Commit Graph

4 Commits

Author SHA1 Message Date
Tim Allen 1067566834 Update to v103r30 release.
byuu says:

Changelog:

  - processor/arm7tdmi: completed implemented
  - gba/cpu, sfc/coprocessor/armdsp: use arm7tdmi instead of arm
  - sfc/cpu: experimental fix for newly discovered HDMA emulation issue

Notes:

The ARM7TDMI core crashes pretty quickly when trying to run GBA games,
and I'm certain the same will be the case with the ST018. It was never
all that likely I could rewrite 70KiB of code in 20 hours and have it
work perfectly on the first try. So, now it's time for lots and lots of
debugging. Any help would *really* be appreciated, if anyone were up for
comparing the two implementations for regressions =^-^= I often have a
really hard time spotting simple typos that I make.

Also, the SNES HDMA fix is temporary. I would like it if testers could
run through a bunch of games that are known for being tricky with HDMA
(or if these aren't known to said tester, any games are fine then.) If
we can confirm regressions, then we'll know the fix is either incorrect
or incomplete. But if we don't find any, then it's a good sign that
we're on the right path.
2017-08-09 21:11:59 +10:00
Tim Allen 559eeccc89 Update to v103r29 release.
byuu says:

Changelog:

  - processor/arm7tdmi: implementation all nine remaining ARM
    instructions
  - processor/arm7tdmi: implemented five more THUMB instructions
    (sixteen remain)
2017-08-08 21:51:41 +10:00
Tim Allen a72ff8b7fa Update to v103r28 release.
byuu says:

Changelog:

  - processor/arm7tdmi: implemented 10 of 19 ARM instructions
  - processor/arm7tdmi: implemented 1 of 22 THUMB instructions

Today's WIP was 6 hours of work, and yesterday's was 5 hours.

Half of today was just trying to come up with the design to use a
lambda-based dispatcher to map both instructions and disassembly,
similar to the 68K core. The problem is that the ARM core has 28 unique
bits, which is just far too many bits to have a full lookup table like
the 16-bit 68K core.

The thing I wanted more than anything else was to perform the opcode
bitfield decoding once, and have it decoded for both instructions and
the disassembler. It took three hours to come up with a design that
worked for the ARM half ... relying on #defines being able to pull in
other #defines that were declared and changed later after the first
one. But, I'm happy with it. The decoding is in the table building, as
it is with the 68K core. The decoding does happen at run-time on each
instruction invocation, but it has to be done.

As to the THUMB core, I can create a 64K-entry lambda table to cover all
possible encodings, and ... even though it's a cache killer, I've
decided to go for it, given the outstanding performance it obtained in
the M68K core, as well as considering that THUMB mode is far more common
in GBA games.

As to both cores ... I'm a little torn between two extremes:

On the one hand, I can condense the number of ARM/THUMB instructions
further to eliminate more redundant code. On the other, I can split them
apart to reduce the number of conditional tests needed to execute each
instruction. It's really the disassembler that makes me not want to
split them up further ... as I have to split the disassembler functions
up equally to the instruction functions. But it may be worth it if it's
a speed improvement.
2017-08-07 22:20:35 +10:00
Tim Allen 0b6f1df987 Update to v103r27 release.
byuu says:

Changelog:

  - hiro/windows: set dpiAware=false, fixes icarus window sizes relative
    to higan window sizes
  - higan, icarus, hiro, ruby: add support for high resolution displays
    on macOS [ncbncb]
  - processor/lr35902-legacy: removed
  - processor/arm7tdmi: new processor core started; intended to one day
    be a replacement for processor/arm

It will probably take several WIPs to get the new ARM core up and
running. It's the last processor rewrite. After this, all processor
cores will be up to date with all my current programming conventions.
2017-08-06 23:36:26 +10:00