bsnes/higan/target-tomoko/program/program.cpp

105 lines
2.9 KiB
C++
Raw Normal View History

#include "../tomoko.hpp"
#include <fc/interface/interface.hpp>
#include <sfc/interface/interface.hpp>
#include <ms/interface/interface.hpp>
Update to v100r02 release. byuu says: Sigh ... I'm really not a good person. I'm inherently selfish. My responsibility and obligation right now is to work on loki, and then on the Tengai Makyou Zero translation, and then on improving the Famicom emulation. And yet ... it's not what I really want to do. That shouldn't matter; I should work on my responsibilities first. Instead, I'm going to be a greedy, self-centered asshole, and work on what I really want to instead. I'm really sorry, guys. I'm sure this will make a few people happy, and probably upset even more people. I'm also making zero guarantees that this ever gets finished. As always, I wish I could keep these things secret, so if I fail / give up, I could just drop it with no shame. But I would have to cut everyone out of the WIP process completely to make it happen. So, here goes ... This WIP adds the initial skeleton for Sega Mega Drive / Genesis emulation. God help us. (minor note: apparently the new extension for Mega Drive games is .md, neat. That's what I chose for the folders too. I thought it was .smd, so that'll be fixed in icarus for the next WIP.) (aside: this is why I wanted to get v100 out. I didn't want this code in a skeleton state in v100's source. Nor did I want really broken emulation, which the first release is sure to be, tarring said release.) ... So, basically, I've been ruminating on the legacy I want to leave behind with higan. 3D systems are just plain out. I'm never going to support them. They're too complex for my abilities, and they would run too slowly with my design style. I'm not willing to compromise my design ideals. And I would never want to play a 3D game system at native 240p/480i resolution ... but 1080p+ upscaling is not accurate, so that's a conflict I want to avoid entirely. It's also never going to emulate computer systems (X68K, PC-98, FM-Towns, etc) because holy shit that would completely destroy me. It's also never going emulate arcade machines. So I think of higan as a collection of 2D emulators for consoles and handhelds. I've gone over every major 2D gaming system there is, looking for ones with games I actually care about and enjoy. And I basically have five of those systems supported already. Looking at the remaining list, I see only three systems left that I have any interest in whatsoever: PC-Engine, Master System, Mega Drive. Again, I'm not in any way committing to emulating any of these, but ... if I had all of those in higan, I think I'd be content to really, truly, finally stop writing more emulators for the rest of my life. And so I decided to tackle the most difficult system first. If I'm successful, the Z80 core should cover a lot of the work on the SMS. And the HuC6280 should land somewhere between the NES and SNES in terms of difficulty ... closer to the NES. The systems that just don't appeal to me at all, which I will never touch, include, but are not limited to: * Atari 2600/5200/7800 * Lynx * Jaguar * Vectrex * Colecovision * Commodore 64 * Neo-Geo * Neo-Geo Pocket / Color * Virtual Boy * Super A'can * 32X * CD-i * etc, etc, etc. And really, even if something were mildly interesting in there ... we have to stop. I can't scale infinitely. I'm already way past my limit, but I'm doing this anyway. Too many cores bloats everything and kills quality on everything. I don't want higan to become MESS v2. I don't know what I'll do about the Famicom Disk System, PC-Engine CD, and Mega CD. I don't think I'll be able to achieve 60fps emulating the Mega CD, even if I tried to. I don't know what's going to happen here with even the Mega Drive. Maybe I'll get driven crazy with the documentation and quit. Maybe it'll end up being too complicated and I'll quit. Maybe the emulation will end up way too slow and I'll give up. Maybe it'll take me seven years to get any games playable at all. Maybe Steve Snake, AamirM and Mike Pavone will pool money to hire a hitman to come after me. Who knows. But this is what I want to do, so ... here goes nothing.
2016-07-09 04:21:37 +00:00
#include <md/interface/interface.hpp>
Update to v101r30 release. byuu says: Changelog: - SMS: added cartridge ROM/RAM mirroring (fixes Alex Kidd) - SMS: fixed 8x16 sprite mode (fixes Wonder Boy, Ys graphics) - Z80: emulated "ex (sp),hl" instruction - Z80: fixed INx NF (should be set instead of cleared) - Z80: fixed loop condition check for CPxR, INxR, LDxR, OTxR (fixes walking in Wonder Boy) - SFC: removed Debugger and sfc/debugger.hpp - icarus: connected MS, GG, MD importing to the scan dialog - PCE: added emulation skeleton to higan and icarus At this point, Master System games are fairly highly compatible, sans audio. Game Gear games are running, but I need to crop the resolution and support the higher color palette that they can utilize. It's really something else the way they handled the resolution shrink on that thing. The last change is obviously going to be the biggest news. I'm very well aware it's not an ideal time to start on a new emulation core, with the MS and MD cores only just now coming to life with no audio support. But, for whatever reason, my heart's really set on working on the PC Engine. I wanted to write the final higan skeleton core, and get things ready so that whenever I'm in the mood to work on the PCE, I can do so. The skeleton is far and away the most tedious and obnoxious part of the emulator development, because it's basically all just lots of boilerplate templated code, lots of new files to create, etc. I really don't know how things are going to proceed ... but I can say with 99.9% certainty that this will be the final brand new core ever added to higan -- at least one written by me, that is. This was basically the last system from my childhood that I ever cared about. It's the last 2D system with games that I really enjoy playing. No other system is worth dividing my efforts and reducing the quality and amount of time to work on the systems I have. In the future, there will be potential for FDS, Mega CD and PCE-CD support. But those will all be add-ons, and they'll all be really difficult and challenge the entire design of higan's UI (it's entirely cartridge-driven at this time.) None of them will be entirely new cores like this one.
2017-01-11 20:27:30 +00:00
#include <pce/interface/interface.hpp>
#include <gb/interface/interface.hpp>
#include <gba/interface/interface.hpp>
#include <ws/interface/interface.hpp>
#include "interface.cpp"
Update to v098r11 release. byuu says: Changelog: - fixed nall/path.hpp compilation issue - fixed ruby/audio/xaudio header declaration compilation issue (again) - cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the file was whitespace overkill) - added null terminator entry to nall/windows/utf8.hpp argc[] array - nall/windows/guid.hpp uses the Windows API for generating the GUID - this should stop all the bug reports where two nall users were generating GUIDs at the exact same second - fixed hiro/cocoa compilation issue with uint# types - fixed major higan/sfc Super Game Boy audio latency issue - fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions - major cleanups to higan/processor/r65816 core - merged emulation/native-mode opcodes - use camel-case naming on memory.hpp functions - simplify address masking code for memory.hpp functions - simplify a few opcodes themselves (avoid redundant copies, etc) - rename regs.* to r.* to match modern convention of other CPU cores - removed device.order<> concept from Emulator::Interface - cores will now do the translation to make the job of the UI easier - fixed plurality naming of arrays in Emulator::Interface - example: emulator.ports[p].devices[d].inputs[i] - example: vector<Medium> media - probably more surprises Major show-stoppers to the next official release: - we need to work on GB core improvements: LY=153/0 case, multiple STAT IRQs case, GBC audio output regs, etc. - we need to re-add software cursors for light guns (Super Scope, Justifier) - after the above, we need to fix the turbo button for the Super Scope I really have no idea how I want to implement the light guns. Ideally, we'd want it in higan/video, so we can support the NES Zapper with the same code. But this isn't going to be easy, because only the SNES knows when its output is interlaced, and its resolutions can vary as {256,512}x{224,240,448,480} which requires pixel doubling that was hard-coded to the SNES-specific behavior, but isn't appropriate to be exposed in higan/video.
2016-05-25 11:13:02 +00:00
#include "medium.cpp"
#include "state.cpp"
#include "utility.cpp"
unique_pointer<Program> program;
Program::Program(string_vector args) {
program = this;
Emulator::platform = this;
emulators.append(new Famicom::Interface);
emulators.append(new SuperFamicom::Interface);
emulators.append(new MasterSystem::MasterSystemInterface);
Update to v100r02 release. byuu says: Sigh ... I'm really not a good person. I'm inherently selfish. My responsibility and obligation right now is to work on loki, and then on the Tengai Makyou Zero translation, and then on improving the Famicom emulation. And yet ... it's not what I really want to do. That shouldn't matter; I should work on my responsibilities first. Instead, I'm going to be a greedy, self-centered asshole, and work on what I really want to instead. I'm really sorry, guys. I'm sure this will make a few people happy, and probably upset even more people. I'm also making zero guarantees that this ever gets finished. As always, I wish I could keep these things secret, so if I fail / give up, I could just drop it with no shame. But I would have to cut everyone out of the WIP process completely to make it happen. So, here goes ... This WIP adds the initial skeleton for Sega Mega Drive / Genesis emulation. God help us. (minor note: apparently the new extension for Mega Drive games is .md, neat. That's what I chose for the folders too. I thought it was .smd, so that'll be fixed in icarus for the next WIP.) (aside: this is why I wanted to get v100 out. I didn't want this code in a skeleton state in v100's source. Nor did I want really broken emulation, which the first release is sure to be, tarring said release.) ... So, basically, I've been ruminating on the legacy I want to leave behind with higan. 3D systems are just plain out. I'm never going to support them. They're too complex for my abilities, and they would run too slowly with my design style. I'm not willing to compromise my design ideals. And I would never want to play a 3D game system at native 240p/480i resolution ... but 1080p+ upscaling is not accurate, so that's a conflict I want to avoid entirely. It's also never going to emulate computer systems (X68K, PC-98, FM-Towns, etc) because holy shit that would completely destroy me. It's also never going emulate arcade machines. So I think of higan as a collection of 2D emulators for consoles and handhelds. I've gone over every major 2D gaming system there is, looking for ones with games I actually care about and enjoy. And I basically have five of those systems supported already. Looking at the remaining list, I see only three systems left that I have any interest in whatsoever: PC-Engine, Master System, Mega Drive. Again, I'm not in any way committing to emulating any of these, but ... if I had all of those in higan, I think I'd be content to really, truly, finally stop writing more emulators for the rest of my life. And so I decided to tackle the most difficult system first. If I'm successful, the Z80 core should cover a lot of the work on the SMS. And the HuC6280 should land somewhere between the NES and SNES in terms of difficulty ... closer to the NES. The systems that just don't appeal to me at all, which I will never touch, include, but are not limited to: * Atari 2600/5200/7800 * Lynx * Jaguar * Vectrex * Colecovision * Commodore 64 * Neo-Geo * Neo-Geo Pocket / Color * Virtual Boy * Super A'can * 32X * CD-i * etc, etc, etc. And really, even if something were mildly interesting in there ... we have to stop. I can't scale infinitely. I'm already way past my limit, but I'm doing this anyway. Too many cores bloats everything and kills quality on everything. I don't want higan to become MESS v2. I don't know what I'll do about the Famicom Disk System, PC-Engine CD, and Mega CD. I don't think I'll be able to achieve 60fps emulating the Mega CD, even if I tried to. I don't know what's going to happen here with even the Mega Drive. Maybe I'll get driven crazy with the documentation and quit. Maybe it'll end up being too complicated and I'll quit. Maybe the emulation will end up way too slow and I'll give up. Maybe it'll take me seven years to get any games playable at all. Maybe Steve Snake, AamirM and Mike Pavone will pool money to hire a hitman to come after me. Who knows. But this is what I want to do, so ... here goes nothing.
2016-07-09 04:21:37 +00:00
emulators.append(new MegaDrive::Interface);
Update to v102r03 release. byuu says: Changelog: - PCE: split VCE from VDC - HuC6280: changed bus from (uint21 addr) to (uint8 bank, uint13 addr) - added SuperGrafx emulation (adds secondary VDC, plus new VPC) The VDC now has no concept of the actual display raster timing, and instead is driven by Vpulse (start of frame) and Hpulse (start of scanline) signals from the VCE. One still can't render the start of the next scanline onto the current scanline through overly aggressive timings, but it shouldn't be too much more difficult to allow that to occur now. This process incurs quite a major speed hit, so low-end systems with Atom CPUs can't run things at 60fps anymore. The timing needs a lot of work. The pixels end up very jagged if the VCE doesn't output batches of 2-4 pixels at a time. But this should not be a requirement at all, so I'm not sure what's going wrong there. Yo, Bro and the 512-width mode of TV Sports Basketball is now broken as a result of these changes, and I'm not sure why. To load SuperGrafx games, you're going to have to change the .pce extensions to .sg or .sgx. Or you can manually move the games from the PC Engine folder to the SuperGrafx folder and change the game folder extensions. I have no way to tell the games apart. Mednafen uses CRC32 comparisons, and I may consider that since there's only five games, but I'm not sure yet. The only SuperGrafx game that's playable right now is Aldynes. And the priorities are all screwed up. I don't understand how the windows or the priorities work at all from sgxtech.txt, so ... yeah. It's pretty broken, but it's a start. I could really use some help with this, as I'm very lost right now with rendering :/ ----- Note that the SuperGrafx is technically its own system, it's not an add-on. As such, I'm giving it a separate .sys folder, and a separate library. There's debate over how to name this thing. "SuperGrafx" appears more popular than "Super Grafx". And you might also call it the "PC Engine SuperGrafx", but I decided to leave off the prefix so it appears more distinct.
2017-01-23 21:18:54 +00:00
emulators.append(new PCEngine::PCEngineInterface);
emulators.append(new PCEngine::SuperGrafxInterface);
Update to v102r02 release. byuu says: Changelog: - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it - if it's really invalid C++, then GCC needs to stop accepting it in strict `-std=c++14` mode - Emulator::Interface::Information::resettable is gone - Emulator::Interface::reset() is gone - FC, SFC, MD cores updated to remove soft reset behavior - split GameBoy::Interface into GameBoyInterface, GameBoyColorInterface - split WonderSwan::Interface into WonderSwanInterface, WonderSwanColorInterface - PCE: fixed off-by-one scanline error [hex_usr] - PCE: temporary hack to prevent crashing when VDS is set to < 2 - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#) types to (u)int_(#)t types - icarus: replaced usage of unique with strip instead (so we don't mess up frameworks on macOS) - libco: added macOS-specific section marker [Ryphecha] So ... the major news this time is the removal of the soft reset behavior. This is a major!! change that results in a 100KiB diff file, and it's very prone to accidental mistakes!! If anyone is up for testing, or even better -- looking over the code changes between v102r01 and v102r02 and looking for any issues, please do so. Ideally we'll want to test every NES mapper type and every SNES coprocessor type by loading said games and power cycling to make sure the games are all cleanly resetting. It's too big of a change for me to cover there not being any issues on my own, but this is truly critical code, so yeah ... please help if you can. We technically lose a bit of hardware documentation here. The soft reset events do all kinds of interesting things in all kinds of different chips -- or at least they do on the SNES. This is obviously not ideal. But in the process of removing these portions of code, I found a few mistakes I had made previously. It simplifies resetting the system state a lot when not trying to have all the power() functions call the reset() functions to share partial functionality. In the future, the goal will be to come up with a way to add back in the soft reset behavior via keyboard binding as with the Master System core. What's going to have to happen is that the key binding will have to send a "reset pulse" to every emulated chip, and those chips are going to have to act independently to power() instead of reusing functionality. We'll get there eventually, but there's many things of vastly greater importance to work on right now, so it'll be a while. The information isn't lost ... we'll just have to pull it out of v102 when we are ready. Note that I left the SNES reset vector simulation code in, even though it's not possible to trigger, for the time being. Also ... the Super Game Boy core is still disconnected. To be honest, it totally slipped my mind when I released v102 that it wasn't connected again yet. This one's going to be pretty tricky to be honest. I'm thinking about making a third GameBoy::Interface class just for SGB, and coming up with some way of bypassing platform-> calls when in this mode.
2017-01-22 21:04:26 +00:00
emulators.append(new GameBoy::GameBoyInterface);
emulators.append(new GameBoy::GameBoyColorInterface);
emulators.append(new GameBoyAdvance::Interface);
emulators.append(new MasterSystem::GameGearInterface);
Update to v102r02 release. byuu says: Changelog: - I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it - if it's really invalid C++, then GCC needs to stop accepting it in strict `-std=c++14` mode - Emulator::Interface::Information::resettable is gone - Emulator::Interface::reset() is gone - FC, SFC, MD cores updated to remove soft reset behavior - split GameBoy::Interface into GameBoyInterface, GameBoyColorInterface - split WonderSwan::Interface into WonderSwanInterface, WonderSwanColorInterface - PCE: fixed off-by-one scanline error [hex_usr] - PCE: temporary hack to prevent crashing when VDS is set to < 2 - hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#) types to (u)int_(#)t types - icarus: replaced usage of unique with strip instead (so we don't mess up frameworks on macOS) - libco: added macOS-specific section marker [Ryphecha] So ... the major news this time is the removal of the soft reset behavior. This is a major!! change that results in a 100KiB diff file, and it's very prone to accidental mistakes!! If anyone is up for testing, or even better -- looking over the code changes between v102r01 and v102r02 and looking for any issues, please do so. Ideally we'll want to test every NES mapper type and every SNES coprocessor type by loading said games and power cycling to make sure the games are all cleanly resetting. It's too big of a change for me to cover there not being any issues on my own, but this is truly critical code, so yeah ... please help if you can. We technically lose a bit of hardware documentation here. The soft reset events do all kinds of interesting things in all kinds of different chips -- or at least they do on the SNES. This is obviously not ideal. But in the process of removing these portions of code, I found a few mistakes I had made previously. It simplifies resetting the system state a lot when not trying to have all the power() functions call the reset() functions to share partial functionality. In the future, the goal will be to come up with a way to add back in the soft reset behavior via keyboard binding as with the Master System core. What's going to have to happen is that the key binding will have to send a "reset pulse" to every emulated chip, and those chips are going to have to act independently to power() instead of reusing functionality. We'll get there eventually, but there's many things of vastly greater importance to work on right now, so it'll be a while. The information isn't lost ... we'll just have to pull it out of v102 when we are ready. Note that I left the SNES reset vector simulation code in, even though it's not possible to trigger, for the time being. Also ... the Super Game Boy core is still disconnected. To be honest, it totally slipped my mind when I released v102 that it wasn't connected again yet. This one's going to be pretty tricky to be honest. I'm thinking about making a third GameBoy::Interface class just for SGB, and coming up with some way of bypassing platform-> calls when in this mode.
2017-01-22 21:04:26 +00:00
emulators.append(new WonderSwan::WonderSwanInterface);
emulators.append(new WonderSwan::WonderSwanColorInterface);
new Presentation;
presentation->setVisible();
if(settings["Crashed"].boolean()) {
MessageDialog().setText("Driver crash detected. Video/Audio/Input drivers have been disabled.").information();
settings["Video/Driver"].setValue("None");
settings["Audio/Driver"].setValue("None");
settings["Input/Driver"].setValue("None");
}
settings["Crashed"].setValue(true);
settings.save();
Update to v104r06 release. byuu says: Changelog: - gba,ws: removed Thread::step() override¹ - processor/m68k: move.b (a7)+ and move.b (a7)- adjust a7 by two, not by one² - tomoko: created new initialize(Video,Audio,Input)Driver() functions³ - ruby/audio: split Audio::information into Audio::available(Devices,Frequencies,Latencies,Channels)³ - ws: added Model::(WonderSwan,WonderSwanColor,SwanCrystal)() functions for consistency with other cores ¹: this should hopefully fix GBA Pokemon Pinball. Thanks to SuperMikeMan for pointing out the underlying cause. ²: this fixes A Ressaha de Ikou, Mega Bomberman, and probably more games. ³: this is the big change: so there was a problem with WASAPI where you might change your device under the audio settings panel. And your new device may not support the frequency that your old device used. This would end up not updating the frequency, and the pitch would be distorted. The old Audio::information() couldn't tell you what frequencies, latencies, or channels were available for all devices simultaneously, so I had to split them up. The new initializeAudioDriver() function validates you have a correct driver, or it defaults to none. Then it validates a correct device name, or it defaults to the first entry in the list. Then it validates a correct frequency, or defaults to the first in the list. Then finally it validates a correct latency, or defaults to the first in the list. In this way ... we have a clear path now with no API changes required to select default devices, frequencies, latencies, channel counts: they need to be the first items in their respective lists. So, what we need to do now is go through and for every audio driver that enumerates devices, we need to make sure the default device gets added to the top of the list. I'm ... not really sure how to do this with most drivers, so this is definitely going to take some time. Also, when you change a device, initializeAudioDriver() is called again, so if it's a bad device, it will disable the audio driver instead of continuing to send samples at it and hoping that the driver blocked those API calls when it failed to initialize properly. Now then ... since it was a decently-sized API change, it's possible I've broken compilation of the Linux drivers, so please report any compilation errors so that I can fix them.
2017-08-26 01:15:49 +00:00
initializeVideoDriver();
initializeAudioDriver();
initializeInputDriver();
settings["Crashed"].setValue(false);
settings.save();
Update to v098r01 release. byuu says: Changelog: - SFC: balanced profile removed - SFC: performance profile removed - SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed - SFC: Coprocessor, Controller (and expansion port) shared Thread code merged to SFC::Cothread - Cothread here just means "Thread with CPU affinity" (couldn't think of a better name, sorry) - SFC: CPU now has vector<Thread*> coprocessors, peripherals; - this is the beginning of work to allow expansion port devices to be dynamically changed at run-time - ruby: all audio drivers default to 48000hz instead of 22050hz now if no frequency is assigned - note: the WASAPI driver can default to whatever the native frequency is; doesn't have to be 48000hz - tomoko: removed the ability to change the frequency from the UI (but it will display the frequency used) - tomoko: removed the timing settings panel - the goal is to work toward smooth video via adaptive sync - the model is broken by not being in control of the audio frequency anyway - it's further broken by PAL running at 50hz and WSC running at 75hz - it was always broken anyway by SNES interlace timing varying from progressive timing - higan: audio/ stub created (for now, it's just nall/dsp/ moved here and included as a header) - higan: video/ stub created - higan/GNUmakefile: now includes build rules for essential components (libco, emulator, audio, video) The audio changes are in preparation to merge wareya's awesome WASAPI work without the need for the nall/dsp resampler.
2016-04-09 03:40:12 +00:00
new InputManager;
new SettingsManager;
new CheatDatabase;
new ToolsManager;
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
new AboutWindow;
Update to v098r01 release. byuu says: Changelog: - SFC: balanced profile removed - SFC: performance profile removed - SFC: code for handling non-threaded CPU, SMP, DSP, PPU removed - SFC: Coprocessor, Controller (and expansion port) shared Thread code merged to SFC::Cothread - Cothread here just means "Thread with CPU affinity" (couldn't think of a better name, sorry) - SFC: CPU now has vector<Thread*> coprocessors, peripherals; - this is the beginning of work to allow expansion port devices to be dynamically changed at run-time - ruby: all audio drivers default to 48000hz instead of 22050hz now if no frequency is assigned - note: the WASAPI driver can default to whatever the native frequency is; doesn't have to be 48000hz - tomoko: removed the ability to change the frequency from the UI (but it will display the frequency used) - tomoko: removed the timing settings panel - the goal is to work toward smooth video via adaptive sync - the model is broken by not being in control of the audio frequency anyway - it's further broken by PAL running at 50hz and WSC running at 75hz - it was always broken anyway by SNES interlace timing varying from progressive timing - higan: audio/ stub created (for now, it's just nall/dsp/ moved here and included as a header) - higan: video/ stub created - higan/GNUmakefile: now includes build rules for essential components (libco, emulator, audio, video) The audio changes are in preparation to merge wareya's awesome WASAPI work without the need for the nall/dsp resampler.
2016-04-09 03:40:12 +00:00
updateVideoShader();
Update to v098r06 release. byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad.
2016-04-22 13:35:51 +00:00
updateAudioDriver();
updateAudioEffects();
args.takeLeft(); //ignore program location in argument parsing
Update to v094r43 release. byuu says: Updated to compile with all of the new hiro changes. My next step is to write up hiro API documentation, and move the API from alpha (constantly changing) to beta (rarely changing), in preparation for the first stable release (backward-compatible changes only.) Added "--fullscreen" command-line option. I like this over a configuration file option. Lets you use the emulator in both modes without having to modify the config file each time. Also enhanced the command-line game loading. You can now use any of these methods: higan /path/to/game-folder.sfc higan /path/to/game-folder.sfc/ higan /path/to/game-folder.sfc/program.rom The idea is to support launchers that insist on loading files only. Technically, the file can be any name (manifest.bml also works); the only criteria is that the file actually exists and is a file, and not a directory. This is a requirement to support the first version (a directory lacking the trailing / identifier), because I don't want my nall::string class to query the file system to determine if the string is an actual existing file or directory for its pathname() / dirname() functions. Anyway, every game folder I've made so far has program.rom, and that's very unlikely to change, so this should be fine. Now, of course, if you drop a regular "game.sfc" file on the emulator, it won't even try to load it, unless it's in a folder that ends in .fc, .sfc, etc. In which case, it'll bail out immediately by being unable to produce a manifest for what is obviously not really a game folder.
2015-08-30 02:08:26 +00:00
for(auto& argument : args) {
if(argument == "--fullscreen") {
presentation->toggleFullScreen();
Update to v103 final release. byuu says (in the public annoucement): With this release, PC Engine, Master System, Game Gear, Mega Drive and the newly added SuperGrafx support are now quite usable! They're far from the best emulators for these systems, but with many bugfixes, full sound emulation, and save state support ... many games are now fully playable with decent accuracy. The Game Boy Advance emulation is also now substantially improved with vastly improved sound quality and a new dot-based PPU renderer. With that change, every single component in higan is now cycle-based. Regrettably, these changes do carry a ~20% performance penalty compared to GBA emulation in v102. Changelog (since the previous release): - added SuperGrafx emulation - improved audio band-pass filtering for all emulated systems - screen rotation is now a hotkey; automatically rotates control bindings - screen rotation now supported on the Game Boy Advance as well (used by a small number of games) - massive improvements to Mega Drive emulation - massive code cleanups and rewrites to many CPU emulation cores (MOS6502, WDC65816, SPC700, etc) - Famicom, Master System, Mega Drive: added PAL emulation support - PC Engine, SuperGrafx, Master System, Game Gear, Mega Drive: added save state support - PC Engine, SuperGrafx: added PSG sound emulation - Master System, Game Gear: added PSG sound emulation - Mega Drive: added Z80 APU emulation [with help from Cydrak] - Mega Drive: added PSG sound emulation - Mega Drive: added YM2612 sound emulation [Cydrak] - Super Famicom: fixed Super Game Boy emulation - PC Engine: added save RAM support (using per-game PCE-CD backup RAM) - Game Boy Advance: substantial improvements to audio emulation quality - Game Boy Advance: convert scanline-based PPU renderer to a dot-based renderer - Game Boy Advance: properly initialize CPU state (fixes Classic NES Series games) - Game Boy Advance: MUL timing corrected [Jonas Quinn] - Mega Drive: emulate special mappers for Phantasy Star IV, Super Street Fighter II, etc. - Super Famicom: use darker luma for INIDISP=0 (large improvement to Final Fantasy III opening) - Super Famicom: fixed bugs in SMP OR1,AND1 instructions - cheat code database regrettably removed from official releases; will be made available separately - Famicom: PAL emulation improvements [hex\_usr]
2017-06-22 06:08:03 +00:00
} else if(directory::exists(argument.split("|", 1L).right())) {
Update to v102r28 release. byuu says: Changelog: - higan: `Emulator::<Platform::load>()` now returns a struct containing both a path ID and a string option - higan: `Emulator::<Platform::load>()` now takes an optional final argument of string options - fc: added PAL emulation (finally, only took six years) - md: added PAL emulation - md: fixed address parameter to `VDP::Sprite::write()`; fixes missing sprites in Super Street Fighter II - md: emulated HIRQ counter; fixes many games - Super Street Fighter II - status bar - Altered Beast - status bar - Sonic the Hedgehog - Labyrinth Zone - water effect - etc. - ms: added PAL emulation - sfc: added the ability to override the default region auto-detection - sfc: removed "system.region" override setting from `Super Famicom.sys` - tomoko: added options list to game folder load dialog window - tomoko: added the ability to specify game folder load options on the command-line So, basically ... Sega forced a change with the way region detection works. You end up with games that can run on multiple regions, and the content changes accordingly. Bare Knuckle in NTSC-J mode will become Streets of Rage in NTSC-U mode. Some games can even run in both NTSC and PAL mode. In my view, there should be a separate ROM for each region a game was released in, even if the ROM content were identical. But unfortunately that's not how things were done by anyone else. So to support this, the higan load dialog now has a drop-down at the bottom-right, where you can choose the region to load games from. On the SNES, it defaults to "Auto", which will pull the region setting from the manifest, or fall back on NTSC. On the Mega Drive ... unfortunately, I can't auto-detect the region from the ROM header. $1f0 is supposed to contain a string like "JUE", but instead you get games like Maui Mallard that put an "A" there, and other such nonsense. Sega was far more lax than Nintendo with the ROM header validity. So for now at least, you have to manually select your region every time you play a Mega Drive game, thus you have "NTSC-J", "NTSC-U", and "PAL". The same goes for the Master System for the same reason, but there's only "NTSC" and "PAL" here. I'm not sure if games have a way to detect domestic vs international consoles. And for now ... the Famicom is the same as well, with no auto-detection. I'd sincerely hope iNES has a header bit for the region, but I didn't bother with updating icarus to support that yet. The way to pass these parameters on the command-line is to prefix the game path with "option:", so for example:    higan "PAL:/path/to/Sonic the Hedgehog (USA, Europe).md" If you don't provide a prefix, it uses the default (NTSC-J, NTSC, or Auto.) Obviously, it's not possible to pass parameters with drag-and-drop, so you will always get the default option in said case.
2017-06-20 12:34:50 +00:00
if(!argument.transform("\\", "/").endsWith("/")) argument.append("/");
Update to v099r10 release. byuu says: Changelog: - higan/profile/ => higan/systems/ [temporary; unless we can't think of a better base folder name] - god-damn-better-have fixed the input polling bug - re-added command-line and drag-and-drop loading - command-line loading can now load multiple folders at once (SGB+GB game; Sufami Turbo+Slot A+Slot B; etc) - if you load just the base cart, it'll present you with a dialog to optionally load slotted cart(s) - MSU1 now goes through nall/vfs instead of directly accessing the filesystem - Famicom Cartridge, PPU cores updated to newer programming style - there's countless opportunity for BitField and .bits() in the PPU ... but I'm worried about breaking things If anyone has a working MSU1 game and can test the changes out, that'd be appreciated. I still don't have a test ROM on my dev box. I wouldn't worry too much about extensively testing the Famicom PPU changes just yet ... I'm still struggling with what to name the structs inside the classes between all of my emulators, and the BitField/.bits() changes will be much more important to test at a later date. The only use case left for Emulator::Interface::path(uint id) is for 21fx emulation. This peripheral loads a DLL/SO via LoadLibrary/dlopen, which do not have any official ways to open a file in RAM. I'm very hesitant to use the portable trick of writing the memory to a temporary file, loading it, and deleting the temporary file once done ... it's a real waste of disk activity. I might make something like vfs::file::isVirtual->bool,path()->string to get around this. But even once I do, the underlying LoadLibrary/dlopen call is still going to be direct disk access.
2016-06-26 08:54:12 +00:00
mediumQueue.append(argument);
} else if(file::exists(argument)) {
if(auto result = execute("icarus", "--import", argument)) {
mediumQueue.append(result.output.strip());
}
Update to v094r43 release. byuu says: Updated to compile with all of the new hiro changes. My next step is to write up hiro API documentation, and move the API from alpha (constantly changing) to beta (rarely changing), in preparation for the first stable release (backward-compatible changes only.) Added "--fullscreen" command-line option. I like this over a configuration file option. Lets you use the emulator in both modes without having to modify the config file each time. Also enhanced the command-line game loading. You can now use any of these methods: higan /path/to/game-folder.sfc higan /path/to/game-folder.sfc/ higan /path/to/game-folder.sfc/program.rom The idea is to support launchers that insist on loading files only. Technically, the file can be any name (manifest.bml also works); the only criteria is that the file actually exists and is a file, and not a directory. This is a requirement to support the first version (a directory lacking the trailing / identifier), because I don't want my nall::string class to query the file system to determine if the string is an actual existing file or directory for its pathname() / dirname() functions. Anyway, every game folder I've made so far has program.rom, and that's very unlikely to change, so this should be fine. Now, of course, if you drop a regular "game.sfc" file on the emulator, it won't even try to load it, unless it's in a folder that ends in .fc, .sfc, etc. In which case, it'll bail out immediately by being unable to produce a manifest for what is obviously not really a game folder.
2015-08-30 02:08:26 +00:00
}
}
Update to v099r10 release. byuu says: Changelog: - higan/profile/ => higan/systems/ [temporary; unless we can't think of a better base folder name] - god-damn-better-have fixed the input polling bug - re-added command-line and drag-and-drop loading - command-line loading can now load multiple folders at once (SGB+GB game; Sufami Turbo+Slot A+Slot B; etc) - if you load just the base cart, it'll present you with a dialog to optionally load slotted cart(s) - MSU1 now goes through nall/vfs instead of directly accessing the filesystem - Famicom Cartridge, PPU cores updated to newer programming style - there's countless opportunity for BitField and .bits() in the PPU ... but I'm worried about breaking things If anyone has a working MSU1 game and can test the changes out, that'd be appreciated. I still don't have a test ROM on my dev box. I wouldn't worry too much about extensively testing the Famicom PPU changes just yet ... I'm still struggling with what to name the structs inside the classes between all of my emulators, and the BitField/.bits() changes will be much more important to test at a later date. The only use case left for Emulator::Interface::path(uint id) is for 21fx emulation. This peripheral loads a DLL/SO via LoadLibrary/dlopen, which do not have any official ways to open a file in RAM. I'm very hesitant to use the portable trick of writing the memory to a temporary file, loading it, and deleting the temporary file once done ... it's a real waste of disk activity. I might make something like vfs::file::isVirtual->bool,path()->string to get around this. But even once I do, the underlying LoadLibrary/dlopen call is still going to be direct disk access.
2016-06-26 08:54:12 +00:00
loadMedium();
Update to v103r19 release. byuu says: Changelog: - tomoko: Application::onMain assigned at end of Program::Program() [Screwtape]¹ - libco: add `#define _XOPEN_SOURCE 500` to fix compilation of sjlj.c [Screwtape] - ruby/audio/openal: fixed device driver string list enumeration - ruby/audio/wasapi: changing device re-initializes the driver now - ruby/audio/wasapi: probably a pointless change, but don't fill the buffer beyond the queue size with silence - ruby/video/xvideo: renamed from ruby/video/xv - ruby/video/xvideo: check to see if `XV_AUTOPAINT_COLORKEY` exists before setting it [SuperMikeMan] - ruby/video/xvideo: align buffer sizes to be evenly divisible by four [SuperMikeMan] - ruby/video/xvideo: fail nicely without crashing (hopefully) - ruby/video/xvideo: add support for YV12 and I420 12-bit planar YUV formats² ¹: prevents crashes when drivers fail to initialize from running the main loop that polls input drivers before the input driver is initialized (or fails to initialize itself.) Some drivers still don't block their main functions when initialization fails, so they will still crash, but I'll work to fix them. ²: this was a **major** pain in the ass, heh. You only get one chroma sample for every four luma samples, so the color reproduction is even worse than UYVY and YUYV (which is two to four chroma to luma.) Further, the planar format took forever to figure out. Apparently it doesn't care what portion of the image you specify in XvShmPutImage, it expects you to use the buffer dimensions to locate the U and V portions of the data. This is probably the most thorough X-Video driver in existence now. Notes: - forgot to rename the configuration settings dialog window title to just "Settings"
2017-07-23 09:18:16 +00:00
Application::onMain({&Program::main, this});
}
auto Program::main() -> void {
updateStatusText();
inputManager->poll();
Update to v100r16 release. byuu says: (Windows users may need to include <sys/time.h> at the top of nall/chrono.hpp, not sure.) Unchangelog: - forgot to add the Scheduler clock=0 fix because I have the memory of a goldfish Changelog: - new icarus database with nine additional games - hiro(GTK,Qt) won't constantly write its settings.bml file to disk anymore - added latency simulator for fun (settings.bml => Input/Latency in milliseconds) So the last one ... I wanted to test out nall::chrono, and I was also thinking that by polling every emulated frame, it's pretty wasteful when you are using Fast Forward and hitting 200+fps. As I've said before, calls to ruby::input::poll are not cheap. So to get around this, I added a limiter so that if you called the hardware poll function within N milliseconds, it'll return without doing any actual work. And indeed, that increases my framerate of Zelda 3 uncapped from 133fps to 142fps. Yay. But it's not a "real" speedup, as it only helps you when you exceed 100% speed (theoretically, you'd need to crack 300% speed since the game itself will poll at 16ms at 100% speed, but yet it sped up Zelda 3, so who am I to complain?) I threw the latency value into the settings file. It should be 16, but I set it to 5 since that was the lowest before it started negatively impacting uncapped speeds. You're wasting your time and CPU cycles setting it lower than 5, but if people like placebo effects it might work. Maybe I should let it be a signed integer so people can set it to -16 and think it's actually faster :P (I'm only joking. I took out the 96000hz audio placebo effect as well. Not really into psychological tricks anymore.) But yeah seriously, I didn't do this to start this discussion again for the billionth time. Please don't go there. And please don't tell me this WIP has higher/lower latency than before. I don't want to hear it. The only reason I bring it up is for the fun part that is worth discussing: put up or shut up time on how sensitive you are to latency! You can set the value above 5 to see how games feel. I personally can't really tell a difference until about 50. And I can't be 100% confident it's worse until about 75. But ... when I set it to 150, games become "extra difficult" ... the higher it goes, the worse it gets :D For this WIP, I've left no upper limit cap. I'll probably set a cap of something like 500ms or 1000ms for the official release. Need to balance user error/trolling with enjoyability. I'll think about it. [...] Now, what I worry about is stupid people seeing it and thinking it's an "added latency" setting, as if anyone would intentionally make things worse by default. This is a limiter. So if 5ms have passed since the game last polled, and that will be the case 99.9% of the time in games, the next poll will happen just in time, immediately when the game polls the inputs. Thus, a value below 1/<framerate>ms is not only pointless, if you go too low it will ruin your fast forward max speeds. I did say I didn't want to resort to placebo tricks, but I also don't want to spark up public discussion on this again either. So it might be best to default Input/Latency to 0ms, and internally have a max(5, latency) wrapper around the value.
2016-08-03 12:32:40 +00:00
inputManager->pollHotkeys();
Update to v103r13 release. byuu says: Changelog: - gb/interface: fix Game Boy Color extension to be "gbc" and not "gb" [hex\_usr] - ms/interface: move Master System hardware controls below controller ports - sfc/ppu: improve latching behavior of BGnHOFS registers (not hardware verified) [AWJ] - tomoko/input: rework port/device mapping to support non-sequential ports and devices¹ - todo: should add move() to inputDevice.mappings.append and inputPort.devices.append - note: there's a weird GCC 4.9 bug with brace initialization of InputEmulator; have to assign each field separately - tomoko: all windows sans the main presentation window can be dismissed with the escape key - icarus: the single file selection dialog ("Load ROM Image...") can be dismissed with the escape key - tomoko: do not pause emulation when FocusLoss/Pause is set during exclusive fullscreen mode - hiro/(windows,gtk,qt): implemented Window::setDismissable() function (missing from cocoa port, sorry) - nall/string: fixed printing of largest possible negative numbers (eg `INT_MIN`) [Sintendo] - only took eight months! :D ¹: When I tried to move the Master System hardware port below the controller ports, I ran into a world of pain. The input settings list expects every item in the `InputEmulator<InputPort<InputDevice<InputMapping>>>>` arrays to be populated with valid results. But these would be sparsely populated based on the port and device IDs from inside higan. And that is done so that the Interface::inputPoll can have O(1) lookup of ports and devices. This worked because all the port and device IDs were sequential (they left no gaps in the maps upon creating the lists.) Unfortunately by changing the expectation of port ID to how it appears in the list, inputs would not poll correctly. By leaving them alone and just moving Hardware to the third position, the Game Gear would be missing port IDs of 0 and 1 (the controller ports of the Master System). Even by trying to make separate MasterSystemHardware and GameGearHardware ports, things still fractured when the devices were no longer contigious. I got pretty sick of this and just decided to give up on O(1) port/device lookup, and moved to O(n) lookup. It only knocked the framerate down by maybe one frame per second, enough to be in the margin of error. Inputs aren't polled *that* often for loops that usually terminate after 1-2 cycles to be too detrimental to performance. So the new input system now allows non-sequential port and device IDs. Remember that I killed input IDs a while back. There's never any reason for those to need IDs ... it was easier to just order the inputs in the order you want to see them in the user interface. So the input lookup is still O(1). Only now, everything's safer and I return a maybe<InputMapping&>, and won't crash out the program trying to use a mapping that isn't found for some reason. Errata: the escape key isn't working on the browser/message dialogs on Windows, because of course nothing can ever just be easy and work for me. If anyone else wouldn't mind looking into that, I'd greatly appreciate it. Having the `WM_KEYDOWN` test inside the main `Application_sharedProc`, it seems to not respond to the escape key on modal dialogs. If I put the `WM_KEYDOWN` test in the main window proc, then it doesn't seem to get called for `VK_ESCAPE` at all, and doesn't get called period for modal windows. So I'm at a loss and it's past 4AM here >_>
2017-07-12 08:24:27 +00:00
if(!emulator || !emulator->loaded() || pause || (!focused() && settings["Input/FocusLoss/Pause"].boolean())) {
audio->clear();
usleep(20 * 1000);
return;
}
emulator->run();
}
auto Program::quit() -> void {
Update to v101r06 release. byuu says: I reworked the video sizing code. Ended up wasting five fucking hours fighting GTK. When you call `gtk_widget_set_size_request`, it doesn't actually happen then. This is kind of a big deal because when I then go to draw onto the viewport, the actual viewport child window is still the old size, so the image gets distorted. It recovers in a frame or so with emulation, but if we were to put a still image on there, it would stay distorted. The first thought is, `while(gtk_events_pending()) gtk_main_iteration_do(false);` right after the `set_size_request`. But nope, it tells you there's no events pending. So then you think, go deeper, use `XPending()` instead. Same thing, GTK hasn't actually issued the command to Xlib yet. So then you think, if the widget is realized, just call a blocking `gtk_main_iteration`. One call does nothing, two calls results in a deadlock on the second one ... do it before program startup, and the main window will never appear. Great. Oh, and it's not just the viewport. It's also the widget container area of the windows, as well as the window itself, as well as the fullscreen mode toggle effect. They all do this. For the latter three, I couldn't find anything that worked, so I just added 20ms loops of constantly calling `gtk_main_iteration_do(false)` after each one of those things. The downside here is toggling the status bar takes 40ms, so you'll see it and it'll feel a tiny bit sluggish. But I can't have a 20ms wait on each widget resize, that would be catastrophic to performance on windows with lots of widgets. I tried hooking configure-event and size-allocate, but they were very unreliable. So instead I ended up with a loop that waits up to a maximm of 20ms that inspects the `widget->allocation.(width,height)` values directly and waits for them to be what we asked for with `set_size_request`. There was some extreme ugliness in GTK with calling `gtk_main_iteration_do` recursively (`hiro::Widget::setGeometry` is called recursively), so I had to lock it to only happen on the top level widgets (the child ones should get resized while waiting on the top-level ones, so it should be fine in practice), and also only run it on realized widgets. Even still, I'm getting ~3 timeouts when opening the settings dialog in higan, but no other windows. But, this is the best I can do for now. And the reason for all of this pain? Yeah, updated the video code. So the Emulator::Interface now has this:    struct VideoSize { uint width, height; };  //or requiem for a tuple    auto videoSize() -> VideoSize;    auto videoSize(uint width, uint height, bool arc) -> VideoSize; The first function, for now, is just returning the literal surface size. I may remove this ... one thing I want to allow for is cores that send different texture sizes based on interlace/hires/overscan/etc settings. The second function is more interesting. Instead of having the UI trying to figure out sizing, I figure the emulation cores can do a better job and we can customize it per-core now. So it gets the window's width and height, and whether the user asked for aspect correction, and then computes the best width/height ratio possible. For now they're all just doing multiples of a 1x scale to the UI 2x,3x,4x modes. We still need a third function, which will probably be what I repurpose videoSize() for: to return the 'effective' size for pixel shaders, to then feed into ruby, to then feed into quark, to then feed into our shaders. Since shaders use normalized coordinates for pixel fetching, this should work out just fine. The real texture size will be exposed to quark shaders as well, of course. Now for the main window ... it's just hard-coded to be 640x480, 960x720, 1280x960 for now. It works nicely for some cores on some modes, not so much for others. Work in progress I guess. I also took the opportunity to draw the about dialog box logo on the main window. Got a bit fancy and used the old spherical gradient and impose functionality of nall/image on it. Very minor highlight, nothing garish. Just something nicer than a solid black window. If you guys want to mess around with sizes, placements, and gradient styles/colors/shapes ... feel free. If you come up with something nicer, do share. That's what led to all the GTK hell ... the logo wasn't drawing right as you resized the window. But now it is, though I am not at all happy with the hacking I had to do. I also had to improve the video update code as a result of this: - when you unload a game, it blacks out the screen - if you are not quitting the emulator, it'll draw the logo; if you are, it won't - when you load a game, it black out the logo These options prevent any unsightliness from resizing the viewport with image data on it already I need to redraw the logo when toggling fullscreen with no game loaded as well for Windows, it seems.
2016-08-13 13:57:48 +00:00
hasQuit = true;
Update to v098r11 release. byuu says: Changelog: - fixed nall/path.hpp compilation issue - fixed ruby/audio/xaudio header declaration compilation issue (again) - cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the file was whitespace overkill) - added null terminator entry to nall/windows/utf8.hpp argc[] array - nall/windows/guid.hpp uses the Windows API for generating the GUID - this should stop all the bug reports where two nall users were generating GUIDs at the exact same second - fixed hiro/cocoa compilation issue with uint# types - fixed major higan/sfc Super Game Boy audio latency issue - fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions - major cleanups to higan/processor/r65816 core - merged emulation/native-mode opcodes - use camel-case naming on memory.hpp functions - simplify address masking code for memory.hpp functions - simplify a few opcodes themselves (avoid redundant copies, etc) - rename regs.* to r.* to match modern convention of other CPU cores - removed device.order<> concept from Emulator::Interface - cores will now do the translation to make the job of the UI easier - fixed plurality naming of arrays in Emulator::Interface - example: emulator.ports[p].devices[d].inputs[i] - example: vector<Medium> media - probably more surprises Major show-stoppers to the next official release: - we need to work on GB core improvements: LY=153/0 case, multiple STAT IRQs case, GBC audio output regs, etc. - we need to re-add software cursors for light guns (Super Scope, Justifier) - after the above, we need to fix the turbo button for the Super Scope I really have no idea how I want to implement the light guns. Ideally, we'd want it in higan/video, so we can support the NES Zapper with the same code. But this isn't going to be easy, because only the SNES knows when its output is interlaced, and its resolutions can vary as {256,512}x{224,240,448,480} which requires pixel doubling that was hard-coded to the SNES-specific behavior, but isn't appropriate to be exposed in higan/video.
2016-05-25 11:13:02 +00:00
unloadMedium();
settings.save();
inputManager->quit();
Update to v103r21 release. byuu says: Changelog: - gb: added TAMA emulation [thanks to endrift for the initial notes] - gb: save RTC memory to disk (MBC3 doesn't write to said memory yet; TAMA doesn't emulate it yet) - gb: expect MMM01 boot loader to be at end of ROM instead of start - gb: store MBC2 save RAM as 256-bytes (512x4-bit) instead of 512-bytes (with padding) - gb: major cleanups to every cartridge mapper; moved to Mapper class instead of MMIO class - gb: don't serialize all mapper states with every save state; only serialize the active mapper - gb: serialize RAM even if a battery isn't present¹ - gb/cartridge: removed unnecessary code; refactored other code to eliminate duplication of functions - icarus: improve GB(C) heuristics generation to not include filenames for cartridges without battery backup - icarus: remove incorrect rearrangement of MMM01 ROM data - md/vdp: fix CRAM reads -- fixes Sonic Spinball colors [hex\_usr] - tomoko: hide the main higan window when entering fullscreen exclusive mode; helps with multi-monitor setups - tomoko: destroy ruby drivers before calling Application::quit() [Screwtape] - libco: add settings.h and defines to fiber, ucontext [Screwtape] ¹: this is one of those crystal clear indications that nobody's actually playing the higan DMG/CGB cores, or at least not with save states. This was a major mistake. Note: I can't find any official documentation that `GL_ALPHA_TEST` was removed from OpenGL 3.2. Since it's not hurting anything except showing some warnings in debug mode, I'm just going to leave it there for now.
2017-07-26 12:42:06 +00:00
video.reset();
audio.reset();
input.reset();
Update to v094r12 release. byuu says: Changelog: * added driver selection * added video scale + aspect correction settings * added A/V sync + audio mute settings * added configuration file * fixed compilation bugs under Windows and Linux * fixed window sizing * removed HSU1 * the system menu stays as "System", because "Game Boy Advance" was too long a string for the smallest scale size * some more stuff You guys probably won't be ecstatic about the video sizing options, but it's basically your choice of 1x, 2x or 4x scale with optional aspect correction. 3x was intentionally skipped because it looks horrible on hires SNES games. The window is resized and recentered upon loading games. The window doesn't resize otherwise. I never really liked the way v094 always left you with black screen areas and left you with off-centered window positions. I might go ahead and add the pseudo-fullscreen toggle that will jump into 4x mode (respecting your aspect setting.) Short-term: * add input port changing support * add other input types (mouse-based, etc) * add save states * add cheat codes * add timing configuration (video/audio sync) * add hotkeys (single state) We can probably do a new release once the short-term items are completed. Long-term: * add slotted cart loader (SGB, BSX, ST) * add DIP switch selection window (NSS) * add cheat code database * add state manager * add overscan masking Not planned: * video color adjustments (will allow emulated color vs raw color; but no more sliders) * pixel shaders * ananke integration (will need to make a command-line version to get my games in) * fancy audio adjustment controls (resampler, latency, volume) * input focus settings * relocating game library (not hard, just don't feel like it) * localization support (not enough users) * window geometry memory * anything else not in higan v094
2015-03-03 10:14:49 +00:00
Application::quit();
}