bsnes/higan/processor/v30mz/v30mz.hpp

266 lines
6.8 KiB
C++
Raw Normal View History

//NEC V30MZ
#pragma once
namespace Processor {
struct V30MZ {
using Size = uint;
enum : uint { Byte = 1, Word = 2, Long = 4 };
Update to v097r24 release. byuu says: Changelog: - WS: fixed bug when IRQs triggered during a rep string instruction - WS: added sprite attribute caching (per-scanline); absolutely massive speed-up - WS: emulated limit of 32 sprites per scanline - WS: emulated the extended PPU register bit behavior based on the DISP_CTRL tile bit-depth setting - WS: added "Rotate" key binding; can be used to flip the WS display between horizontal and vertical in real-time The prefix emulation may not be 100% hardware-accurate, but the edge cases should be extreme enough to not come up in the WS library. No way to get the emulation 100% down without intensive hardware testing. trap15 pointed me at a workflow diagram for it, but that diagram is impossible without a magic internal stack frame that grows with every IRQ, and can thus grow infinitely large. The rotation thing isn't exactly the most friendly set-up, but oh well. I'll see about adding a default rotation setting to manifests, so that games like GunPey can start in the correct orientation. After that, if the LCD orientation icon turns out to be reliable, then I'll start using that. But if there are cases where it's not reliable, then I'll leave it to manual button presses. Speaking of icons, I'll need a set of icons to render on the screen. Going to put them to the top right on vertical orientation, and on the bottom left for horizontal orientation. Just outside of the video output, of course. Overall, WS is getting pretty far along, but still some major bugs in various games. I really need sound emulation, though. Nobody's going to use this at all without that.
2016-03-12 13:27:41 +00:00
enum : uint {
SegmentOverrideES = 0x26,
SegmentOverrideCS = 0x2e,
SegmentOverrideSS = 0x36,
SegmentOverrideDS = 0x3e,
Lock = 0xf0,
RepeatWhileNotZero = 0xf2,
RepeatWhileZero = 0xf3,
};
virtual auto wait(uint clocks = 1) -> void = 0;
virtual auto read(uint20 addr) -> uint8 = 0;
virtual auto write(uint20 addr, uint8 data) -> void = 0;
virtual auto in(uint16 port) -> uint8 = 0;
virtual auto out(uint16 port, uint8 data) -> void = 0;
auto debug(string text) -> void;
Update to v097r24 release. byuu says: Changelog: - WS: fixed bug when IRQs triggered during a rep string instruction - WS: added sprite attribute caching (per-scanline); absolutely massive speed-up - WS: emulated limit of 32 sprites per scanline - WS: emulated the extended PPU register bit behavior based on the DISP_CTRL tile bit-depth setting - WS: added "Rotate" key binding; can be used to flip the WS display between horizontal and vertical in real-time The prefix emulation may not be 100% hardware-accurate, but the edge cases should be extreme enough to not come up in the WS library. No way to get the emulation 100% down without intensive hardware testing. trap15 pointed me at a workflow diagram for it, but that diagram is impossible without a magic internal stack frame that grows with every IRQ, and can thus grow infinitely large. The rotation thing isn't exactly the most friendly set-up, but oh well. I'll see about adding a default rotation setting to manifests, so that games like GunPey can start in the correct orientation. After that, if the LCD orientation icon turns out to be reliable, then I'll start using that. But if there are cases where it's not reliable, then I'll leave it to manual button presses. Speaking of icons, I'll need a set of icons to render on the screen. Going to put them to the top right on vertical orientation, and on the bottom left for horizontal orientation. Just outside of the video output, of course. Overall, WS is getting pretty far along, but still some major bugs in various games. I really need sound emulation, though. Nobody's going to use this at all without that.
2016-03-12 13:27:41 +00:00
auto power() -> void;
auto exec() -> void;
auto interrupt(uint8 vector) -> void;
Update to v097r24 release. byuu says: Changelog: - WS: fixed bug when IRQs triggered during a rep string instruction - WS: added sprite attribute caching (per-scanline); absolutely massive speed-up - WS: emulated limit of 32 sprites per scanline - WS: emulated the extended PPU register bit behavior based on the DISP_CTRL tile bit-depth setting - WS: added "Rotate" key binding; can be used to flip the WS display between horizontal and vertical in real-time The prefix emulation may not be 100% hardware-accurate, but the edge cases should be extreme enough to not come up in the WS library. No way to get the emulation 100% down without intensive hardware testing. trap15 pointed me at a workflow diagram for it, but that diagram is impossible without a magic internal stack frame that grows with every IRQ, and can thus grow infinitely large. The rotation thing isn't exactly the most friendly set-up, but oh well. I'll see about adding a default rotation setting to manifests, so that games like GunPey can start in the correct orientation. After that, if the LCD orientation icon turns out to be reliable, then I'll start using that. But if there are cases where it's not reliable, then I'll leave it to manual button presses. Speaking of icons, I'll need a set of icons to render on the screen. Going to put them to the top right on vertical orientation, and on the bottom left for horizontal orientation. Just outside of the video output, of course. Overall, WS is getting pretty far along, but still some major bugs in various games. I really need sound emulation, though. Nobody's going to use this at all without that.
2016-03-12 13:27:41 +00:00
auto instruction() -> void;
//registers.cpp
Update to v097r24 release. byuu says: Changelog: - WS: fixed bug when IRQs triggered during a rep string instruction - WS: added sprite attribute caching (per-scanline); absolutely massive speed-up - WS: emulated limit of 32 sprites per scanline - WS: emulated the extended PPU register bit behavior based on the DISP_CTRL tile bit-depth setting - WS: added "Rotate" key binding; can be used to flip the WS display between horizontal and vertical in real-time The prefix emulation may not be 100% hardware-accurate, but the edge cases should be extreme enough to not come up in the WS library. No way to get the emulation 100% down without intensive hardware testing. trap15 pointed me at a workflow diagram for it, but that diagram is impossible without a magic internal stack frame that grows with every IRQ, and can thus grow infinitely large. The rotation thing isn't exactly the most friendly set-up, but oh well. I'll see about adding a default rotation setting to manifests, so that games like GunPey can start in the correct orientation. After that, if the LCD orientation icon turns out to be reliable, then I'll start using that. But if there are cases where it's not reliable, then I'll leave it to manual button presses. Speaking of icons, I'll need a set of icons to render on the screen. Going to put them to the top right on vertical orientation, and on the bottom left for horizontal orientation. Just outside of the video output, of course. Overall, WS is getting pretty far along, but still some major bugs in various games. I really need sound emulation, though. Nobody's going to use this at all without that.
2016-03-12 13:27:41 +00:00
auto repeat() -> uint8;
auto segment(uint16) -> uint16;
auto getAcc(Size) -> uint32;
auto setAcc(Size, uint32) -> void;
//modrm.cpp
auto modRM() -> void;
auto getMem(Size, uint offset = 0) -> uint16;
auto setMem(Size, uint16) -> void;
auto getReg(Size) -> uint16;
auto setReg(Size, uint16) -> void;
auto getSeg() -> uint16;
auto setSeg(uint16) -> void;
//memory.cpp
auto read(Size, uint16, uint16) -> uint32;
auto write(Size, uint16, uint16, uint16) -> void;
auto in(Size, uint16) -> uint16;
auto out(Size, uint16, uint16) -> void;
auto fetch(Size = Byte) -> uint16;
auto pop() -> uint16;
auto push(uint16) -> void;
//algorithms.cpp
auto parity(uint8) const -> bool;
auto alAdc(Size, uint16, uint16) -> uint16;
auto alAdd(Size, uint16, uint16) -> uint16;
auto alAnd(Size, uint16, uint16) -> uint16;
auto alDec(Size, uint16 ) -> uint16;
auto alDiv(Size, uint32, uint32) -> uint32;
auto alDivi(Size, int32, int32) -> uint32;
auto alInc(Size, uint16 ) -> uint16;
auto alMul(Size, uint16, uint16) -> uint32;
auto alMuli(Size, int16, int16) -> uint32;
auto alNeg(Size, uint16 ) -> uint16;
auto alNot(Size, uint16 ) -> uint16;
auto alOr (Size, uint16, uint16) -> uint16;
auto alRcl(Size, uint16, uint5 ) -> uint16;
auto alRcr(Size, uint16, uint5 ) -> uint16;
auto alRol(Size, uint16, uint4 ) -> uint16;
auto alRor(Size, uint16, uint4 ) -> uint16;
auto alSal(Size, uint16, uint5 ) -> uint16;
auto alSar(Size, uint16, uint5 ) -> uint16;
auto alSbb(Size, uint16, uint16) -> uint16;
auto alSub(Size, uint16, uint16) -> uint16;
auto alShl(Size, uint16, uint5 ) -> uint16;
auto alShr(Size, uint16, uint5 ) -> uint16;
auto alXor(Size, uint16, uint16) -> uint16;
//instructions-adjust.cpp
auto opDecimalAdjust(bool);
auto opAsciiAdjust(bool);
auto opAdjustAfterMultiply();
auto opAdjustAfterDivide();
//instructions-alu.cpp
auto opAddMemReg(Size);
auto opAddRegMem(Size);
auto opAddAccImm(Size);
auto opOrMemReg(Size);
auto opOrRegMem(Size);
auto opOrAccImm(Size);
auto opAdcMemReg(Size);
auto opAdcRegMem(Size);
auto opAdcAccImm(Size);
auto opSbbMemReg(Size);
auto opSbbRegMem(Size);
auto opSbbAccImm(Size);
auto opAndMemReg(Size);
auto opAndRegMem(Size);
auto opAndAccImm(Size);
auto opSubMemReg(Size);
auto opSubRegMem(Size);
auto opSubAccImm(Size);
auto opXorMemReg(Size);
auto opXorRegMem(Size);
auto opXorAccImm(Size);
auto opCmpMemReg(Size);
auto opCmpRegMem(Size);
auto opCmpAccImm(Size);
auto opTestMemReg(Size);
auto opTestAcc(Size);
auto opMultiplySignedRegMemImm(Size);
auto opIncReg(uint16_t&);
auto opDecReg(uint16_t&);
auto opSignExtendByte();
auto opSignExtendWord();
//instructions-exec.cpp
auto opLoop();
auto opLoopWhile(bool);
auto opJumpShort();
auto opJumpIf(bool);
auto opJumpNear();
auto opJumpFar();
auto opCallNear();
auto opCallFar();
auto opReturn();
auto opReturnImm();
auto opReturnFar();
auto opReturnFarImm();
auto opReturnInt();
auto opInt3();
auto opIntImm();
auto opInto();
auto opEnter();
auto opLeave();
auto opPushReg(uint16_t&);
auto opPopReg(uint16_t&);
auto opPushFlags();
auto opPopFlags();
auto opPushAll();
auto opPopAll();
auto opPushImm(Size);
auto opPopMem();
//instructions-flag.cpp
auto opStoreFlagsAcc();
auto opLoadAccFlags();
auto opComplementCarry();
auto opClearFlag(bool&);
auto opSetFlag(bool&);
//instructions-group.cpp
auto opGroup1MemImm(Size, bool);
auto opGroup2MemImm(Size, maybe<uint8> = {});
auto opGroup3MemImm(Size);
auto opGroup4MemImm(Size);
//instructions-misc.cpp
auto opSegment(uint16);
auto opRepeat(bool);
auto opLock();
auto opWait();
auto opHalt();
auto opNop();
auto opIn(Size);
auto opOut(Size);
auto opInDX(Size);
auto opOutDX(Size);
auto opTranslate();
auto opBound();
//instructions-move.cpp
auto opMoveMemReg(Size);
auto opMoveRegMem(Size);
auto opMoveMemSeg();
auto opMoveSegMem();
auto opMoveAccMem(Size);
auto opMoveMemAcc(Size);
auto opMoveRegImm(uint8_t&);
auto opMoveRegImm(uint16_t&);
auto opMoveMemImm(Size);
auto opExchange(uint16_t&, uint16_t&);
auto opExchangeMemReg(Size);
auto opLoadEffectiveAddressRegMem();
auto opLoadSegmentMem(uint16_t&);
//instructions-string.cpp
auto opInString(Size);
auto opOutString(Size);
auto opMoveString(Size);
auto opCompareString(Size);
auto opStoreString(Size);
auto opLoadString(Size);
auto opScanString(Size);
//disassembler.cpp
auto disassemble(uint16 cs, uint16 ip, bool registers = true, bool bytes = true) -> string;
struct State {
bool halt; //set to true for hlt instruction; blocks execution until next interrupt
bool poll; //set to false to suppress interrupt polling between CPU instructions
bool prefix; //set to true for prefix instructions; prevents flushing of Prefix struct
} state;
Update to v097r24 release. byuu says: Changelog: - WS: fixed bug when IRQs triggered during a rep string instruction - WS: added sprite attribute caching (per-scanline); absolutely massive speed-up - WS: emulated limit of 32 sprites per scanline - WS: emulated the extended PPU register bit behavior based on the DISP_CTRL tile bit-depth setting - WS: added "Rotate" key binding; can be used to flip the WS display between horizontal and vertical in real-time The prefix emulation may not be 100% hardware-accurate, but the edge cases should be extreme enough to not come up in the WS library. No way to get the emulation 100% down without intensive hardware testing. trap15 pointed me at a workflow diagram for it, but that diagram is impossible without a magic internal stack frame that grows with every IRQ, and can thus grow infinitely large. The rotation thing isn't exactly the most friendly set-up, but oh well. I'll see about adding a default rotation setting to manifests, so that games like GunPey can start in the correct orientation. After that, if the LCD orientation icon turns out to be reliable, then I'll start using that. But if there are cases where it's not reliable, then I'll leave it to manual button presses. Speaking of icons, I'll need a set of icons to render on the screen. Going to put them to the top right on vertical orientation, and on the bottom left for horizontal orientation. Just outside of the video output, of course. Overall, WS is getting pretty far along, but still some major bugs in various games. I really need sound emulation, though. Nobody's going to use this at all without that.
2016-03-12 13:27:41 +00:00
uint8 opcode;
vector<uint8> prefixes;
struct ModRM {
uint2 mod;
uint3 reg;
uint3 mem;
uint16 segment;
uint16 address;
} modrm;
struct Registers {
union { uint16_t ax; struct { uint8_t order_lsb2(al, ah); }; };
union { uint16_t cx; struct { uint8_t order_lsb2(cl, ch); }; };
union { uint16_t dx; struct { uint8_t order_lsb2(dl, dh); }; };
union { uint16_t bx; struct { uint8_t order_lsb2(bl, bh); }; };
uint16_t sp;
uint16_t bp;
uint16_t si;
uint16_t di;
uint16_t es;
uint16_t cs;
uint16_t ss;
uint16_t ds;
uint16_t ip;
uint8_t* b[8]{&al, &cl, &dl, &bl, &ah, &ch, &dh, &bh};
uint16_t* w[8]{&ax, &cx, &dx, &bx, &sp, &bp, &si, &di};
uint16_t* s[8]{&es, &cs, &ss, &ds, &es, &cs, &ss, &ds};
struct Flags {
//registers.cpp
operator uint16_t() const;
auto operator=(uint16_t data);
bool m; //mode
bool v; //overflow
bool d; //direction
bool i; //interrupt
bool b; //break
bool s; //sign
bool z; //zero
bool h; //half-carry
bool p; //parity
bool c; //carry
} f;
} r;
};
}