Commit Graph

10 Commits

Author SHA1 Message Date
Tim Allen f8e71b50d0 Update to v105 release.
byuu says:

This release provides several major improvements to Mega Drive emulation
which enhances compatibility a good deal. It also includes important
Super Famicom mosaic emulation improvements, plus a much-needed SuperFX
save state issue fix.

Changelog (since v104):

  - higan: many improvements to Emulator::Interface to support
    forks/frontends
  - higan: refreshed program icon
  - icarus: new program icon
  - Game Boy Advance: slight emulation speedup over v104
  - Game Boy Advance: synchronize APU FIFO updates better
  - Mega Drive: added automatic region detection [hex_usr]
  - Mega Drive: support 8-bit SRAM
  - Game Boy Advance: fixed bug when changing to THUMB mode via MSR
    [MerryMage]
  - Master System: fix bug in backdrop color and background 0 priority
    [hex_usr]
  - Mega Drive: backgrounds always update output priority bit [Cydrak]
  - Mega Drive: emulated interlaced video output
  - Mega Drive: emulated shadow/highlight mode [Cydrak]
  - Super Famicom: auto joypad polling clears the shift register when
    starting
  - Super Famicom: added new low-entropy RAM initialization mode to more
    closely match hardware
  - Game Boy Advance: rumble will now time out after being left on for
    500ms
  - ruby: improved rumble support in udev input driver [ma_rysia]
  - M68K: `move.b (a7)[+/-]` adjust a7 by two
  - M68K: illegal/lineA/lineF opcodes do not modify the stack register
  - Mega Drive: emulate VIP status bit
  - uPD7725: improved emulation of OV1/S1 flags [byuu, AWJ, Lord
    Nightmare]
  - uPD7725: improved handling of DP, RP updates [Jonas Quinn]
  - Super Famicom: improved emulation of mosaic effects in hires,
    interlace, and offset-per-tile modes [byuu, Cydrak]
  - ruby: improved Direct3D exclusive mode monitor selection [Cydrak]
  - Super Famicom: fixed save state bug affecting SuperFX games
    [Cydrak]
  - Mega Drive: added workaround for Clang compiler bug; allowing this
    core to work on macOS [Cydrak, Sintendo]
  - higan: hotkeys now also trigger when the main window lacks focus yet
    higan is set to allow input on focus loss
  - higan: fixed an edge case where `int16_t` ↔ `double` audio
    conversion could possibly result in overflows
  - higan: fixed a crash on macOS when choosing quit from the
    application menu [ncbncb]

Changelog (since the previous WIP):

  - higan: restored `make console=true`
  - tomoko: if you allow input when main window focus is lost, hotkeys
    can now be triggered without focus as well
  - hiro/cocoa: fix crash on exit from menu [ncbncb]
  - ruby: smarter `double` → `int16_t` conversion to prevent
    underflow/overflow
2017-10-07 19:49:07 +11:00
Tim Allen 4129630d97 Update to v103r15 release.
byuu says:

Changelog:

  - ruby: rewrote the API interfaces for Video, Audio, Input
  - ruby/audio: can now select the number of output channels (not useful
    to higan, sorry)
  - ruby/asio: various improvements
  - tomoko: audio settings panel can now select separate audio devices
    (for ASIO, OSS so far)
  - tomoko: audio settings panel frequency and latency lists are
    dynamically populated now

Note: due to the ruby API rewrite, most drivers will not compile. Right
now, the following work:

  - video: Direct3D, XShm
  - audio: ASIO, OSS
  - input: Windows, SDL, Xlib

It takes a really long time to rewrite these (six hours to do the
above), so it's going to be a while before we're back at 100%
functionality again.

Errata:

  - ASIO needs device(), setDevice()
  - need to call setDevice() at program startup to populate
    frequency/latency settings properly
  - changing the device and/or frequency needs to update the emulator
    resampler rates

The really hard part is going to be the last one: the only way to change
the emulator frequency is to flush all the audio streams and then
recompute all the coefficients for the resamplers. If this is called
during emulation, all audio streams will be erased and thus no sound
will be output. I'll most likely be forced to simply ignore
device/frequency changes until the user loads another game. It is at
least possible to toggle the latency dynamically.
2017-07-17 15:11:18 +10:00
Tim Allen ed5ec58595 Update to v103r13 release.
byuu says:

Changelog:

  - gb/interface: fix Game Boy Color extension to be "gbc" and not "gb"
    [hex\_usr]
  - ms/interface: move Master System hardware controls below controller
    ports
  - sfc/ppu: improve latching behavior of BGnHOFS registers (not
    hardware verified) [AWJ]
  - tomoko/input: rework port/device mapping to support non-sequential
    ports and devices¹
      - todo: should add move() to inputDevice.mappings.append and
        inputPort.devices.append
      - note: there's a weird GCC 4.9 bug with brace initialization of
        InputEmulator; have to assign each field separately
  - tomoko: all windows sans the main presentation window can be
    dismissed with the escape key
  - icarus: the single file selection dialog ("Load ROM Image...") can
    be dismissed with the escape key
  - tomoko: do not pause emulation when FocusLoss/Pause is set during
    exclusive fullscreen mode
  - hiro/(windows,gtk,qt): implemented Window::setDismissable() function
    (missing from cocoa port, sorry)
  - nall/string: fixed printing of largest possible negative numbers (eg
    `INT_MIN`) [Sintendo]
      - only took eight months! :D

¹: When I tried to move the Master System hardware port below the
controller ports, I ran into a world of pain.

The input settings list expects every item in the
`InputEmulator<InputPort<InputDevice<InputMapping>>>>` arrays to be
populated with valid results. But these would be sparsely populated
based on the port and device IDs from inside higan. And that is done so
that the Interface::inputPoll can have O(1) lookup of ports and devices.
This worked because all the port and device IDs were sequential (they
left no gaps in the maps upon creating the lists.)

Unfortunately by changing the expectation of port ID to how it appears
in the list, inputs would not poll correctly. By leaving them alone and
just moving Hardware to the third position, the Game Gear would be
missing port IDs of 0 and 1 (the controller ports of the Master System).
Even by trying to make separate MasterSystemHardware and
GameGearHardware ports, things still fractured when the devices were no
longer contigious.

I got pretty sick of this and just decided to give up on O(1)
port/device lookup, and moved to O(n) lookup. It only knocked the
framerate down by maybe one frame per second, enough to be in the margin
of error. Inputs aren't polled *that* often for loops that usually
terminate after 1-2 cycles to be too detrimental to performance.

So the new input system now allows non-sequential port and device IDs.

Remember that I killed input IDs a while back. There's never any reason
for those to need IDs ... it was easier to just order the inputs in the
order you want to see them in the user interface. So the input lookup is
still O(1). Only now, everything's safer and I return a
maybe<InputMapping&>, and won't crash out the program trying to use a
mapping that isn't found for some reason.

Errata: the escape key isn't working on the browser/message dialogs on
Windows, because of course nothing can ever just be easy and work for
me. If anyone else wouldn't mind looking into that, I'd greatly
appreciate it.

Having the `WM_KEYDOWN` test inside the main `Application_sharedProc`, it
seems to not respond to the escape key on modal dialogs. If I put the
`WM_KEYDOWN` test in the main window proc, then it doesn't seem to get
called for `VK_ESCAPE` at all, and doesn't get called period for modal
windows. So I'm at a loss and it's past 4AM here >_>
2017-07-12 18:24:27 +10:00
Tim Allen 434e303ffb Update to v103r12 release.
byuu says:

Changelog:

  - ruby/video: cleaned up Direct3D9 driver and fixed catastrophic
    memory leak
  - ruby/video: added fullscreen exclusive mode support to the Direct3D9
    driver¹
  - ruby/video: minor cosmetic code cleanups to various drivers
  - tomoko: added support to always allow input when in fullscreen
    exclusive mode
  - tomoko: fixed window to not remove resizability flag when exiting
    fullscreen mode

¹: I am assuming that exclusive mode will try to capture the primary
monitor. I don't know what will happen in multi-monitor setups, however,
as I don't use such a setup here.

Also, I am using `D3DPRESENT_DISCARD` instead of `D3DPRESENT_FLIP`. I'm
not sure if this will prove better or worse, but I've heard it will
waste less memory, and having a BackBufferCount of 1 should still result
in page flipping anyway. The difference is supposedly just that you
can't rely on the back buffer being a valid copy of the previous frame
like you can with FLIP.

Lastly, if you want Vsync, you can edit the configuration file to enable
that, and then turn off audio sync.

Errata: "pause emulation when focus is lost" is not working with
exclusive mode. I need to add a check to never auto-pause when in
exclusive mode. Thanks to bun for catching that one.
2017-07-09 12:23:17 +10:00
Tim Allen cbbf5ec114 Update to v103r10 release.
byuu says:

Changelog:

  - tomoko: video scaling options are now resolutions in the
    configuration file, eg "640x480", "960x720", "1280x960"
  - tomoko: main window is now always resizable instead of fixed width
    (also supports maximizing)
  - tomoko: added support for non-integral scaling in windowed mode
  - tomoko: made the quick/managed state messaging more consistent
  - tomoko: hide "Find Codes ..." button from the cheat editor window if
    the cheat database is not present
  - tomoko: per-game cheats.bml file now goes into the higan/ subfolder
    instead of the root folder

So the way the new video system works is you have the following options
on the video settings panel:

Windowed mode: { Aspect correction, Integral scaling, Adaptive }

Fullscreen mode: { Aspect correction, Integral scaling } (and one day,
hopefully Exclusive will be added here)

Whenever you adjust the overscan masking, or you change any of the
windowed or fullscreen mode settings, or you choose a different video
scale from the main menu, or you load a new game, or you unload a game,
or you rotate the display of an emulated system, the resizeViewport
logic will be invoked. This logic will remember the last option you
chose for video scale, and base the new window size on that value as an
upper limit of the new window size.

If you are in windowed mode and have adaptive enabled, it will shrink
the window to fit the contents of the emulated system's video output.
Otherwise, if you are not in integral scaling mode, it will scale the
video as large as possible to fit into the video scaled size you have
selected. Otherwise, it will perform an integral scale and center the
video inside of the viewport.

If you are in fullscreen mode, it's much the same, only there is no
adaptive mode.

A major problem with Xorg is that it's basically impossible to change
the resizability attribute of a window post-creation. You can do it, but
all kinds of crazy issues start popping up. Like if you toggle
fullscreen, then you'll find that the window won't grow past a certain
fairly small size that it's already at, and cannot be shrunk. And the
multipliers will stop expanding the window as large as they should. And
sometimes the UI elements won't be placed in the correct position, or
the video will draw over them. It's a big mess. So I have to keep the
main window always resizable. Also, note that this is not a limitation
of hiro. It's just totally broken in Xorg itself. No amount of fiddling
has ever allowed this to work reliably for me on either GTK+ 2 or Qt 4.

So what this means is ... the adaptive mode window is also resizable.
What happens here is, whenever you drag the corners of the main window
to resize it, or toggle the maximize window button, higan will bypass
the video scale resizing code and instead act as though the adaptive
scaling mode were disabled. So if integral scaling is checked, it'll
begin scaling in integral mode. Otherwise, it'll begin scaling in
non-integral mode.

And because of this flexibility, it no longer made sense for the video
scale menu to be a radio box. I know, it sucks to not see what the
active selection is anymore, but ... say you set the scale to small,
then you accidentally resized the window a little, but want it snapped
back to the proper small resolution dimensions. If it were a radio item,
you couldn't reselect the same option again, because it's already active
and events don't propagate in said case. By turning them into regular
menu options, the video scale menu can be used to restore window sizing.

Errata:

On Windows, the main window blinks a few times on first load. The fix
for that is a safeguard in the video settings code, roughly like so ...
but note you'd need to make a few other changes for this to work against
v103r10:

    auto VideoSettings::updateViewport(bool firstRun) -> void {
      settings["Video/Overscan/Horizontal"].setValue(horizontalMaskSlider.position());
      settings["Video/Overscan/Vertical"].setValue(verticalMaskSlider.position());
      settings["Video/Windowed/AspectCorrection"].setValue(windowedModeAspectCorrection.checked());
      settings["Video/Windowed/IntegralScaling"].setValue(windowedModeIntegralScaling.checked());
      settings["Video/Windowed/AdaptiveSizing"].setValue(windowedModeAdaptiveSizing.checked());
      settings["Video/Fullscreen/AspectCorrection"].setValue(fullscreenModeAspectCorrection.checked());
      settings["Video/Fullscreen/IntegralScaling"].setValue(fullscreenModeIntegralScaling.checked());
      horizontalMaskValue.setText({horizontalMaskSlider.position()});
      verticalMaskValue.setText({verticalMaskSlider.position()});
      if(!firstRun) presentation->resizeViewport();
    }

That'll get it down to one blink, as with v103 official. Not sure I can
eliminate that one extra blink.

I forgot to remove the setResizable toggle on fullscreen mode exit. On
Windows, the main window will end up unresizable after toggling
fullscreen. I missed that one because like I said, toggling resizability
is totally broken on Xorg. You can fix that with the below change:

    auto Presentation::toggleFullScreen() -> void {
      if(!fullScreen()) {
        menuBar.setVisible(false);
        statusBar.setVisible(false);
      //setResizable(true);
        setFullScreen(true);
        if(!input->acquired()) input->acquire();
      } else {
        if(input->acquired()) input->release();
        setFullScreen(false);
      //setResizable(false);
        menuBar.setVisible(true);
        statusBar.setVisible(settings["UserInterface/ShowStatusBar"].boolean());
      }
      resizeViewport();
    }

Windows is stealing focus on calls to resizeViewport(), so we need to
deal with that somehow ...

I'm not really concerned about the behavior of shrinking the viewport
below the smallest multiplier for a given system. It might make sense to
snap it to the window size and forego all other scaling, but honestly
... meh. I don't really care. Nobody sane is going to play like that.
2017-07-07 13:38:46 +10:00
Tim Allen 191a71b291 Update to v103r08 release.
byuu says:

Changelog:

  - emulator: improved aspect correction accuracy by using
    floating-point calculations
  - emulator: added videoCrop() function, extended videoSize() to take
    cropping parameters¹
  - tomoko: the overscan masking function will now actually resize the
    viewport²
  - gba/cpu: fixed two-cycle delay on triggering DMAs; not running DMAs
    when the CPU is stopped
  - md/vdp: center video when overscan is disabled
  - pce/vce: resize video output from 1140x240 to 1120x240
  - tomoko: resize window scaling from 326x240 to 320x240
  - tomoko: changed save slot naming and status bar messages to indicate
    quick states vs managed states
  - tomoko: added increment/decrement quick state hotkeys
  - tomoko: save/load quick state hotkeys now save to slots 1-5 instead
    of always to 0
  - tomoko: increased overscan range from 0-16 to 0-24 (in case you want
    to mask the Master System to 240x192)

¹: the idea here was to decouple raw pixels from overscan masking.
Overscan was actually horrifically broken before. The Famicom outputs at
256x240, the Super Famicom at 512x480, and the Mega Drive at 1280x480.
Before, a horizontal overscan mask of 8 would not reduce the Super
Famicom or Mega Drive by nearly as much as the Famicom. WIth the new
videoCrop() function, the internals of pixel size distortions can be
handled by each individual core.

²: furthermore, by taking optional cropping information in
videoSize(), games can scale even larger into the viewport window. So
for example, before the Super Famicom could only scale to 1536x1440. But
by cropping the vertical resolution by 6 (228p effectively, still more
than NTSC can even show), I can now scale to 1792x1596. And wiht aspect
correction, that becomes a perfect 8:7 ratio of 2048x1596, giving me
perfectly crisp pixels without linear interpolation being required.

Errata: for some reason, when I save a new managed state with the SFC
core, the default description is being set to a string of what looks to
be hex numbers. I found the cause ... I'll fix this in the next release.

Note: I'd also like to hide the "find codes..." button if cheats.bml
isn't present, as well as update the SMP TEST register comment from
smp/timing.cpp
2017-07-05 16:39:14 +10:00
Tim Allen 8af3e4a6e2 Update to v102r22 release.
byuu says:

Changelog:

  - higan: Emulator::Interface::videoSize() renamed to videoResolution()
  - higan: Emulator::Interface::rtcsync() renamed to rtcSynchronize()
  - higan: added video display rotation support to Video
  - GBA: substantially improved audio mixing
      - fixed bug with FIFO 50%/100% volume setting
      - now properly using SOUNDBIAS amplitude to control output
        frequencies
      - reduced quantization noise
      - corrected relative volumes between PSG and FIFO channels
      - both PSG and FIFO values cached based on amplitude; resulting in
        cleaner PCM samples
      - treating PSG volume=3 as 200% volume instead of 0% volume now
        (unverified: to match mGBA)
  - GBA: properly initialize ALL CPU state; including the vital
    prefetch.wait=1 (fixes Classic NES series games)
  - GBA: added video rotation with automatic key translation support
  - PCE: reduced output resolution scalar from 285x242 to 285x240
      - the extra two scanlines won't be visible on most TVs; and they
        make all other cores look worse
      - this is because all other cores output at 240p or less; so they
        were all receiving black bars in windowed mode
  - tomoko: added "Rotate Display" hotkey setting
  - tomoko: changed hotkey multi-key logic to OR instead of AND
      - left support for flipping it back inside the core; for those so
        inclined; by uncommenting one line in input.hpp
  - tomoko: when choosing Settings→Configuration, it will
    automatically select the currently loaded system
      - for instance, if you're playing a Game Gear game, it'll take you
        to the Game Gear input settings
      - if no games are loaded, it will take you to the hotkeys panel
        instead
  - WS(C): merged "Hardware-Vertical", "Hardware-Horizontal" controls
    into combined "Hardware"
  - WS(C): converted rotation support from being inside the core to
    using Emulator::Video
      - this lets WS(C) video content scale larger now that it's not
        bounded by a 224x224 square box
  - WS(C): added automatic key rotation support
  - WS(C): removed emulator "Rotate" key (use the general hotkey
    instead; I recommend F8 for this)
  - nall: added serializer support for nall::Boolean (boolean) types
      - although I will probably prefer the usage of uint1 in most cases
2017-06-09 00:08:02 +10:00
Tim Allen 26bd7590ad Update to v101r32 release.
byuu says:

Changelog:

  - SMS: fixed controller connection bug
  - SMS: fixed Z80 reset bug
  - PCE: emulated HuC6280 MMU
  - PCE: emulated HuC6280 RAM
  - PCE: emulated HuCard ROM reading
  - PCE: implemented 178 instructions
  - tomoko: removed "soft reset" functionality
  - tomoko: moved "power cycle" to just above "unload" option

I'm not sure of the exact number of HuC6280 instructions, but it's less
than 260.

Many of the ones I skipped are HuC6280-originals that I don't know how
to emulate just yet.

I'm also really unsure about the zero page stuff. I believe we should be
adding 0x2000 to the addresses to hit page 1, which is supposed to be
mapped to the zero page (RAM). But when I look at turboEMU's source, I
have no clue how the hell it could possibly be doing that. It looks to
be reading from page 0, which is almost always ROM, which would be ...
really weird.

I also don't know if I've emulated the T mode opcodes correctly or not.
The documentation on them is really confusing.
2017-01-14 10:59:38 +11:00
Tim Allen f5e5bf1772 Update to v100r16 release.
byuu says:

(Windows users may need to include <sys/time.h> at the top of
nall/chrono.hpp, not sure.)

Unchangelog:
- forgot to add the Scheduler clock=0 fix because I have the memory of
  a goldfish

Changelog:
- new icarus database with nine additional games
- hiro(GTK,Qt) won't constantly write its settings.bml file to disk
  anymore
- added latency simulator for fun (settings.bml => Input/Latency in
  milliseconds)

So the last one ... I wanted to test out nall::chrono, and I was also
thinking that by polling every emulated frame, it's pretty wasteful when
you are using Fast Forward and hitting 200+fps. As I've said before,
calls to ruby::input::poll are not cheap.

So to get around this, I added a limiter so that if you called the
hardware poll function within N milliseconds, it'll return without
doing any actual work. And indeed, that increases my framerate of Zelda
3 uncapped from 133fps to 142fps. Yay. But it's not a "real" speedup,
as it only helps you when you exceed 100% speed (theoretically, you'd
need to crack 300% speed since the game itself will poll at 16ms at 100%
speed, but yet it sped up Zelda 3, so who am I to complain?)

I threw the latency value into the settings file. It should be 16,
but I set it to 5 since that was the lowest before it started negatively
impacting uncapped speeds. You're wasting your time and CPU cycles setting
it lower than 5, but if people like placebo effects it might work. Maybe
I should let it be a signed integer so people can set it to -16 and think
it's actually faster :P (I'm only joking. I took out the 96000hz audio
placebo effect as well. Not really into psychological tricks anymore.)

But yeah seriously, I didn't do this to start this discussion again for
the billionth time. Please don't go there. And please don't tell me this
WIP has higher/lower latency than before. I don't want to hear it.

The only reason I bring it up is for the fun part that is worth
discussing: put up or shut up time on how sensitive you are to
latency! You can set the value above 5 to see how games feel.

I personally can't really tell a difference until about 50. And I can't
be 100% confident it's worse until about 75. But ... when I set it to
150, games become "extra difficult" ... the higher it goes, the worse
it gets :D

For this WIP, I've left no upper limit cap. I'll probably set a cap of
something like 500ms or 1000ms for the official release. Need to balance
user error/trolling with enjoyability. I'll think about it.

[...]

Now, what I worry about is stupid people seeing it and thinking it's an
"added latency" setting, as if anyone would intentionally make things
worse by default. This is a limiter. So if 5ms have passed since the
game last polled, and that will be the case 99.9% of the time in games,
the next poll will happen just in time, immediately when the game polls
the inputs. Thus, a value below 1/<framerate>ms is not only pointless,
if you go too low it will ruin your fast forward max speeds.

I did say I didn't want to resort to placebo tricks, but I also don't
want to spark up public discussion on this again either. So it might
be best to default Input/Latency to 0ms, and internally have a max(5,
latency) wrapper around the value.
2016-08-03 22:32:40 +10:00
Tim Allen 47d4bd4d81 Update to v096r01 release.
byuu says:

Changelog:

- restructured the project and removed a whole bunch of old/dead
  directives from higan/GNUmakefile
- huge amounts of work on hiro/cocoa (compiles but ~70% of the
  functionality is commented out)
- fixed a masking error in my ARM CPU disassembler [Lioncash]
- SFC: decided to change board cic=(411,413) back to board
  region=(ntsc,pal) ... the former was too obtuse

If you rename Boolean (it's a problem with an include from ruby, not
from hiro) and disable all the ruby drivers, you can compile an
OS X binary, but obviously it's not going to do anything.

It's a boring WIP, I just wanted to push out the project structure
change now at the start of this WIP cycle.
2015-12-30 17:54:59 +11:00