80: fixed INx NF (should be set instead of cleared) - Z80: fixed loop condition check for CPxR, INxR, LDxR, OTxR (fixes walking in Wonder Boy) - SFC: removed Debugger and sfc/debugger.hpp - icarus: connected MS, GG, MD importing to the scan dialog - PCE: added emulation skeleton to higan and icarus At this point, Master System games are fairly highly compatible, sans audio. Game Gear games are running, but I need to crop the resolution and support the higher color palette that they can utilize. It's really something else the way they handled the resolution shrink on that thing. The last change is obviously going to be the biggest news. I'm very well aware it's not an ideal time to start on a new emulation core, with the MS and MD cores only just now coming to life with no audio support. But, for whatever reason, my heart's really set on working on the PC Engine. I wanted to write the final higan skeleton core, and get things ready so that whenever I'm in the mood to work on the PCE, I can do so. The skeleton is far and away the most tedious and obnoxious part of the emulator development, because it's basically all just lots of boilerplate templated code, lots of new files to create, etc. I really don't know how things are going to proceed ... but I can say with 99.9% certainty that this will be the final brand new core ever added to higan -- at least one written by me, that is. This was basically the last system from my childhood that I ever cared about. It's the last 2D system with games that I really enjoy playing. No other system is worth dividing my efforts and reducing the quality and amount of time to work on the systems I have. In the future, there will be potential for FDS, Mega CD and PCE-CD support. But those will all be add-ons, and they'll all be really difficult and challenge the entire design of higan's UI (it's entirely cartridge-driven at this time.) None of them will be entirely new cores like this one. |
|
Tim Allen | 79c83ade70 |
Update to v101r29 release.
byuu says: Changelog: - SMS: background VDP clips partial tiles on the left (math may not be right ... it's hard to reason about) - SMS: fix background VDP scroll locks - SMS: fix VDP sprite coordinates - SMS: paint black after the end of the visible display - todo: shouldn't be a brute force at the end of the main VDP loop, should happen in each rendering unit - higan: removed emulator/debugger.hpp - higan: removed privileged: access specifier - SFC: removed debugger hooks - todo: remove sfc/debugger.hpp - Z80: fixed disassembly of (fd,dd) cb (displacement) (opcode) instructions - Z80: fix to prevent interrupts from firing between ix/iy prefixes and opcodes - todo: this is a rather hacky fix that could, if exploited, crash the stack frame - Z80: fix BIT flags - Z80: fix ADD hl,reg flags - Z80: fix CPD, CPI flags - Z80: fix IND, INI flags - Z80: fix INDR, INIT loop flag check - Z80: fix OUTD, OUTI flags - Z80: fix OTDR, OTIR loop flag check |
|
Tim Allen | f3e67da937 |
Update to v101r19 release.
byuu says: Changelog: - added \~130 new PAL games to icarus (courtesy of Smarthuman and aquaman) - added all three Korean-localized games to icarus - sfc: removed SuperDisc emulation (it was going nowhere) - sfc: fixed MSU1 regression where the play/repeat flags were not being cleared on track select - nall: cryptography support added; will be used to sign future databases (validation will always be optional) - minor shims to fix compilation issues due to nall changes The real magic is that we now have 25-30% of the PAL SNES library in icarus! Signing will be tricky. Obviously if I put the public key inside the higan archive, then all anyone has to do is change that public key for their own releases. And if you download from my site (which is now over HTTPS), then you don't need the signing to verify integrity. I may just put the public key on my site on my site and leave it at that, we'll see. |
|
Tim Allen | 427bac3011 |
Update to v101r06 release.
byuu says: I reworked the video sizing code. Ended up wasting five fucking hours fighting GTK. When you call `gtk_widget_set_size_request`, it doesn't actually happen then. This is kind of a big deal because when I then go to draw onto the viewport, the actual viewport child window is still the old size, so the image gets distorted. It recovers in a frame or so with emulation, but if we were to put a still image on there, it would stay distorted. The first thought is, `while(gtk_events_pending()) gtk_main_iteration_do(false);` right after the `set_size_request`. But nope, it tells you there's no events pending. So then you think, go deeper, use `XPending()` instead. Same thing, GTK hasn't actually issued the command to Xlib yet. So then you think, if the widget is realized, just call a blocking `gtk_main_iteration`. One call does nothing, two calls results in a deadlock on the second one ... do it before program startup, and the main window will never appear. Great. Oh, and it's not just the viewport. It's also the widget container area of the windows, as well as the window itself, as well as the fullscreen mode toggle effect. They all do this. For the latter three, I couldn't find anything that worked, so I just added 20ms loops of constantly calling `gtk_main_iteration_do(false)` after each one of those things. The downside here is toggling the status bar takes 40ms, so you'll see it and it'll feel a tiny bit sluggish. But I can't have a 20ms wait on each widget resize, that would be catastrophic to performance on windows with lots of widgets. I tried hooking configure-event and size-allocate, but they were very unreliable. So instead I ended up with a loop that waits up to a maximm of 20ms that inspects the `widget->allocation.(width,height)` values directly and waits for them to be what we asked for with `set_size_request`. There was some extreme ugliness in GTK with calling `gtk_main_iteration_do` recursively (`hiro::Widget::setGeometry` is called recursively), so I had to lock it to only happen on the top level widgets (the child ones should get resized while waiting on the top-level ones, so it should be fine in practice), and also only run it on realized widgets. Even still, I'm getting ~3 timeouts when opening the settings dialog in higan, but no other windows. But, this is the best I can do for now. And the reason for all of this pain? Yeah, updated the video code. So the Emulator::Interface now has this: struct VideoSize { uint width, height; }; //or requiem for a tuple auto videoSize() -> VideoSize; auto videoSize(uint width, uint height, bool arc) -> VideoSize; The first function, for now, is just returning the literal surface size. I may remove this ... one thing I want to allow for is cores that send different texture sizes based on interlace/hires/overscan/etc settings. The second function is more interesting. Instead of having the UI trying to figure out sizing, I figure the emulation cores can do a better job and we can customize it per-core now. So it gets the window's width and height, and whether the user asked for aspect correction, and then computes the best width/height ratio possible. For now they're all just doing multiples of a 1x scale to the UI 2x,3x,4x modes. We still need a third function, which will probably be what I repurpose videoSize() for: to return the 'effective' size for pixel shaders, to then feed into ruby, to then feed into quark, to then feed into our shaders. Since shaders use normalized coordinates for pixel fetching, this should work out just fine. The real texture size will be exposed to quark shaders as well, of course. Now for the main window ... it's just hard-coded to be 640x480, 960x720, 1280x960 for now. It works nicely for some cores on some modes, not so much for others. Work in progress I guess. I also took the opportunity to draw the about dialog box logo on the main window. Got a bit fancy and used the old spherical gradient and impose functionality of nall/image on it. Very minor highlight, nothing garish. Just something nicer than a solid black window. If you guys want to mess around with sizes, placements, and gradient styles/colors/shapes ... feel free. If you come up with something nicer, do share. That's what led to all the GTK hell ... the logo wasn't drawing right as you resized the window. But now it is, though I am not at all happy with the hacking I had to do. I also had to improve the video update code as a result of this: - when you unload a game, it blacks out the screen - if you are not quitting the emulator, it'll draw the logo; if you are, it won't - when you load a game, it black out the logo These options prevent any unsightliness from resizing the viewport with image data on it already I need to redraw the logo when toggling fullscreen with no game loaded as well for Windows, it seems. |
|
Tim Allen | 8bdf8f2a55 |
Update to v101r01 release.
byuu says: Changelog: - added eight more 68K instructions - split ADD(direction) into two separate ADD functions I now have 54 out of 88 instructions implemented (thus, 34 remaining.) The map is missing 25,182 entries out of 65,536. Down from 32,680 for v101.00 Aside: this version number feels really silly. r10 and r11 surely will as well ... |
|
Tim Allen | c50723ef61 |
Update to v100r15 release.
byuu wrote: Aforementioned scheduler changes added. Longer explanation of why here: http://hastebin.com/raw/toxedenece Again, we really need to test this as thoroughly as possible for regressions :/ This is a really major change that affects absolutely everything: all emulation cores, all coprocessors, etc. Also added ADDX and SUB to the 68K core, which brings us just barely above 50% of the instruction encoding space completed. [Editor's note: The "aformentioned scheduler changes" were described in a previous forum post: Unfortunately, 64-bits just wasn't enough precision (we were getting misalignments ~230 times a second on 21/24MHz clocks), so I had to move to 128-bit counters. This of course doesn't exist on 32-bit architectures (and probably not on all 64-bit ones either), so for now ... higan's only going to compile on 64-bit machines until we figure something out. Maybe we offer a "lower precision" fallback for machines that lack uint128_t or something. Using the booth algorithm would be way too slow. Anyway, the precision is now 2^-96, which is roughly 10^-29. That puts us far beyond the yoctosecond. Suck it, MAME :P I'm jokingly referring to it as the byuusecond. The other 32-bits of precision allows a 1Hz clock to run up to one full second before all clocks need to be normalized to prevent overflow. I fixed a serious wobbling issue where I was using clock > other.clock for synchronization instead of clock >= other.clock; and also another aliasing issue when two threads share a common frequency, but don't run in lock-step. The latter I don't even fully understand, but I did observe it in testing. nall/serialization.hpp has been extended to support 128-bit integers, but without explicitly naming them (yay generic code), so nall will still compile on 32-bit platforms for all other applications. Speed is basically a wash now. FC's a bit slower, SFC's a bit faster. The "longer explanation" in the linked hastebin is: Okay, so the idea is that we can have an arbitrary number of oscillators. Take the SNES: - CPU/PPU clock = 21477272.727272hz - SMP/DSP clock = 24576000hz - Cartridge DSP1 clock = 8000000hz - Cartridge MSU1 clock = 44100hz - Controller Port 1 modem controller clock = 57600hz - Controller Port 2 barcode battler clock = 115200hz - Expansion Port exercise bike clock = 192000hz Is this a pathological case? Of course it is, but it's possible. The first four do exist in the wild already: see Rockman X2 MSU1 patch. Manifest files with higan let you specify any frequency you want for any component. The old trick higan used was to hold an int64 counter for each thread:thread synchronization, and adjust it like so: - if thread A steps X clocks; then clock += X * threadB.frequency - if clock >= 0; switch to threadB - if thread B steps X clocks; then clock -= X * threadA.frequency - if clock < 0; switch to threadA But there are also system configurations where one processor has to synchronize with more than one other processor. Take the Genesis: - the 68K has to sync with the Z80 and PSG and YM2612 and VDP - the Z80 has to sync with the 68K and PSG and YM2612 - the PSG has to sync with the 68K and Z80 and YM2612 Now I could do this by having an int64 clock value for every association. But these clock values would have to be outside the individual Thread class objects, and we would have to update every relationship's clock value. So the 68K would have to update the Z80, PSG, YM2612 and VDP clocks. That's four expensive 64-bit multiply-adds per clock step event instead of one. As such, we have to account for both possibilities. The only way to do this is with a single time base. We do this like so: - setup: scalar = timeBase / frequency - step: clock += scalar * clocks Once per second, we look at every thread, find the smallest clock value. Then subtract that value from all threads. This prevents the clock counters from overflowing. Unfortunately, these oscillator values are psychotic, unpredictable, and often times repeating fractions. Even with a timeBase of 1,000,000,000,000,000,000 (one attosecond); we get rounding errors every ~16,300 synchronizations. Specifically, this happens with a CPU running at 21477273hz (rounded) and SMP running at 24576000hz. That may be good enough for most emulators, but ... you know how I am. Plus, even at the attosecond level, we're really pushing against the limits of 64-bit integers. Given the reciprocal inverse, a frequency of 1Hz (which does exist in higan!) would have a scalar that consumes 1/18th of the entire range of a uint64 on every single step. Yes, I could raise the frequency, and then step by that amount, I know. But I don't want to have weird gotchas like that in the scheduler core. Until I increase the accuracy to about 100 times greater than a yoctosecond, the rounding errors are too great. And since the only choice above 64-bit values is 128-bit values; we might as well use all the extra headroom. 2^-96 as a timebase gives me the ability to have both a 1Hz and 4GHz clock; and run them both for a full second; before an overflow event would occur. Another hastebin includes demonstration code: #include <libco/libco.h> #include <nall/nall.hpp> using namespace nall; // cothread_t mainThread = nullptr; const uint iterations = 100'000'000; const uint cpuFreq = 21477272.727272 + 0.5; const uint smpFreq = 24576000.000000 + 0.5; const uint cpuStep = 4; const uint smpStep = 5; // struct ThreadA { cothread_t handle = nullptr; uint64 frequency = 0; int64 clock = 0; auto create(auto (*entrypoint)() -> void, uint frequency) { this->handle = co_create(65536, entrypoint); this->frequency = frequency; this->clock = 0; } }; struct CPUA : ThreadA { static auto Enter() -> void; auto main() -> void; CPUA() { create(&CPUA::Enter, cpuFreq); } } cpuA; struct SMPA : ThreadA { static auto Enter() -> void; auto main() -> void; SMPA() { create(&SMPA::Enter, smpFreq); } } smpA; uint8 queueA[iterations]; uint offsetA; cothread_t resumeA = cpuA.handle; auto EnterA() -> void { offsetA = 0; co_switch(resumeA); } auto QueueA(uint value) -> void { queueA[offsetA++] = value; if(offsetA >= iterations) { resumeA = co_active(); co_switch(mainThread); } } auto CPUA::Enter() -> void { while(true) cpuA.main(); } auto CPUA::main() -> void { QueueA(1); smpA.clock -= cpuStep * smpA.frequency; if(smpA.clock < 0) co_switch(smpA.handle); } auto SMPA::Enter() -> void { while(true) smpA.main(); } auto SMPA::main() -> void { QueueA(2); smpA.clock += smpStep * cpuA.frequency; if(smpA.clock >= 0) co_switch(cpuA.handle); } // struct ThreadB { cothread_t handle = nullptr; uint128_t scalar = 0; uint128_t clock = 0; auto print128(uint128_t value) { string s; while(value) { s.append((char)('0' + value % 10)); value /= 10; } s.reverse(); print(s, "\n"); } //femtosecond (10^15) = 16306 //attosecond (10^18) = 688838 //zeptosecond (10^21) = 13712691 //yoctosecond (10^24) = 13712691 (hitting a dead-end on a rounding error causing a wobble) //byuusecond? ( 2^96) = (perfect? 79,228 times more precise than a yoctosecond) auto create(auto (*entrypoint)() -> void, uint128_t frequency) { this->handle = co_create(65536, entrypoint); uint128_t unitOfTime = 1; //for(uint n : range(29)) unitOfTime *= 10; unitOfTime <<= 96; //2^96 time units ... this->scalar = unitOfTime / frequency; print128(this->scalar); this->clock = 0; } auto step(uint128_t clocks) -> void { clock += clocks * scalar; } auto synchronize(ThreadB& thread) -> void { if(clock >= thread.clock) co_switch(thread.handle); } }; struct CPUB : ThreadB { static auto Enter() -> void; auto main() -> void; CPUB() { create(&CPUB::Enter, cpuFreq); } } cpuB; struct SMPB : ThreadB { static auto Enter() -> void; auto main() -> void; SMPB() { create(&SMPB::Enter, smpFreq); clock = 1; } } smpB; auto correct() -> void { auto minimum = min(cpuB.clock, smpB.clock); cpuB.clock -= minimum; smpB.clock -= minimum; } uint8 queueB[iterations]; uint offsetB; cothread_t resumeB = cpuB.handle; auto EnterB() -> void { correct(); offsetB = 0; co_switch(resumeB); } auto QueueB(uint value) -> void { queueB[offsetB++] = value; if(offsetB >= iterations) { resumeB = co_active(); co_switch(mainThread); } } auto CPUB::Enter() -> void { while(true) cpuB.main(); } auto CPUB::main() -> void { QueueB(1); step(cpuStep); synchronize(smpB); } auto SMPB::Enter() -> void { while(true) smpB.main(); } auto SMPB::main() -> void { QueueB(2); step(smpStep); synchronize(cpuB); } // #include <nall/main.hpp> auto nall::main(string_vector) -> void { mainThread = co_active(); uint masterCounter = 0; while(true) { print(masterCounter++, " ...\n"); auto A = clock(); EnterA(); auto B = clock(); print((double)(B - A) / CLOCKS_PER_SEC, "s\n"); auto C = clock(); EnterB(); auto D = clock(); print((double)(D - C) / CLOCKS_PER_SEC, "s\n"); for(uint n : range(iterations)) { if(queueA[n] != queueB[n]) return print("fail at ", n, "\n"); } } } ...and that's everything.] |
|
Tim Allen | ca277cd5e8 |
Update to v100r14 release.
byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP. |
|
Tim Allen | 059347e575 |
Update to v100r07 release.
byuu says: Four and a half hours of work and ... zero new opcodes implemented. This was the best job I could do refining the effective address computations. Should have all twelve 68000 modes implemented now. Still have a billion questions about when and how I'm supposed to perform certain edge case operations, though. |
|
Tim Allen | b72f35a13e |
Update to v100r05 release.
byuu says: Alright, I'm definitely going to need to find some people willing to tolerate my questions on this chip, so I'm going to go ahead and announce I'm working on this I guess. This core is way too big for a surprise like the NES and WS cores were. It'll probably even span multiple v10x releases before it's even ready. |
|
Tim Allen | 76a8ecd32a |
Update to v100r03 release.
byuu says: Changelog: - moved Thread, Scheduler, Cheat functionality into emulator/ for all cores - start of actual Mega Drive emulation (two 68K instructions) I'm going to be rather terse on MD emulation, as it's too early for any meaningful dialogue here. |
|
Tim Allen | 88c79e56a0 |
Update to v100r01 release.
[This version, with the internal version number changed back to "v100", replaced the original v100 source archive on byuu.org soon after v100's release, because it fixes important bugs in that version. --Ed] byuu says: Changelog: - fixed default paths for Sufami Turbo slotted games - moved WonderSwan orientation controls to the port rather than the device - I do like hex_usr's idea here; but that'll need more consideration; so this is a temporary fix - added new debugger interface (see the public topic for more on that) |
|
Tim Allen | 07995c05a5 |
Update to v100 release.
byuu says: higan has finally reached v100! I feel it's important to stress right away that this is not "version 1.00", nor is it a major milestone release. Rather than arbitrary version numbers, all of my software simply bumps version numbers by one for each official release. As such, higan v100 is simply higan's 100th release. That said, the primary focus of this release has been code clean-ups. These are always somewhat dangerous in that regressions are possible. We've tested through sixteen WIP revisions, one of which was open to the public, to try and minimize any regressions. But all the same, please report any regressions if you discover any. Changelog (since v099): FC: render during pixels 1-256 instead of 0-255 [hex_usr] FC: rewrote controller emulation code SFC: 8% speedup over the previous release thanks to PPU optimizations SFC: fixed nasty DB address wrapping regression from v099 SFC: USART developer controller removed; superseded by 21fx SFC: Super Multitap option removed from controller port 1; ports renamed 2-5 SFC: hidden option to experiment with 128KB VRAM (strictly for novelty) higan: audio volume no longer divided by number of audio streams higan: updated controller polling code to fix possible future mapping issues higan: replaced nall/stream with nall/vfs for file-loading subsystem tomoko: can now load multi-slotted games via command-line tomoko: synchronize video removed from UI; still available in the settings file tomoko, icarus: can navigate to root drive selection on Windows all: major code cleanups and refactoring (~1MB diff against v099) Note 1: the audio volume change means that SGB and MSU1 games won't lose half the volume on the SNES sounds anymore. However, if one goes overboard and drives the sound all the way to max volume with the MSU1, clamping may occur. The obvious solution is not to drive volume that high (it will vastly overpower the SNES audio, which usually never exceeds 25% volume.) Another option is to lower the volume in the audio settings panel to 50%. In general, neither is likely to ever be necessary. Note 2: the synchronize video option was hidden from the UI because it is no longer useful. With the advent of compositors, the loss of the complicated timing settings panel, support for the WonderSwan and its 75hz display, the need to emulate variable refresh rate behaviors in the Game Boy, the unfortunate latency spike and audio distortion caused by long Vsync pauses, and the arrival of adaptive sync technology ... it no longer makes sense to present this option. However, as stated, you can edit settings.bml to enable this option anyway if you insist and understand the aforementioned risks. Changelog (since v099r16 open beta): - fixed MSU1 audio sign extension - fixed compilation with SGB support disabled - icarus can now navigate to root directory - fixed compilation issues with OS X port - (hopefully) fixed label height issue with hiro that affected icarus import dialog - (mostly) fixed BS Memory, Sufami Turbo slot loading Errata: - forgot to remove the " - Slot A", " - Slot B" suffixes for Sufami Turbo slot loading - this means you have to navigate up one folder and then into Sufami Turbo/ to load games for this system - moving WonderSwan orientation controls to the device slot is causing some nastiness - can now select orientation from the main menu, but it doesn't rotate the display |
|
Tim Allen | 13ad9644a2 |
Update to v099r16 release (public beta).
byuu says: Changelog: - hiro: BrowserDialog can navigate up to drive selection on Windows - nall: (file,path,dir,base,prefix,suffix)name => Location::(file,path,dir,base,prefix,suffix) - higan/tomoko: rename audio filter label from "Sinc" to "IIR - Biquad" - higan/tomoko: allow loading files via icarus on the command-line once again - higan/tomoko: (begrudging) quick hack to fix presentation window focus on startup - higan/audio: don't divide output audio volume by number of streams - processor/r65816: fix a regression in (read,write)DB; fixes Taz-Mania - fixed compilation regressions on Windows and Linux I'm happy with where we are at with code cleanups and stability, so I'd like to release v100. But even though I'm not assigning any special significance to this version, we should probably test it more thoroughly first. |
|
Tim Allen | 8d5cc0c35e |
Update to v099r15 release.
byuu says: Changelog: - nall::lstring -> nall::string_vector - added IntegerBitField<type, lo, hi> -- hopefully it works correctly... - Multitap 1-4 -> Super Multitap 2-5 - fixed SFC PPU CGRAM read regression - huge amounts of SFC PPU IO register cleanups -- .bits really is lovely - re-added the read/write(VRAM,OAM,CGRAM) helpers for the SFC PPU - but they're now optimized to the realities of the PPU (16-bit data sizes / no address parameter / where appropriate) - basically used to get the active-display overrides in a unified place; but also reduces duplicate code in (read,write)IO |
|
Tim Allen | 82293c95ae |
Update to v099r14 release.
byuu says: Changelog: - (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel like they were contributing enough to be worth it] - cleaned up nall::integer,natural,real functionality - toInteger, toNatural, toReal for parsing strings to numbers - fromInteger, fromNatural, fromReal for creating strings from numbers - (string,Markup::Node,SQL-based-classes)::(integer,natural,real) left unchanged - template<typename T> numeral(T value, long padding, char padchar) -> string for print() formatting - deduces integer,natural,real based on T ... cast the value if you want to override - there still exists binary,octal,hex,pointer for explicit print() formatting - lstring -> string_vector [but using lstring = string_vector; is declared] - would be nice to remove the using lstring eventually ... but that'd probably require 10,000 lines of changes >_> - format -> string_format [no using here; format was too ambiguous] - using integer = Integer<sizeof(int)*8>; and using natural = Natural<sizeof(uint)*8>; declared - for consistency with boolean. These three are meant for creating zero-initialized values implicitly (various uses) - R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees up struct IO {} io; naming] - SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {} (status,registers); now - still some CPU::Status status values ... they didn't really fit into IO functionality ... will have to think about this more - SFC CPU, PPU, SMP now use step() exclusively instead of addClocks() calling into step() - SFC CPU joypad1_bits, joypad2_bits were unused; killed them - SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it - SFC PPU OAM moved into PPU::Object; since nothing else uses it - the raw uint8[544] array is gone. OAM::read() constructs values from the OAM::Object[512] table now - this avoids having to determine how we want to sub-divide the two OAM memory sections - this also eliminates the OAM::synchronize() functionality - probably more I'm forgetting The FPS fluctuations are driving me insane. This WIP went from 128fps to 137fps. Settled on 133.5fps for the final build. But nothing I changed should have affected performance at all. This level of fluctuation makes it damn near impossible to know whether I'm speeding things up or slowing things down with changes. |
|
Tim Allen | 67457fade4 |
Update to v099r13 release.
byuu says: Changelog: - GB core code cleanup completed - GBA core code cleanup completed - some more cleanup on missed processor/arm functions/variables - fixed FC loading icarus bug - "Load ROM File" icarus functionality restored - minor code unification efforts all around (not perfect yet) - MMIO->IO - mmio.cpp->io.cpp - read,write->readIO,writeIO It's been a very long work in progress ... starting all the way back with v094r09, but the major part of the higan code cleanup is now completed! Of course, it's very important to note that this is only for the basic style: - under_score functions and variables are now camelCase - return-type function-name() are now auto function-name() -> return-type - Natural<T>/Integer<T> replace (u)intT_n types where possible - signed/unsigned are now int/uint - most of the x==true,x==false tests changed to x,!x A lot of spot improvements to consistency, simplicity and quality have gone in along the way, of course. But we'll probably never fully finishing beautifying every last line of code in the entire codebase. Still, this is a really great start. Going forward, WIP diffs should start being smaller and of higher quality once again. I know the joke is, "until my coding style changes again", but ... this was way too stressful, way too time consuming, and way too risky. I'm too old and tired now for extreme upheavel like this again. The only major change I'm slowly mulling over would be renaming the using Natural<T>/Integer<T> = (u)intT; shorthand to something that isn't as easily confused with the (u)int_t types ... but we'll see. I'll definitely continue to change small things all the time, but for the larger picture, I need to just accept the style I have and live with it. |
|
Tim Allen | 7a68059f78 |
Update to v099r12 release.
byuu says: Changelog: - fixed FC AxROM / VRC7 regression - BitField split to BooleanBitField/NaturalBitField (in preparation for IntegerBitField) - BitFieldReference removed - GB CPU cleaned up - GB Cartridge + Mappers cleaned up - SFC CGRAM is now emulated as uint15[256] instead of uint[512] - sfc/ppu/memory.cpp no longer needed; removed - purged SFC Debugger hooks for now (some of the operator[] calls were bypassing them anyway) Unfortunately, for reasons that defy all semblance of logic, the CGRAM change caused a slight speed hit. As have the last few changes. We're now down to around 129.5fps compared to 123.fps for v099 and 134.5fps at our peak (v099r01-r02). I really like the style I came up with for the Game Boy mappers to settle the purpose(ROM,RAM) vs (rom,ram)Purpose naming convention. If I ever get around to redoing the NES mappers, that's likely the approach I'll take. |
|
Tim Allen | 3e807946b8 |
Update to v099r11 release.
byuu says: Changelog: - NES PPU core updated to use BitFields (absolutely massive improvement in code readability) - NES APU core updated to new coding style - NES cartridge/board and cartridge/chip updated to new coding style - pushed NES PPU rendering one dot forward (doesn't fix King's Quest V yet, sadly) - fixed SNES PPU BG tilemask for 128KiB VRAM mode (doesn't fix Yoshi's Island, though) So ... I kind of went overboard with the fc/cartridge changes. This WIP diff is 185KiB >_> I didn't realize it was going to be as big a task as it was, but once I started everything broke in a chain reaction, so I had to do it all at once. There's a massive chance we've broken a bunch of NES things. Any typos in this WIP are going to be absolutely insidious to track down =( But ... supposing I pulled it off, this means the Famicom core is now fully converted to the new coding style as well. That leaves only the GB and GBA cores. Once those are finished, then we'll finally be free of these gigantic hellspawn diffs. |
|
Tim Allen | a816998122 |
Update to v099r10 release.
byuu says: Changelog: - higan/profile/ => higan/systems/ [temporary; unless we can't think of a better base folder name] - god-damn-better-have fixed the input polling bug - re-added command-line and drag-and-drop loading - command-line loading can now load multiple folders at once (SGB+GB game; Sufami Turbo+Slot A+Slot B; etc) - if you load just the base cart, it'll present you with a dialog to optionally load slotted cart(s) - MSU1 now goes through nall/vfs instead of directly accessing the filesystem - Famicom Cartridge, PPU cores updated to newer programming style - there's countless opportunity for BitField and .bits() in the PPU ... but I'm worried about breaking things If anyone has a working MSU1 game and can test the changes out, that'd be appreciated. I still don't have a test ROM on my dev box. I wouldn't worry too much about extensively testing the Famicom PPU changes just yet ... I'm still struggling with what to name the structs inside the classes between all of my emulators, and the BitField/.bits() changes will be much more important to test at a later date. The only use case left for Emulator::Interface::path(uint id) is for 21fx emulation. This peripheral loads a DLL/SO via LoadLibrary/dlopen, which do not have any official ways to open a file in RAM. I'm very hesitant to use the portable trick of writing the memory to a temporary file, loading it, and deleting the temporary file once done ... it's a real waste of disk activity. I might make something like vfs::file::isVirtual->bool,path()->string to get around this. But even once I do, the underlying LoadLibrary/dlopen call is still going to be direct disk access. |
|
Tim Allen | 3a9c7c6843 |
Update to v099r09 release.
byuu says: Changelog: - Emulator::Interface::Medium::bootable removed - Emulator::Interface::load(bool required) argument removed [File::Required makes no sense on a folder] - Super Famicom.sys now has user-configurable properties (CPU,PPU1,PPU2 version; PPU1 VRAM size, Region override) - old nall/property removed completely - volatile flags supported on coprocessor RAM files now (still not in icarus, though) - (hopefully) fixed SNES Multitap support (needs testing) - fixed an OAM tiledata range clipping limit in 128KiB VRAM mode (doesn't fix Yoshi's Island, sadly) - (hopefully, again) fixed the input polling bug hex_usr reported - re-added dialog box for when File::Required files are missing - really cool: if you're missing a boot ROM, BIOS ROM, or IPL ROM, it warns you immediately - you don't have to select a game before seeing the error message anymore - fixed cheats.bml load/save location |
|
Tim Allen | f48b332c83 |
Update to v099r08 release.
byuu says: Changelog: - nall/vfs work 100% completed; even SGB games load now - emulation cores now call load() for the base cartridges as well - updated port/device handling; portmask is gone; device ID bug should be resolved now - SNES controller port 1 multitap option was removed - added support for 128KiB SNES PPU VRAM (for now, edit sfc/ppu/ppu.hpp VRAM::size=0x10000; to enable) Overall, nall/vfs was a huge success!! We've substantially reduced the amount of boilerplate code everywhere, while still allowing (even easier than before) support for RAM-based game loading/saving. All of nall/stream is dead and buried. I am considering removing Emulator::Interface::Medium::id and/or bootable flag. Or at least, doing something different with it. The values for the non-bootable GB/BS/ST entries duplicate the ID that is supposed to be unique. They are for GB/GBC and WS/WSC. Maybe I'll use this as the hardware revision selection ID, and then gut non-bootable options. There's really no reason for that to be there. I think at one point I was using it to generate library tabs for non-bootable systems, but we don't do that anymore anyway. Emulator::Interface::load() may not need the required flag anymore ... it doesn't really do anything right now anyway. I have a few reasons for having the cores load the base cartridge. Most importantly, it is going to enable a special mode for the WonderSwan / WonderSwan Color in the future. If we ever get the IPLROMs dumped ... it's possible to boot these systems with no games inserted to set user profile information and such. There are also other systems that may accept being booted without a cartridge. To reach this state, you would load a game and then cancel the load dialog. Right now, this results in games not loading. The second reason is this prevents nasty crashes when loading fails. So if you're missing a required manifest, the emulator won't die a violent death anymore. It's able to back out at any point. The third reason is consistency: loading the base cartridge works the same as the slot cartridges. The fourth reason is Emulator::Interface::open(uint pathID) values. Before, the GB, SB, GBC modes were IDs 1,2,3 respectively. This complicated things because you had to pass the correct ID. But now instead, Emulator::Interface::load() returns maybe<uint> that is nothing when no game is selected, and a pathID for a valid game. And now open() can take this ID to access this game's folder contents. The downside, which is temporary, is that command-line loading is currently broken. But I do intend on restoring it. In fact, I want to do better than before and allow multi-cart booting from the command-line by specifying the base cartridge and then slot cartridges. The idea should be pretty simple: keep a queue of pending filenames that we fill from the command-line and/or drag-and-drop operations on the main window, and then empty out the queue or prompt for load dialogs from the UI when booting a system. This also might be a bit more unorthodox compared to the traditional emulator design of "loadGame(filename)", but ... oh well. It's easy enough still. The port/device changes are fun. We simplified things quite a bit. The portmask stuff is gone entirely. While ports and devices keep IDs, this is really just sugar-coating so UIs can use for(auto& port : emulator->ports) and access port.id; rather than having to use for(auto n : range(emulator->ports)) { auto& port = emulator->ports[n]; ... }; but they should otherwise generally be identical to the order they appear in their respective ranges. Still, don't rely on that. Input::id is gone. There was no point since we also got rid of the nasty Input::order vector. Since I was in here, I went ahead and caved on the pedantics and renamed Input::guid to Input::userData. I removed the SNES controller port 1 multitap option. Basically, the only game that uses this is N-warp Daisakusen and, no offense to d4s, it's not really a good game anyway. It's just a quick demo to show 8-players on the SNES. But in the UI, all it does is confuse people into wasting time mapping a controller they're never going to use, and they're going to wonder which port to use. If more compelling use cases for 8-players comes about, we can reconsider this. I left all the code to support this in place, so all you have to do is uncomment one line to enable it again. We now have dsnes emulation! :D If you change PPU::VRAM::size to 0x10000 (words), then you should now have 128KiB of VRAM. Even better, it serializes the used-VRAM size, so your save states shouldn't crash on you if you swap between the two (though if you try this, you're nuts.) Note that this option does break commercial software. Yoshi's Island in particular. This game is setting A15 on some PPU register writes, but not on others. The end result of this is things break horribly in-game. Also, this option is causing a very tiny speed hit for obvious reasons with the variable masking value (I'm even using size-1 for now.) Given how niche this is, I may just leave it a compile-time constant to avoid the overhead cost. Otherwise, if we keep the option, then it'll go into Super Famicom.sys/manifest.bml ... I'll flesh that out in the near-future. ---- Finally, some fun for my OCD ... my monitor suddenly cut out on me in the middle of working on this WIP, about six hours in of non-stop work. Had to hit a bunch of ctrl+alt+fN commands (among other things) and trying to log in headless on another TTY to do issue commands, trying to recover the display. Finally power cycled the monitor and it came back up. So all my typing ended up going to who knows where. Usually this sort of thing terrifies me enough that I scrap a WIP and start over to ensure I didn't screw anything up during the crashed screen when hitting keys randomly. Obviously, everything compiles and appears to work fine. And I know it's extremely paranoid, but OCD isn't logical, so ... I'm going to go over every line of the 100KiB r07->r08 diff looking for any corruption/errors/whatever. ---- Review finished. r08 diff review notes: - fc/controller/gamepad/gamepad.cpp: use uint device = ID::Device::Gamepad; not id = ...; - gb/cartridge/cartridge.hpp: remove redundant uint _pathID; (in Information::pathID already) - gb/cartridge/cartridge.hpp: pull sha256 inside Information - sfc/cartridge/load/cpp: add " - Slot (A,B)" to interface->load("Sufami Turbo"); to be more descriptive - sfc/controller/gamepad/gamepad.cpp: use uint device = ID::Device::Gamepad; not id = ...; - sfc/interface/interface.cpp: remove n variable from the Multitap device input generation loop (now unused) - sfc/interface/interface.hpp: put struct Port above struct Device like the other classes - ui-tomoko: cheats.bml is reading from/writing to mediumPaths(0) [system folder instead of game folder] - ui-tomoko: instead of mediumPaths(1) - call emulator->metadataPathID() or something like that |
|
Tim Allen | ccd8878d75 |
Update to v099r07 release.
byuu says: Changelog: - (hopefully) fixed BS Memory and Sufami Turbo slot loading - ported GB, GBA, WS cores to use nall/vfs - completely removed loadRequest, saveRequest functionality from Emulator::Interface and ui-tomoko - loadRequest(folder) is now load(folder) - save states now use a shared Emulator::SerializerVersion string - whenever this is bumped, all older states will break; but this makes bumping state versions way easier - also, the version string makes it a lot easier to identify compatibility windows for save states - SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr] NOTE: Super Game Boy loading is currently broken, and I'm not entirely sure how to fix it :/ The file loading handoff was -really- complicated, and so I'm kind of at a loss ... so for now, don't try it. Everything else should theoretically work, so please report any bugs you find. So, this is pretty much it. I'd be very curious to hear feedback from people who objected to the old nall/stream design, whether they are happy with the new file loading system or think it could use further improvements. The 16-bit VRAM turned out to be a wash on performance (roughly the same as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The main reason for this was because Yoshi's Island was breaking horribly until I changed the vramRead, vramWrite functions to take uint15 instead of uint16. I suspect the issue is we're using uint16s in some areas now that need to be uint15, and this game is setting the VRAM address to 0x8000+, causing us to go out of bounds on memory accesses. But ... I want to go ahead and do something cute for fun, and just because we can ... and this new interface is so incredibly perfect for it!! I want to support an SNES unit with 128KiB of VRAM. Not out of the box, but as a fun little tweakable thing. The SNES was clearly designed to support that, they just didn't use big enough VRAM chips, and left one of the lines disconnected. So ... let's connect it anyway! In the end, if we design it right, the only code difference should be one area where we mask by 15-bits instead of by 16-bits. |
|
Tim Allen | 875f031182 |
Update to v099r06 release.
byuu says: Changelog: - Super Famicom core converted to use nall/vfs - excludes Super Game Boy; since that's invoked from inside the GB core This was definitely the major obstacle to test nall/vfs' applicability. Things worked out pretty great in the end. We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB (cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes a very large source of indirection. Before it was: "coprocessor <=> cartridge <=> interface" for loading and saving data, and now it's just "coprocessor <=> cartridge". And it may make sense to eventually turn this into just "cartridge -> coprocessor" by making each coprocessor class handle its own markup parsing. It's nice to have all the manifest parsing in one location (well, sans MSU1); but it's also nice for loading/unloading to be handled by each coprocessor itself. So I'll have to think longer about that one. I've also started handling Interface::save() differently. Instead of keeping track of memory IDs and filenames, and iterating through that vector of objects ... instead I now have a system that mirrors the markup parsing on loading, but handles saving instead. This was actually the reason the code size savings weren't more significant, but I like this style more. As before, it removes an extra level of indirection. So ... next up, I need to port over the GB, then GBA, then WS cores. These shouldn't take too long since they're all very simple with just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then after that, gut all the old stream stuff from nall and higan. Kill the (load,save)Request stuff, rename the load(Gamepak)Request to something simpler, and then we should be good. Anyway ... these are some huge changes. |
|
Tim Allen | 44a8c5a2b4 |
Update to v099r03 release.
byuu says: Changelog: - finished cleaning up the SFC core to my new coding conventions - removed sfc/controller/usart (superseded by 21fx) - hid Synchronize Video option from the menu (still in the configuration file) Pretty much the only minor detail left is some variable names in the SA-1 core that really won't look good at all if I move to camelCase, so I'll have to rethink how I handle those. It's probably a good area to attempt using BitFields, to see how it impacts performance. But I'll do that in a test branch first. But for the most part, this should be the end of the gigantic diffs (this one was 174KiB), at least for the SFC/WS cores. Still have the FC/GB/GBA cores to clean up more fully. Assuming we don't spot any new regressions, we should be ~95% out of the woods on code cleanups breaking things. |
|
Tim Allen | f1a80075fa |
Update to v099r02 release.
byuu says: Changelog: - renamed sfc/ppu/sprite (OAM oam;) to sfc/ppu/object (Object obj;) [hex_usr] - renamed sfc/ppu's memory {vram, oam, cgram} to just vram, oam, cgram - fixed addr&=~1 regression [hex_usr] - fixed 8bpp tiledata regression [hex_usr] |
|
Tim Allen | ae5b4c3bb3 |
Update to v099r01 release.
byuu says: Changelog: - massive cleanups and optimizations on the PPU core - ~9% speedup over v099 official This is pretty much it for the low-hanging fruit of speeding up higan. Any more gains from this point will be extremely hard-fought, unfortunately. |
|
Tim Allen | 9b452c9f5f |
Update to v098r17 release.
byuu says: Changelog: - fixed Super Game Boy regression from v096r04 with bottom tile row flickering - fixed GB STAT IRQ regression from previous WIP - Altered Space is now playable - GBVideoPlayer isn't; but nobody seems to know exactly what weird hardware quirk that one relies on to work - ~3-4% speed improvement in SuperFX games by eliminating function<> callback on register assignments - most noticeable in Doom in-game; least noticeable on Yoshi's Island title screen (darn) - finished GSU core and SuperFX coprocessor code cleanups - did some more work cleaning up the LR35902 core and GB CPU code Just a fair warning: don't get your hopes up on these GB fixes. Cliffhanger now hangs completely (har har), and none of the other bugs are fixed. We pretty much did all this work just for Altered Space. So, I hope you like playing Altered Space. |
|
Tim Allen | 3681961ca5 |
Update to v098r16 release.
byuu says: Changelog: - GNUmakefile: reverted $(call unique,) to $(strip) - processor/r6502: removed templates; reduces object size from 146.5kb to 107.6kb - processor/lr35902: removed templates; reduces object size from 386.2kb to 197.4kb - processor/spc700: merged op macros for switch table declarations - sfc/coprocessor/sa1: partial cleanups; flattened directory structure - sfc/coprocessor/superfx: partial cleanups; flattened directory structure - sfc/coprocessor/icd2: flattened directory structure - gb/ppu: changed behavior of STAT IRQs Major caveat! The GB/GBC STAT IRQ changes has a major bug in it somewhere that's seriously breaking most games. I'm pushing the WIP anyway, because I believe the changes to be mostly correct. I'd like to get more people looking at these changes, and also try more heavy-handed hacking and diff comparison logging between the previous WIP and this one. |
|
Tim Allen | 20ac95ee49 |
Update to v098r15 release.
byuu says: Changelog: - removed template usage from processor/spc700; cleaned up many function names and the switch table - object size: 176.8kb => 127.3kb - source code size: 43.5kb => 37.0kb - fixed processor/r65816 BRK/COP vector regression [hex_usr] - corrected HuC3 unmapped RAM read value; fixes Robopon [endrift] - cosmetic: simplified the butterworth constant calculation [Wolfram|Alpha] The SPC700 core changes took forever, about three hours of work. Only the LR35902 and R6502 still need their template functions removed. The point of this is that it doesn't cause any speed penalty to do so, and it results in smaller binary sizes and faster compilation times. |
|
Tim Allen | fdc41611cf |
Update to v098r14 release.
byuu says: Changelog: - improved attenuation of biquad filter by computing butterworth Q coefficients correctly (instead of using the same constant) - adding 1e-25 to each input sample into the biquad filters to try and prevent denormalization - updated normalization from [0.0 to 1.0] to [-1.0 to +1.0]; volume/reverb happen in floating-point mode now - good amount of work to make the base Emulator::Audio support any number of output channels - so that we don't have to do separate work on left/right channels; and can instead share the code for each channel - Emulator::Interface::audioSample(int16 left, int16 right); changed to: - Emulator::Interface::audioSample(double* samples, uint channels); - samples are normalized [-1.0 to +1.0] - for now at least, channels will be the value given to Emulator::Audio::reset() - fixed GUI crash on startup when audio driver is set to None I'm probably going to be updating ruby to accept normalized doubles as well; but I'm not sure if I will try and support anything other 2-channel audio output. It'll depend on how easy it is to do so; perhaps it'll be a per-driver setting. The denormalization thing is fierce. If that happens, it drops the emulator framerate from 220fps to about 20fps for Game Boy emulation. And that happens basically whenever audio output is silent. I'm probably also going to make a nall/denormal.hpp file at some point with platform-specific functionality to set the CPU state to "denormals as zero" where applicable. I'll still add the 1e-25 offset (inaudible) as another fallback. |
|
Tim Allen | 839813d0f1 |
Update to v098r13 release.
byuu says: Changelog: - nall/dsp returns with new iir/biquad.hpp and resampler/cubic.hpp files - nall/queue.hpp added (simple ring buffer ... nall/vector wouldn't cause too many moves with FIFO) - audio streams now only buffer 20ms; so even if multiple audio streams desync, latency can never exceed 20ms - replaced blackman windwed sinc FIR hermite audio filter with transposed direct form II biquadratic sixth-order IIR butterworth filter (better attenuation of frequencies above 20KHz, faster, no need for decimation, less code) - put in experimental eight-tap echo filter (a lot better than what I had before, but still rather weak) - substantial cleanups to the SuperFX GSU processor core (slightly faster, 479KB->100KB object file, 42.7KB->33.4KB source code size, way less code duplication) We'll definitely want to test the whole SuperFX library (not many games) just to make sure there's no regressions caused by this one. Not sure what I want to do with audio processing effects yet. I've always really wanted lots of fun controls to customize audio, and now finally with this new biquad filter, I can finally start implementing real effects. For instance, an equalizer wouldn't be too complicated anymore. The new reverb effect is still a poor man's version. I need to find human readable source for implementing a comb-filter properly. I'm pretty sure I can already treat nall::queue as an all-pass filter since all that does is phase shift (fancy audio term for "delay audio"). What's really going to be hard is figuring out how to expose user-friendly settings for controlling it. It looks like you need a bunch of coprime coefficients, and I don't think casual users are going to be able to hand-enter coprime values to get the echo effect they want. I uh ... don't even know how to calculate coprime values dynamically right now >_> But we're going to have to, as they are correlated to the output sampling rate. We'll definitely want to make some audio profiles so that users can quickly select pre-configured themes that sound nice, but expose the underlying coefficients so that they can tweak stuff to their liking. This isn't just about higan, this is about me trying to learn digital signal processing, so please don't be too upset about feature creep or anything on this. Anyway ... I'm having some difficulties with my audio right now. When the reverb effect is enabled, there's a bunch of static on system reset for just a moment. But this should not be possible. nall::queue is initializing all previous reverb sample elements to 0.0. I don't understand where static is coming in from. Further, we have the same issue with both the windowed sinc and the biquad filters ... a bit of a popping sound when starting a game. Any help tracking this down would be appreciated. There's also one really annoying issue ... I can't seem to do reverb or volume adjustments with normalized samples. If I say "volume *= 0.5" in higan/audio/audio.cpp line 68, it doesn't just halve the volume, it adds a whole bunch of distortion. This makes absolutely zero sense to me. The sample values are between 0.0 (mute) and 1.0 (full volume) here, so multiplying a double by 0.5 shouldn't cause distortion. So right now, I'm doing these adjustments with less precision after denormalizing back to int16. Anyone ever see something like that? :/ |
|
Tim Allen | 7f3cfa17b9 |
Update to v098r12 release.
byuu says: Changelog: - higan/video: added support for Emulator::Sprite - higan/resource: a new system for accessing embedded binary files inside the emulation cores; holds the sprites - higan/sfc/superscope,justifier: re-enabled display of crosshairs - higan/sfc/superscope: fixed turbo toggle (also shows different crosshair color when in turbo mode) - higan/sfc/ppu: always outputs at 512x480 resolution now - causes a slight speed-hit from ~127fps to ~125fps; - but allows high-resolution 32x32 cursors that look way better; - also avoids the need to implement sprite scaling logic Right now, the PPU code to always output at 480-height is a really gross hack. Don't worry, I'll make that nicer before release. Also, superscope.cpp and justifier.cpp are built around a 256x240 screen. But since we now have 512x480, we can make the cursor's movement much smoother by doubling the resolution on both axes. The actual games won't see any accuracy improvements when firing the light guns, but the cursors will animate nicer so I think it's still worth it. I'll work on that before the next release as well. The current 32x32 cursors are nicer, but we can do better now with full 24-bit color. So feel free to submit alternatives. I'll probably reject them, but you can always try :D The sprites don't support alpha blending, just color keying (0x00000000 = transparent; anything else is 0xff......). We can revisit that later if necessary. The way I have it designed, the only files that do anything with Emulator::Sprite at all are the superscope and justifier folders. I didn't have to add any hooks anywhere else. Rendering the sprite is a lot cleaner than the old code, too. |
|
Tim Allen | ae5d380d06 |
Update to v098r11 release.
byuu says: Changelog: - fixed nall/path.hpp compilation issue - fixed ruby/audio/xaudio header declaration compilation issue (again) - cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the file was whitespace overkill) - added null terminator entry to nall/windows/utf8.hpp argc[] array - nall/windows/guid.hpp uses the Windows API for generating the GUID - this should stop all the bug reports where two nall users were generating GUIDs at the exact same second - fixed hiro/cocoa compilation issue with uint# types - fixed major higan/sfc Super Game Boy audio latency issue - fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions - major cleanups to higan/processor/r65816 core - merged emulation/native-mode opcodes - use camel-case naming on memory.hpp functions - simplify address masking code for memory.hpp functions - simplify a few opcodes themselves (avoid redundant copies, etc) - rename regs.* to r.* to match modern convention of other CPU cores - removed device.order<> concept from Emulator::Interface - cores will now do the translation to make the job of the UI easier - fixed plurality naming of arrays in Emulator::Interface - example: emulator.ports[p].devices[d].inputs[i] - example: vector<Medium> media - probably more surprises Major show-stoppers to the next official release: - we need to work on GB core improvements: LY=153/0 case, multiple STAT IRQs case, GBC audio output regs, etc. - we need to re-add software cursors for light guns (Super Scope, Justifier) - after the above, we need to fix the turbo button for the Super Scope I really have no idea how I want to implement the light guns. Ideally, we'd want it in higan/video, so we can support the NES Zapper with the same code. But this isn't going to be easy, because only the SNES knows when its output is interlaced, and its resolutions can vary as {256,512}x{224,240,448,480} which requires pixel doubling that was hard-coded to the SNES-specific behavior, but isn't appropriate to be exposed in higan/video. |
|
Tim Allen | 6ae0abe3d3 |
Update to v098r09 release.
byuu says: Changelog: - fixed major nall/vector/prepend bug - renamed hiro/ListView to hiro/TableView - added new hiro/ListView control which is a simplified abstraction of hiro/TableView - updated higan's cheat database window and icarus' scan dialog to use the new ListView control - compilation works once again on all platforms (Windows, Cocoa, GTK, Qt) - the loki skeleton compiles once again (removed nall/DSP references; updated port/device ID names) Small catch: need to capture layout resize events internally in Windows to call resizeColumns. For now, just resize the icarus window to get it to use the full window width for list view items. |
|
Tim Allen | 0955295475 |
Update to v098r08 release.
byuu says: Changelog: - nall/vector rewritten from scratch - higan/audio uses nall/vector instead of raw pointers - higan/sfc/coprocessor/sdd1 updated with new research information - ruby/video/glx and ruby/video/glx2: fuck salt glXSwapIntervalEXT! The big change here is definitely nall/vector. The Windows, OS X and Qt ports won't compile until you change some first/last strings to left/right, but GTK will compile. I'd be really grateful if anyone could stress-test nall/vector. Pretty much everything I do relies on this class. If we introduce a bug, the worst case scenario is my entire SFC game dump database gets corrupted, or the byuu.org server gets compromised. So it's really critical that we test the hell out of this right now. The S-DD1 changes mean you need to update your installation of icarus again. Also, even though the Lunar FMV never really worked on the accuracy core anyway (it didn't initialize the PPU properly), it really won't work now that we emulate the hard-limit of 16MiB for S-DD1 games. |
|
Tim Allen | 7cdae5195a |
Update to v098r07 release.
byuu says: Changelog: - GB: support modeSelect and RAM for MBC1M (Momotarou Collection) - audio: implemented native resampling support into Emulator::Stream - audio: removed nall::DSP completely Unfortunately, the new resampler didn't turn out quite as fast as I had hoped. The final hermite resampling added some overhead; and I had to bump up the kernel count to 500 from 400 to get the buzzing to go away on my main PC. I think that's due to it running at 48000hz output instead of 44100hz output, maybe? Compared to Ryphecha's: (NES) Mega Man 2: 167fps -> 166fps (GB) Mega Man II: 224fps -> 200fps (WSC) Riviera: 143fps -> 151fps Odd that the WS/WSC ends up faster while the DMG/CGB ends up slower. But this knocks 922 lines down to 146 lines. The only files left in all of higan not written (or rewritten) by me are ruby/xaudio2.h and libco/ppc.c |
|
Tim Allen | e2ee6689a0 |
Update to v098r06 release.
byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad. |