bsnes/higan/processor/v30mz/v30mz.hpp

274 lines
7.4 KiB
C++
Raw Normal View History

//NEC V30MZ
#pragma once
namespace Processor {
struct V30MZ {
using Size = uint;
enum : uint { Byte = 1, Word = 2, Long = 4 };
Update to v097r24 release. byuu says: Changelog: - WS: fixed bug when IRQs triggered during a rep string instruction - WS: added sprite attribute caching (per-scanline); absolutely massive speed-up - WS: emulated limit of 32 sprites per scanline - WS: emulated the extended PPU register bit behavior based on the DISP_CTRL tile bit-depth setting - WS: added "Rotate" key binding; can be used to flip the WS display between horizontal and vertical in real-time The prefix emulation may not be 100% hardware-accurate, but the edge cases should be extreme enough to not come up in the WS library. No way to get the emulation 100% down without intensive hardware testing. trap15 pointed me at a workflow diagram for it, but that diagram is impossible without a magic internal stack frame that grows with every IRQ, and can thus grow infinitely large. The rotation thing isn't exactly the most friendly set-up, but oh well. I'll see about adding a default rotation setting to manifests, so that games like GunPey can start in the correct orientation. After that, if the LCD orientation icon turns out to be reliable, then I'll start using that. But if there are cases where it's not reliable, then I'll leave it to manual button presses. Speaking of icons, I'll need a set of icons to render on the screen. Going to put them to the top right on vertical orientation, and on the bottom left for horizontal orientation. Just outside of the video output, of course. Overall, WS is getting pretty far along, but still some major bugs in various games. I really need sound emulation, though. Nobody's going to use this at all without that.
2016-03-12 13:27:41 +00:00
enum : uint {
SegmentOverrideES = 0x26,
SegmentOverrideCS = 0x2e,
SegmentOverrideSS = 0x36,
SegmentOverrideDS = 0x3e,
Lock = 0xf0,
RepeatWhileNotZero = 0xf2,
RepeatWhileZero = 0xf3,
};
virtual auto wait(uint clocks = 1) -> void = 0;
virtual auto read(uint20 addr) -> uint8 = 0;
virtual auto write(uint20 addr, uint8 data) -> void = 0;
virtual auto in(uint16 port) -> uint8 = 0;
virtual auto out(uint16 port, uint8 data) -> void = 0;
auto warning(string text) -> void;
Update to v097r24 release. byuu says: Changelog: - WS: fixed bug when IRQs triggered during a rep string instruction - WS: added sprite attribute caching (per-scanline); absolutely massive speed-up - WS: emulated limit of 32 sprites per scanline - WS: emulated the extended PPU register bit behavior based on the DISP_CTRL tile bit-depth setting - WS: added "Rotate" key binding; can be used to flip the WS display between horizontal and vertical in real-time The prefix emulation may not be 100% hardware-accurate, but the edge cases should be extreme enough to not come up in the WS library. No way to get the emulation 100% down without intensive hardware testing. trap15 pointed me at a workflow diagram for it, but that diagram is impossible without a magic internal stack frame that grows with every IRQ, and can thus grow infinitely large. The rotation thing isn't exactly the most friendly set-up, but oh well. I'll see about adding a default rotation setting to manifests, so that games like GunPey can start in the correct orientation. After that, if the LCD orientation icon turns out to be reliable, then I'll start using that. But if there are cases where it's not reliable, then I'll leave it to manual button presses. Speaking of icons, I'll need a set of icons to render on the screen. Going to put them to the top right on vertical orientation, and on the bottom left for horizontal orientation. Just outside of the video output, of course. Overall, WS is getting pretty far along, but still some major bugs in various games. I really need sound emulation, though. Nobody's going to use this at all without that.
2016-03-12 13:27:41 +00:00
auto power() -> void;
auto exec() -> void;
auto interrupt(uint8 vector) -> void;
Update to v097r24 release. byuu says: Changelog: - WS: fixed bug when IRQs triggered during a rep string instruction - WS: added sprite attribute caching (per-scanline); absolutely massive speed-up - WS: emulated limit of 32 sprites per scanline - WS: emulated the extended PPU register bit behavior based on the DISP_CTRL tile bit-depth setting - WS: added "Rotate" key binding; can be used to flip the WS display between horizontal and vertical in real-time The prefix emulation may not be 100% hardware-accurate, but the edge cases should be extreme enough to not come up in the WS library. No way to get the emulation 100% down without intensive hardware testing. trap15 pointed me at a workflow diagram for it, but that diagram is impossible without a magic internal stack frame that grows with every IRQ, and can thus grow infinitely large. The rotation thing isn't exactly the most friendly set-up, but oh well. I'll see about adding a default rotation setting to manifests, so that games like GunPey can start in the correct orientation. After that, if the LCD orientation icon turns out to be reliable, then I'll start using that. But if there are cases where it's not reliable, then I'll leave it to manual button presses. Speaking of icons, I'll need a set of icons to render on the screen. Going to put them to the top right on vertical orientation, and on the bottom left for horizontal orientation. Just outside of the video output, of course. Overall, WS is getting pretty far along, but still some major bugs in various games. I really need sound emulation, though. Nobody's going to use this at all without that.
2016-03-12 13:27:41 +00:00
auto instruction() -> void;
//registers.cpp
Update to v097r24 release. byuu says: Changelog: - WS: fixed bug when IRQs triggered during a rep string instruction - WS: added sprite attribute caching (per-scanline); absolutely massive speed-up - WS: emulated limit of 32 sprites per scanline - WS: emulated the extended PPU register bit behavior based on the DISP_CTRL tile bit-depth setting - WS: added "Rotate" key binding; can be used to flip the WS display between horizontal and vertical in real-time The prefix emulation may not be 100% hardware-accurate, but the edge cases should be extreme enough to not come up in the WS library. No way to get the emulation 100% down without intensive hardware testing. trap15 pointed me at a workflow diagram for it, but that diagram is impossible without a magic internal stack frame that grows with every IRQ, and can thus grow infinitely large. The rotation thing isn't exactly the most friendly set-up, but oh well. I'll see about adding a default rotation setting to manifests, so that games like GunPey can start in the correct orientation. After that, if the LCD orientation icon turns out to be reliable, then I'll start using that. But if there are cases where it's not reliable, then I'll leave it to manual button presses. Speaking of icons, I'll need a set of icons to render on the screen. Going to put them to the top right on vertical orientation, and on the bottom left for horizontal orientation. Just outside of the video output, of course. Overall, WS is getting pretty far along, but still some major bugs in various games. I really need sound emulation, though. Nobody's going to use this at all without that.
2016-03-12 13:27:41 +00:00
auto repeat() -> uint8;
auto segment(uint16) -> uint16;
auto getAcc(Size) -> uint32;
auto setAcc(Size, uint32) -> void;
//modrm.cpp
auto modRM() -> void;
auto getMem(Size, uint offset = 0) -> uint16;
auto setMem(Size, uint16) -> void;
auto getReg(Size) -> uint16;
auto setReg(Size, uint16) -> void;
auto getSeg() -> uint16;
auto setSeg(uint16) -> void;
//memory.cpp
auto read(Size, uint16, uint16) -> uint32;
auto write(Size, uint16, uint16, uint16) -> void;
auto in(Size, uint16) -> uint16;
auto out(Size, uint16, uint16) -> void;
auto fetch(Size = Byte) -> uint16;
auto pop() -> uint16;
auto push(uint16) -> void;
//algorithms.cpp
auto parity(uint8) const -> bool;
auto alAdc(Size, uint16, uint16) -> uint16;
auto alAdd(Size, uint16, uint16) -> uint16;
auto alAnd(Size, uint16, uint16) -> uint16;
auto alDec(Size, uint16 ) -> uint16;
auto alDiv(Size, uint32, uint32) -> uint32;
auto alDivi(Size, int32, int32) -> uint32;
auto alInc(Size, uint16 ) -> uint16;
auto alMul(Size, uint16, uint16) -> uint32;
auto alMuli(Size, int16, int16) -> uint32;
auto alNeg(Size, uint16 ) -> uint16;
auto alNot(Size, uint16 ) -> uint16;
auto alOr (Size, uint16, uint16) -> uint16;
auto alRcl(Size, uint16, uint5 ) -> uint16;
auto alRcr(Size, uint16, uint5 ) -> uint16;
auto alRol(Size, uint16, uint4 ) -> uint16;
auto alRor(Size, uint16, uint4 ) -> uint16;
auto alSal(Size, uint16, uint5 ) -> uint16;
auto alSar(Size, uint16, uint5 ) -> uint16;
auto alSbb(Size, uint16, uint16) -> uint16;
auto alSub(Size, uint16, uint16) -> uint16;
auto alShl(Size, uint16, uint5 ) -> uint16;
auto alShr(Size, uint16, uint5 ) -> uint16;
auto alXor(Size, uint16, uint16) -> uint16;
//instructions-adjust.cpp
auto opDecimalAdjust(bool);
auto opAsciiAdjust(bool);
auto opAdjustAfterMultiply();
auto opAdjustAfterDivide();
//instructions-alu.cpp
auto opAddMemReg(Size);
auto opAddRegMem(Size);
auto opAddAccImm(Size);
auto opOrMemReg(Size);
auto opOrRegMem(Size);
auto opOrAccImm(Size);
auto opAdcMemReg(Size);
auto opAdcRegMem(Size);
auto opAdcAccImm(Size);
auto opSbbMemReg(Size);
auto opSbbRegMem(Size);
auto opSbbAccImm(Size);
auto opAndMemReg(Size);
auto opAndRegMem(Size);
auto opAndAccImm(Size);
auto opSubMemReg(Size);
auto opSubRegMem(Size);
auto opSubAccImm(Size);
auto opXorMemReg(Size);
auto opXorRegMem(Size);
auto opXorAccImm(Size);
auto opCmpMemReg(Size);
auto opCmpRegMem(Size);
auto opCmpAccImm(Size);
auto opTestMemReg(Size);
auto opTestAcc(Size);
auto opMultiplySignedRegMemImm(Size);
auto opIncReg(uint16_t&);
auto opDecReg(uint16_t&);
auto opSignExtendByte();
auto opSignExtendWord();
//instructions-exec.cpp
auto opLoop();
auto opLoopWhile(bool);
auto opJumpShort();
auto opJumpIf(bool);
auto opJumpNear();
auto opJumpFar();
auto opCallNear();
auto opCallFar();
auto opReturn();
auto opReturnImm();
auto opReturnFar();
auto opReturnFarImm();
auto opReturnInt();
auto opInt3();
auto opIntImm();
auto opInto();
auto opEnter();
auto opLeave();
auto opPushReg(uint16_t&);
auto opPopReg(uint16_t&);
auto opPushFlags();
auto opPopFlags();
auto opPushAll();
auto opPopAll();
auto opPushImm(Size);
auto opPopMem();
//instructions-flag.cpp
auto opStoreFlagsAcc();
auto opLoadAccFlags();
auto opComplementCarry();
Update to v098r19 release. byuu says: Changelog: - added nall/bit-field.hpp - updated all CPU cores (sans LR35902 due to some complexities) to use BitFields instead of bools - updated as many CPU cores as I could to use BitFields instead of union { struct { uint8_t ... }; }; pairs The speed changes are mostly a wash for this. In some instances, I noticed a ~2-3% speedup (eg SNES emulation), and in others a 2-3% slowdown (eg Famicom emulation.) It's within the margin of error, so it's safe to say it has no impact. This does give us a lot of new useful things, however: - no more manual reconstruction of flag values from lots of left shifts and ORs - no more manual deconstruction of flag values from lots of ANDs - ability to get completely free aliases to flag groups (eg GSU can provide alt2, alt1 and also alt (which is alt2,alt1 combined) - removes the need for the nasty order_lsbN macro hack (eventually will make higan 100% endian independent) - saves us from insane compilers that try and do nasty things with alignment on union-structs - saves us from insane compilers that try to store bit-field bits in reverse order - will allow some really novel new use cases (I'm planning an instant-decode ARM opcode function, for instance.) - reduces code size (we can serialize flag registers in one line instead of one for each flag) However, I probably won't use it for super critical code that's constantly reading out register values (eg PPU MMIO registers.) I think there we would end up with a performance penalty.
2016-06-08 22:26:35 +00:00
auto opClearFlag(uint);
auto opSetFlag(uint);
//instructions-group.cpp
auto opGroup1MemImm(Size, bool);
auto opGroup2MemImm(Size, maybe<uint8> = {});
auto opGroup3MemImm(Size);
auto opGroup4MemImm(Size);
//instructions-misc.cpp
auto opSegment(uint16);
auto opRepeat(bool);
auto opLock();
auto opWait();
auto opHalt();
auto opNop();
auto opIn(Size);
auto opOut(Size);
auto opInDX(Size);
auto opOutDX(Size);
auto opTranslate();
auto opBound();
//instructions-move.cpp
auto opMoveMemReg(Size);
auto opMoveRegMem(Size);
auto opMoveMemSeg();
auto opMoveSegMem();
auto opMoveAccMem(Size);
auto opMoveMemAcc(Size);
auto opMoveRegImm(uint8_t&);
auto opMoveRegImm(uint16_t&);
auto opMoveMemImm(Size);
auto opExchange(uint16_t&, uint16_t&);
auto opExchangeMemReg(Size);
auto opLoadEffectiveAddressRegMem();
auto opLoadSegmentMem(uint16_t&);
//instructions-string.cpp
auto opInString(Size);
auto opOutString(Size);
auto opMoveString(Size);
auto opCompareString(Size);
auto opStoreString(Size);
auto opLoadString(Size);
auto opScanString(Size);
Update to v097r28 release. byuu says: Changelog: (all WSC unless otherwise noted) - fixed LINECMP=0 interrupt case (fixes FF4 world map during airship sequence) - improved CPU timing (fixes Magical Drop flickering and FF1 battle music) - added per-frame OAM caching (fixes sprite glitchiness in Magical Drop, Riviera, etc.) - added RTC emulation (fixes Dicing Knight and Judgement Silversword) - added save state support - added cheat code support (untested because I don't know of any cheat codes that exist for this system) - icarus: can now detect games with RTC chips - SFC: bugfix to SharpRTC emulation (Dai Kaijuu Monogatari II) - ( I was adding the extra leap year day to all 12 months instead of just February ... >_< ) Note that the RTC emulation is very incomplete. It's not really documented at all, and the two games I've tried that use it never even ask you to set the date/time (so they're probably just using it to count seconds.) I'm not even sure if I've implement the level-sensitive behavior correctly (actually, now that I think about it, I need to mask the clear bit in INT_ACK for the level-sensitive interrupts ...) A bit worried about the RTC alarm, because it seems like it'll fire continuously for a full minute. Or even if you turn it off after it fires, then that doesn't seem to be lowering the line until the next second ticks on the RTC, so that likely needs to happen when changing the alarm flag. Also not sure on this RTC's weekday byte. On the SharpRTC, it actually computes this for you. Because it's not at all an easy thing to calculate yourself in 65816 or V30MZ assembler. About 40 lines of code to do it in C. For now, I'm requiring the program to calculate the value itself. Also note that there's some gibberish tiles in Judgement Silversword, sadly. Not sure what's up there, but the game's still fully playable at least. Finally, no surprise: Beat-Mania doesn't run :P
2016-03-25 06:19:08 +00:00
//serialization.cpp
auto serialize(serializer&) -> void;
//disassembler.cpp
auto disassemble(uint16 cs, uint16 ip, bool registers = true, bool bytes = true) -> string;
struct State {
bool halt; //set to true for hlt instruction; blocks execution until next interrupt
bool poll; //set to false to suppress interrupt polling between CPU instructions
bool prefix; //set to true for prefix instructions; prevents flushing of Prefix struct
} state;
Update to v097r24 release. byuu says: Changelog: - WS: fixed bug when IRQs triggered during a rep string instruction - WS: added sprite attribute caching (per-scanline); absolutely massive speed-up - WS: emulated limit of 32 sprites per scanline - WS: emulated the extended PPU register bit behavior based on the DISP_CTRL tile bit-depth setting - WS: added "Rotate" key binding; can be used to flip the WS display between horizontal and vertical in real-time The prefix emulation may not be 100% hardware-accurate, but the edge cases should be extreme enough to not come up in the WS library. No way to get the emulation 100% down without intensive hardware testing. trap15 pointed me at a workflow diagram for it, but that diagram is impossible without a magic internal stack frame that grows with every IRQ, and can thus grow infinitely large. The rotation thing isn't exactly the most friendly set-up, but oh well. I'll see about adding a default rotation setting to manifests, so that games like GunPey can start in the correct orientation. After that, if the LCD orientation icon turns out to be reliable, then I'll start using that. But if there are cases where it's not reliable, then I'll leave it to manual button presses. Speaking of icons, I'll need a set of icons to render on the screen. Going to put them to the top right on vertical orientation, and on the bottom left for horizontal orientation. Just outside of the video output, of course. Overall, WS is getting pretty far along, but still some major bugs in various games. I really need sound emulation, though. Nobody's going to use this at all without that.
2016-03-12 13:27:41 +00:00
uint8 opcode;
vector<uint8> prefixes;
struct ModRM {
uint2 mod;
uint3 reg;
uint3 mem;
uint16 segment;
uint16 address;
} modrm;
struct Registers {
union { uint16_t ax; struct { uint8_t order_lsb2(al, ah); }; };
union { uint16_t cx; struct { uint8_t order_lsb2(cl, ch); }; };
union { uint16_t dx; struct { uint8_t order_lsb2(dl, dh); }; };
union { uint16_t bx; struct { uint8_t order_lsb2(bl, bh); }; };
uint16_t sp;
uint16_t bp;
uint16_t si;
uint16_t di;
uint16_t es;
uint16_t cs;
uint16_t ss;
uint16_t ds;
uint16_t ip;
uint8_t* b[8]{&al, &cl, &dl, &bl, &ah, &ch, &dh, &bh};
uint16_t* w[8]{&ax, &cx, &dx, &bx, &sp, &bp, &si, &di};
uint16_t* s[8]{&es, &cs, &ss, &ds, &es, &cs, &ss, &ds};
struct Flags {
Update to v098r19 release. byuu says: Changelog: - added nall/bit-field.hpp - updated all CPU cores (sans LR35902 due to some complexities) to use BitFields instead of bools - updated as many CPU cores as I could to use BitFields instead of union { struct { uint8_t ... }; }; pairs The speed changes are mostly a wash for this. In some instances, I noticed a ~2-3% speedup (eg SNES emulation), and in others a 2-3% slowdown (eg Famicom emulation.) It's within the margin of error, so it's safe to say it has no impact. This does give us a lot of new useful things, however: - no more manual reconstruction of flag values from lots of left shifts and ORs - no more manual deconstruction of flag values from lots of ANDs - ability to get completely free aliases to flag groups (eg GSU can provide alt2, alt1 and also alt (which is alt2,alt1 combined) - removes the need for the nasty order_lsbN macro hack (eventually will make higan 100% endian independent) - saves us from insane compilers that try and do nasty things with alignment on union-structs - saves us from insane compilers that try to store bit-field bits in reverse order - will allow some really novel new use cases (I'm planning an instant-decode ARM opcode function, for instance.) - reduces code size (we can serialize flag registers in one line instead of one for each flag) However, I probably won't use it for super critical code that's constantly reading out register values (eg PPU MMIO registers.) I think there we would end up with a performance penalty.
2016-06-08 22:26:35 +00:00
union {
uint16_t data = 0;
BooleanBitField<uint16_t, 15> m; //mode
BooleanBitField<uint16_t, 11> v; //overflow
BooleanBitField<uint16_t, 10> d; //direction
BooleanBitField<uint16_t, 9> i; //interrupt
BooleanBitField<uint16_t, 8> b; //break
BooleanBitField<uint16_t, 7> s; //sign
BooleanBitField<uint16_t, 6> z; //zero
BooleanBitField<uint16_t, 4> h; //half-carry
BooleanBitField<uint16_t, 2> p; //parity
BooleanBitField<uint16_t, 0> c; //carry
Update to v098r19 release. byuu says: Changelog: - added nall/bit-field.hpp - updated all CPU cores (sans LR35902 due to some complexities) to use BitFields instead of bools - updated as many CPU cores as I could to use BitFields instead of union { struct { uint8_t ... }; }; pairs The speed changes are mostly a wash for this. In some instances, I noticed a ~2-3% speedup (eg SNES emulation), and in others a 2-3% slowdown (eg Famicom emulation.) It's within the margin of error, so it's safe to say it has no impact. This does give us a lot of new useful things, however: - no more manual reconstruction of flag values from lots of left shifts and ORs - no more manual deconstruction of flag values from lots of ANDs - ability to get completely free aliases to flag groups (eg GSU can provide alt2, alt1 and also alt (which is alt2,alt1 combined) - removes the need for the nasty order_lsbN macro hack (eventually will make higan 100% endian independent) - saves us from insane compilers that try and do nasty things with alignment on union-structs - saves us from insane compilers that try to store bit-field bits in reverse order - will allow some really novel new use cases (I'm planning an instant-decode ARM opcode function, for instance.) - reduces code size (we can serialize flag registers in one line instead of one for each flag) However, I probably won't use it for super critical code that's constantly reading out register values (eg PPU MMIO registers.) I think there we would end up with a performance penalty.
2016-06-08 22:26:35 +00:00
};
operator uint() const { return data & 0x8fd5 | 0x7002; }
auto& operator =(uint value) { return data = value, *this; }
auto& operator&=(uint value) { return data &= value, *this; }
auto& operator|=(uint value) { return data |= value, *this; }
auto& operator^=(uint value) { return data ^= value, *this; }
} f;
} r;
};
}