2016-06-17 13:03:54 +00:00
|
|
|
auto SA1::busRead(uint24 addr, uint8 data) -> uint8 {
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x40fe00) == 0x002200) { //$00-3f,80-bf:2200-23ff
|
2016-06-05 05:03:21 +00:00
|
|
|
return readIO(addr, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x408000) == 0x008000) { //$00-3f,80-bf:8000-ffff
|
|
|
|
addr = ((addr & 0x800000) >> 2) | ((addr & 0x3f0000) >> 1) | (addr & 0x7fff);
|
2016-06-17 13:03:54 +00:00
|
|
|
return mmcromRead(addr, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if((addr & 0xc00000) == 0xc00000) { //$c0-ff:0000-ffff
|
2016-06-17 13:03:54 +00:00
|
|
|
return mmcromRead(addr, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x40e000) == 0x006000) { //$00-3f,80-bf:6000-7fff
|
2016-06-17 13:03:54 +00:00
|
|
|
return mmcSA1Read(addr, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x40f800) == 0x000000) { //$00-3f,80-bf:0000-07ff
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
synchronize(cpu);
|
2015-12-14 09:41:06 +00:00
|
|
|
return iram.read(addr & 2047, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x40f800) == 0x003000) { //$00-3f,80-bf:3000-37ff
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
synchronize(cpu);
|
2015-12-14 09:41:06 +00:00
|
|
|
return iram.read(addr & 2047, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
synchronize(cpu);
|
2015-12-14 09:41:06 +00:00
|
|
|
return bwram.read(addr & (bwram.size() - 1), data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if((addr & 0xf00000) == 0x600000) { //$60-6f:0000-ffff
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
synchronize(cpu);
|
2016-06-17 13:03:54 +00:00
|
|
|
return bitmapRead(addr & 0x0fffff, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
Update to v093r01 release.
byuu says:
Changelog:
- added SA-1 MDR; fixes bug in SD Gundam G-Next where the main
battleship was unable to fire
- added out-of-the-box support for any BSD running Clang 3.3+ (FreeBSD
10+, notably)
- added new video shader, "Display Emulation", which changes the shader
based on the emulated system
- fixed the home button to go to your default library path
- phoenix: Windows port won't send onActivate unless an item is selected
(prevents crashing on pressing enter in file dialog)
- ruby: removed vec4 position from out Vertex {} (helps AMD cards)
- shaders: updated all shaders to use texture() instead of texture2D()
(helps AMD cards)
The "Display Emulation" option works like this: when selected, it tries
to load "<path>/Video Shaders/Emulation/<systemName>.shader/"; otherwise
it falls back to the blur shader. <path> is the usual (next to binary,
then in <config>/higan, then in /usr/share/higan, etc); and <systemName>
is "Famicom", "Super Famicom", "Game Boy", "Game Boy Color", "Game Boy
Advance"
To support BSD, I had to modify the $(platform) variable to
differentiate between Linux and BSD.
As such, the new $(platform) values are:
win -> windows
osx -> macosx
x -> linux or bsd
I am also checking uname -s instead of uname -a now. No reason to
potentially match the hostname to the wrong OS type.
2013-10-21 11:45:39 +00:00
|
|
|
|
|
|
|
//unmapped region
|
2015-12-14 09:41:06 +00:00
|
|
|
return data;
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
2016-06-17 13:03:54 +00:00
|
|
|
auto SA1::busWrite(uint24 addr, uint8 data) -> void {
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x40fe00) == 0x002200) { //$00-3f,80-bf:2200-23ff
|
2016-06-05 05:03:21 +00:00
|
|
|
return writeIO(addr, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x40e000) == 0x006000) { //$00-3f,80-bf:6000-7fff
|
2016-06-17 13:03:54 +00:00
|
|
|
return mmcSA1Write(addr, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x40f800) == 0x000000) { //$00-3f,80-bf:0000-07ff
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
synchronize(cpu);
|
Update to v074r11 release.
byuu says:
Changelog:
- debugger compiles on all three profiles
- libsnes compiles on all three platforms (no API changes to libsnes)
- memory.cpp : namespace memory removed (wram -> cpu, apuram -> smp,
vram, oam, cgram -> ppu)
- sa1.cpp : namespace memory removed (SA-1 specific functions merged
inline to SA1::bus_read,write)
- GameBoy: added serial link support with interrupts and proper 8192hz
timing, but obviously it acts as if no other GB is connected to it
- GameBoy: added STAT OAM interrupt, and better STAT d1,d0 mode values
- UI: since Qt is dead, I've renamed the config files back to bsnes.cfg
and bsnes-geometry.cfg
- SA1: IRAM was not syncing to CPU on SA-1 side
- PPU/Accuracy and PPU/Performance needed Sprite oam renamed to Sprite
sprite; so that I could add uint8 oam[544]
- makes more sense anyway, OAM = object attribute memory, obj or
sprite are better names for Sprite rendering class
- more cleanup
2011-01-24 09:03:17 +00:00
|
|
|
return iram.write(addr & 2047, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x40f800) == 0x003000) { //$00-3f,80-bf:3000-37ff
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
synchronize(cpu);
|
Update to v074r11 release.
byuu says:
Changelog:
- debugger compiles on all three profiles
- libsnes compiles on all three platforms (no API changes to libsnes)
- memory.cpp : namespace memory removed (wram -> cpu, apuram -> smp,
vram, oam, cgram -> ppu)
- sa1.cpp : namespace memory removed (SA-1 specific functions merged
inline to SA1::bus_read,write)
- GameBoy: added serial link support with interrupts and proper 8192hz
timing, but obviously it acts as if no other GB is connected to it
- GameBoy: added STAT OAM interrupt, and better STAT d1,d0 mode values
- UI: since Qt is dead, I've renamed the config files back to bsnes.cfg
and bsnes-geometry.cfg
- SA1: IRAM was not syncing to CPU on SA-1 side
- PPU/Accuracy and PPU/Performance needed Sprite oam renamed to Sprite
sprite; so that I could add uint8 oam[544]
- makes more sense anyway, OAM = object attribute memory, obj or
sprite are better names for Sprite rendering class
- more cleanup
2011-01-24 09:03:17 +00:00
|
|
|
return iram.write(addr & 2047, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
synchronize(cpu);
|
2012-07-08 02:57:34 +00:00
|
|
|
return bwram.write(addr & (bwram.size() - 1), data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if((addr & 0xf00000) == 0x600000) { //$60-6f:0000-ffff
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
synchronize(cpu);
|
2016-06-17 13:03:54 +00:00
|
|
|
return bitmapWrite(addr & 0x0fffff, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//$230c (VDPL), $230d (VDPH) use this bus to read variable-length data.
|
|
|
|
//this is used both to keep VBR-reads from accessing MMIO registers, and
|
|
|
|
//to avoid syncing the S-CPU and SA-1*; as both chips are able to access
|
|
|
|
//these ports.
|
2016-06-17 13:03:54 +00:00
|
|
|
auto SA1::vbrRead(uint24 addr, uint8 data) -> uint8 {
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x408000) == 0x008000) { //$00-3f,80-bf:8000-ffff
|
|
|
|
addr = ((addr & 0x800000) >> 2) | ((addr & 0x3f0000) >> 1) | (addr & 0x7fff);
|
2016-06-17 13:03:54 +00:00
|
|
|
return mmcromRead(addr, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if((addr & 0xc00000) == 0xc00000) { //$c0-ff:0000-ffff
|
2016-06-17 13:03:54 +00:00
|
|
|
return mmcromRead(addr, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x40e000) == 0x006000) { //$00-3f,80-bf:6000-7fff
|
2015-12-14 09:41:06 +00:00
|
|
|
return bwram.read(addr & (bwram.size() - 1), data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff
|
2015-12-14 09:41:06 +00:00
|
|
|
return bwram.read(addr & (bwram.size() - 1), data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x40f800) == 0x000000) { //$00-3f,80-bf:0000-07ff
|
2015-12-14 09:41:06 +00:00
|
|
|
return iram.read(addr & 2047, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if((addr & 0x40f800) == 0x003000) { //$00-3f,80-bf:3000-37ff
|
2015-12-14 09:41:06 +00:00
|
|
|
return iram.read(addr & 2047, data);
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
2015-11-14 00:52:51 +00:00
|
|
|
|
|
|
|
return 0x00;
|
2011-01-16 13:22:51 +00:00
|
|
|
}
|
|
|
|
|
2010-08-09 13:28:56 +00:00
|
|
|
//ROM, I-RAM and MMIO registers are accessed at ~10.74MHz (2 clock ticks)
|
|
|
|
//BW-RAM is accessed at ~5.37MHz (4 clock ticks)
|
|
|
|
//tick() == 2 clock ticks
|
|
|
|
//note: bus conflict delays are not emulated at this time
|
|
|
|
|
Update to v099r14 release.
byuu says:
Changelog:
- (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel
like they were contributing enough to be worth it]
- cleaned up nall::integer,natural,real functionality
- toInteger, toNatural, toReal for parsing strings to numbers
- fromInteger, fromNatural, fromReal for creating strings from numbers
- (string,Markup::Node,SQL-based-classes)::(integer,natural,real)
left unchanged
- template<typename T> numeral(T value, long padding, char padchar)
-> string for print() formatting
- deduces integer,natural,real based on T ... cast the value if you
want to override
- there still exists binary,octal,hex,pointer for explicit print()
formatting
- lstring -> string_vector [but using lstring = string_vector; is
declared]
- would be nice to remove the using lstring eventually ... but that'd
probably require 10,000 lines of changes >_>
- format -> string_format [no using here; format was too ambiguous]
- using integer = Integer<sizeof(int)*8>; and using natural =
Natural<sizeof(uint)*8>; declared
- for consistency with boolean. These three are meant for creating
zero-initialized values implicitly (various uses)
- R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees
up struct IO {} io; naming]
- SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {}
(status,registers); now
- still some CPU::Status status values ... they didn't really fit into
IO functionality ... will have to think about this more
- SFC CPU, PPU, SMP now use step() exclusively instead of addClocks()
calling into step()
- SFC CPU joypad1_bits, joypad2_bits were unused; killed them
- SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it
- SFC PPU OAM moved into PPU::Object; since nothing else uses it
- the raw uint8[544] array is gone. OAM::read() constructs values from
the OAM::Object[512] table now
- this avoids having to determine how we want to sub-divide the two
OAM memory sections
- this also eliminates the OAM::synchronize() functionality
- probably more I'm forgetting
The FPS fluctuations are driving me insane. This WIP went from 128fps to
137fps. Settled on 133.5fps for the final build. But nothing I changed
should have affected performance at all. This level of fluctuation makes
it damn near impossible to know whether I'm speeding things up or slowing
things down with changes.
2016-07-01 11:50:32 +00:00
|
|
|
auto SA1::idle() -> void {
|
2010-08-09 13:28:56 +00:00
|
|
|
tick();
|
|
|
|
}
|
|
|
|
|
2016-03-26 01:56:15 +00:00
|
|
|
auto SA1::read(uint24 addr) -> uint8 {
|
2010-08-09 13:28:56 +00:00
|
|
|
tick();
|
|
|
|
if(((addr & 0x40e000) == 0x006000) || ((addr & 0xd00000) == 0x400000)) tick();
|
2016-06-17 13:03:54 +00:00
|
|
|
return busRead(addr, r.mdr);
|
2010-08-09 13:28:56 +00:00
|
|
|
}
|
|
|
|
|
2016-03-26 01:56:15 +00:00
|
|
|
auto SA1::write(uint24 addr, uint8 data) -> void {
|
2010-08-09 13:28:56 +00:00
|
|
|
tick();
|
|
|
|
if(((addr & 0x40e000) == 0x006000) || ((addr & 0xd00000) == 0x400000)) tick();
|
2016-06-17 13:03:54 +00:00
|
|
|
busWrite(addr, r.mdr = data);
|
2010-08-09 13:28:56 +00:00
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
//note: addresses are translated prior to invoking this function:
|
|
|
|
//$00-3f,80-bf:8000-ffff mask=0x408000 => $00-3f:0000-ffff
|
|
|
|
//$c0-ff:0000-ffff mask=0
|
2016-06-17 13:03:54 +00:00
|
|
|
auto SA1::mmcromRead(uint24 addr, uint8) -> uint8 {
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
//reset vector overrides
|
|
|
|
if((addr & 0xffffe0) == 0x007fe0) { //$00:ffe0-ffef
|
|
|
|
if(addr == 0x7fea && sa1.mmio.cpu_nvsw) return sa1.mmio.snv >> 0;
|
|
|
|
if(addr == 0x7feb && sa1.mmio.cpu_nvsw) return sa1.mmio.snv >> 8;
|
|
|
|
if(addr == 0x7fee && sa1.mmio.cpu_ivsw) return sa1.mmio.siv >> 0;
|
|
|
|
if(addr == 0x7fef && sa1.mmio.cpu_ivsw) return sa1.mmio.siv >> 8;
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
}
|
|
|
|
|
2015-11-14 00:52:51 +00:00
|
|
|
static auto read = [](uint addr) {
|
2018-02-21 09:53:49 +00:00
|
|
|
if((addr & 0x400000) && bsmemory.size()) return bsmemory.read(addr, 0x00);
|
2012-07-08 02:57:34 +00:00
|
|
|
return sa1.rom.read(bus.mirror(addr, sa1.rom.size()));
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
};
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
bool lo = addr < 0x400000; //*bmode==0 only applies to $00-3f,80-bf:8000-ffff
|
|
|
|
addr &= 0x3fffff;
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if(addr < 0x100000) { //$00-1f,8000-ffff; $c0-cf:0000-ffff
|
|
|
|
if(lo && mmio.cbmode == 0) return read(addr);
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
return read((mmio.cb << 20) | (addr & 0x0fffff));
|
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if(addr < 0x200000) { //$20-3f,8000-ffff; $d0-df:0000-ffff
|
|
|
|
if(lo && mmio.dbmode == 0) return read(addr);
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
return read((mmio.db << 20) | (addr & 0x0fffff));
|
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if(addr < 0x300000) { //$80-9f,8000-ffff; $e0-ef:0000-ffff
|
|
|
|
if(lo && mmio.ebmode == 0) return read(addr);
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
return read((mmio.eb << 20) | (addr & 0x0fffff));
|
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if(addr < 0x400000) { //$a0-bf,8000-ffff; $f0-ff:0000-ffff
|
|
|
|
if(lo && mmio.fbmode == 0) return read(addr);
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
return read((mmio.fb << 20) | (addr & 0x0fffff));
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0x00;
|
|
|
|
}
|
|
|
|
|
2016-06-17 13:03:54 +00:00
|
|
|
auto SA1::mmcromWrite(uint24 addr, uint8 data) -> void {
|
Update to v089r17 release.
byuu says:
This implements the spec from the XML part 3 thread:
http://board.byuu.org/viewtopic.php?f=16&t=2998
It's also propagated the changes to nall and purify, so you can test
this one.
This is basically it, after years of effort I feel I finally have
a fully consistent and logical XML board format.
The only things left to change will be: modifications if emulation turns
out to be incorrect (eg we missed some MMIO mirrors, or mirrored too
much), and new additions.
And of course, I'm giving it a bit of time for good arguments against
the format.
Other than that, this release removes linear_vector and pointer_vector,
as vector is better than linear_vector and I've never used
pointer_vector.
vector also gets move(), which is a way to use move-semantics across
types. It lets you steal the underlying memory pool, effectively
destroying the vector without a copy.
This works really nicely with the move for read() functions to return
vector<uint8> instead of taking (uint8_t*&, unsigned&) parameters.
2012-07-15 13:02:27 +00:00
|
|
|
}
|
|
|
|
|
2016-06-17 13:03:54 +00:00
|
|
|
auto SA1::mmcbwramRead(uint24 addr, uint8 data) -> uint8 {
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if(addr < 0x2000) { //$00-3f,80-bf:6000-7fff
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
cpu.synchronize(sa1);
|
Update to v089r17 release.
byuu says:
This implements the spec from the XML part 3 thread:
http://board.byuu.org/viewtopic.php?f=16&t=2998
It's also propagated the changes to nall and purify, so you can test
this one.
This is basically it, after years of effort I feel I finally have
a fully consistent and logical XML board format.
The only things left to change will be: modifications if emulation turns
out to be incorrect (eg we missed some MMIO mirrors, or mirrored too
much), and new additions.
And of course, I'm giving it a bit of time for good arguments against
the format.
Other than that, this release removes linear_vector and pointer_vector,
as vector is better than linear_vector and I've never used
pointer_vector.
vector also gets move(), which is a way to use move-semantics across
types. It lets you steal the underlying memory pool, effectively
destroying the vector without a copy.
This works really nicely with the move for read() functions to return
vector<uint8> instead of taking (uint8_t*&, unsigned&) parameters.
2012-07-15 13:02:27 +00:00
|
|
|
addr = bus.mirror(mmio.sbm * 0x2000 + (addr & 0x1fff), cpubwram.size());
|
|
|
|
return cpubwram.read(addr);
|
2012-07-08 02:57:34 +00:00
|
|
|
}
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
|
Update to v089r17 release.
byuu says:
This implements the spec from the XML part 3 thread:
http://board.byuu.org/viewtopic.php?f=16&t=2998
It's also propagated the changes to nall and purify, so you can test
this one.
This is basically it, after years of effort I feel I finally have
a fully consistent and logical XML board format.
The only things left to change will be: modifications if emulation turns
out to be incorrect (eg we missed some MMIO mirrors, or mirrored too
much), and new additions.
And of course, I'm giving it a bit of time for good arguments against
the format.
Other than that, this release removes linear_vector and pointer_vector,
as vector is better than linear_vector and I've never used
pointer_vector.
vector also gets move(), which is a way to use move-semantics across
types. It lets you steal the underlying memory pool, effectively
destroying the vector without a copy.
This works really nicely with the move for read() functions to return
vector<uint8> instead of taking (uint8_t*&, unsigned&) parameters.
2012-07-15 13:02:27 +00:00
|
|
|
if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff
|
|
|
|
return cpubwram.read(addr & 0x0fffff);
|
|
|
|
}
|
|
|
|
|
2015-12-14 09:41:06 +00:00
|
|
|
return data;
|
Update to v089r17 release.
byuu says:
This implements the spec from the XML part 3 thread:
http://board.byuu.org/viewtopic.php?f=16&t=2998
It's also propagated the changes to nall and purify, so you can test
this one.
This is basically it, after years of effort I feel I finally have
a fully consistent and logical XML board format.
The only things left to change will be: modifications if emulation turns
out to be incorrect (eg we missed some MMIO mirrors, or mirrored too
much), and new additions.
And of course, I'm giving it a bit of time for good arguments against
the format.
Other than that, this release removes linear_vector and pointer_vector,
as vector is better than linear_vector and I've never used
pointer_vector.
vector also gets move(), which is a way to use move-semantics across
types. It lets you steal the underlying memory pool, effectively
destroying the vector without a copy.
This works really nicely with the move for read() functions to return
vector<uint8> instead of taking (uint8_t*&, unsigned&) parameters.
2012-07-15 13:02:27 +00:00
|
|
|
}
|
|
|
|
|
2016-06-17 13:03:54 +00:00
|
|
|
auto SA1::mmcbwramWrite(uint24 addr, uint8 data) -> void {
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
if(addr < 0x2000) { //$00-3f,80-bf:6000-7fff
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
cpu.synchronize(sa1);
|
2012-07-08 02:57:34 +00:00
|
|
|
addr = bus.mirror(mmio.sbm * 0x2000 + (addr & 0x1fff), cpubwram.size());
|
|
|
|
return cpubwram.write(addr, data);
|
|
|
|
}
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
|
2012-07-08 02:57:34 +00:00
|
|
|
if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff
|
|
|
|
return cpubwram.write(addr & 0x0fffff, data);
|
|
|
|
}
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
}
|
|
|
|
|
2016-06-17 13:03:54 +00:00
|
|
|
auto SA1::mmcSA1Read(uint addr, uint8 data) -> uint8 {
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
synchronize(cpu);
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
if(mmio.sw46 == 0) {
|
|
|
|
//$40-43:0000-ffff x 32 projection
|
2012-07-08 02:57:34 +00:00
|
|
|
addr = bus.mirror((mmio.cbm & 0x1f) * 0x2000 + (addr & 0x1fff), bwram.size());
|
2015-12-14 09:41:06 +00:00
|
|
|
return bwram.read(addr, data);
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
} else {
|
|
|
|
//$60-6f:0000-ffff x 128 projection
|
Update to v074r11 release.
byuu says:
Changelog:
- debugger compiles on all three profiles
- libsnes compiles on all three platforms (no API changes to libsnes)
- memory.cpp : namespace memory removed (wram -> cpu, apuram -> smp,
vram, oam, cgram -> ppu)
- sa1.cpp : namespace memory removed (SA-1 specific functions merged
inline to SA1::bus_read,write)
- GameBoy: added serial link support with interrupts and proper 8192hz
timing, but obviously it acts as if no other GB is connected to it
- GameBoy: added STAT OAM interrupt, and better STAT d1,d0 mode values
- UI: since Qt is dead, I've renamed the config files back to bsnes.cfg
and bsnes-geometry.cfg
- SA1: IRAM was not syncing to CPU on SA-1 side
- PPU/Accuracy and PPU/Performance needed Sprite oam renamed to Sprite
sprite; so that I could add uint8 oam[544]
- makes more sense anyway, OAM = object attribute memory, obj or
sprite are better names for Sprite rendering class
- more cleanup
2011-01-24 09:03:17 +00:00
|
|
|
addr = bus.mirror(mmio.cbm * 0x2000 + (addr & 0x1fff), 0x100000);
|
2016-06-17 13:03:54 +00:00
|
|
|
return bitmapRead(addr, data);
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-06-17 13:03:54 +00:00
|
|
|
auto SA1::mmcSA1Write(uint addr, uint8 data) -> void {
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
synchronize(cpu);
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
if(mmio.sw46 == 0) {
|
|
|
|
//$40-43:0000-ffff x 32 projection
|
2012-07-08 02:57:34 +00:00
|
|
|
addr = bus.mirror((mmio.cbm & 0x1f) * 0x2000 + (addr & 0x1fff), bwram.size());
|
|
|
|
bwram.write(addr, data);
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
} else {
|
|
|
|
//$60-6f:0000-ffff x 128 projection
|
Update to v074r11 release.
byuu says:
Changelog:
- debugger compiles on all three profiles
- libsnes compiles on all three platforms (no API changes to libsnes)
- memory.cpp : namespace memory removed (wram -> cpu, apuram -> smp,
vram, oam, cgram -> ppu)
- sa1.cpp : namespace memory removed (SA-1 specific functions merged
inline to SA1::bus_read,write)
- GameBoy: added serial link support with interrupts and proper 8192hz
timing, but obviously it acts as if no other GB is connected to it
- GameBoy: added STAT OAM interrupt, and better STAT d1,d0 mode values
- UI: since Qt is dead, I've renamed the config files back to bsnes.cfg
and bsnes-geometry.cfg
- SA1: IRAM was not syncing to CPU on SA-1 side
- PPU/Accuracy and PPU/Performance needed Sprite oam renamed to Sprite
sprite; so that I could add uint8 oam[544]
- makes more sense anyway, OAM = object attribute memory, obj or
sprite are better names for Sprite rendering class
- more cleanup
2011-01-24 09:03:17 +00:00
|
|
|
addr = bus.mirror(mmio.cbm * 0x2000 + (addr & 0x1fff), 0x100000);
|
2016-06-17 13:03:54 +00:00
|
|
|
bitmapWrite(addr, data);
|
Update to v074r11 release.
byuu says:
Changelog:
- debugger compiles on all three profiles
- libsnes compiles on all three platforms (no API changes to libsnes)
- memory.cpp : namespace memory removed (wram -> cpu, apuram -> smp,
vram, oam, cgram -> ppu)
- sa1.cpp : namespace memory removed (SA-1 specific functions merged
inline to SA1::bus_read,write)
- GameBoy: added serial link support with interrupts and proper 8192hz
timing, but obviously it acts as if no other GB is connected to it
- GameBoy: added STAT OAM interrupt, and better STAT d1,d0 mode values
- UI: since Qt is dead, I've renamed the config files back to bsnes.cfg
and bsnes-geometry.cfg
- SA1: IRAM was not syncing to CPU on SA-1 side
- PPU/Accuracy and PPU/Performance needed Sprite oam renamed to Sprite
sprite; so that I could add uint8 oam[544]
- makes more sense anyway, OAM = object attribute memory, obj or
sprite are better names for Sprite rendering class
- more cleanup
2011-01-24 09:03:17 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-06-17 13:03:54 +00:00
|
|
|
auto SA1::bitmapRead(uint addr, uint8 data) -> uint8 {
|
Update to v074r11 release.
byuu says:
Changelog:
- debugger compiles on all three profiles
- libsnes compiles on all three platforms (no API changes to libsnes)
- memory.cpp : namespace memory removed (wram -> cpu, apuram -> smp,
vram, oam, cgram -> ppu)
- sa1.cpp : namespace memory removed (SA-1 specific functions merged
inline to SA1::bus_read,write)
- GameBoy: added serial link support with interrupts and proper 8192hz
timing, but obviously it acts as if no other GB is connected to it
- GameBoy: added STAT OAM interrupt, and better STAT d1,d0 mode values
- UI: since Qt is dead, I've renamed the config files back to bsnes.cfg
and bsnes-geometry.cfg
- SA1: IRAM was not syncing to CPU on SA-1 side
- PPU/Accuracy and PPU/Performance needed Sprite oam renamed to Sprite
sprite; so that I could add uint8 oam[544]
- makes more sense anyway, OAM = object attribute memory, obj or
sprite are better names for Sprite rendering class
- more cleanup
2011-01-24 09:03:17 +00:00
|
|
|
if(mmio.bbf == 0) {
|
|
|
|
//4bpp
|
2015-11-14 00:52:51 +00:00
|
|
|
uint shift = addr & 1;
|
2012-07-08 02:57:34 +00:00
|
|
|
addr = (addr >> 1) & (bwram.size() - 1);
|
2013-05-05 09:21:30 +00:00
|
|
|
switch(shift) {
|
|
|
|
case 0: return (bwram.read(addr) >> 0) & 15;
|
|
|
|
case 1: return (bwram.read(addr) >> 4) & 15;
|
Update to v074r11 release.
byuu says:
Changelog:
- debugger compiles on all three profiles
- libsnes compiles on all three platforms (no API changes to libsnes)
- memory.cpp : namespace memory removed (wram -> cpu, apuram -> smp,
vram, oam, cgram -> ppu)
- sa1.cpp : namespace memory removed (SA-1 specific functions merged
inline to SA1::bus_read,write)
- GameBoy: added serial link support with interrupts and proper 8192hz
timing, but obviously it acts as if no other GB is connected to it
- GameBoy: added STAT OAM interrupt, and better STAT d1,d0 mode values
- UI: since Qt is dead, I've renamed the config files back to bsnes.cfg
and bsnes-geometry.cfg
- SA1: IRAM was not syncing to CPU on SA-1 side
- PPU/Accuracy and PPU/Performance needed Sprite oam renamed to Sprite
sprite; so that I could add uint8 oam[544]
- makes more sense anyway, OAM = object attribute memory, obj or
sprite are better names for Sprite rendering class
- more cleanup
2011-01-24 09:03:17 +00:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
//2bpp
|
2015-11-14 00:52:51 +00:00
|
|
|
uint shift = addr & 3;
|
2012-07-08 02:57:34 +00:00
|
|
|
addr = (addr >> 2) & (bwram.size() - 1);
|
2013-05-05 09:21:30 +00:00
|
|
|
switch(shift) {
|
|
|
|
case 0: return (bwram.read(addr) >> 0) & 3;
|
|
|
|
case 1: return (bwram.read(addr) >> 2) & 3;
|
|
|
|
case 2: return (bwram.read(addr) >> 4) & 3;
|
|
|
|
case 3: return (bwram.read(addr) >> 6) & 3;
|
Update to v074r11 release.
byuu says:
Changelog:
- debugger compiles on all three profiles
- libsnes compiles on all three platforms (no API changes to libsnes)
- memory.cpp : namespace memory removed (wram -> cpu, apuram -> smp,
vram, oam, cgram -> ppu)
- sa1.cpp : namespace memory removed (SA-1 specific functions merged
inline to SA1::bus_read,write)
- GameBoy: added serial link support with interrupts and proper 8192hz
timing, but obviously it acts as if no other GB is connected to it
- GameBoy: added STAT OAM interrupt, and better STAT d1,d0 mode values
- UI: since Qt is dead, I've renamed the config files back to bsnes.cfg
and bsnes-geometry.cfg
- SA1: IRAM was not syncing to CPU on SA-1 side
- PPU/Accuracy and PPU/Performance needed Sprite oam renamed to Sprite
sprite; so that I could add uint8 oam[544]
- makes more sense anyway, OAM = object attribute memory, obj or
sprite are better names for Sprite rendering class
- more cleanup
2011-01-24 09:03:17 +00:00
|
|
|
}
|
Update to v074r03 release.
byuu says:
You guys are going to hate the hell out of this one. It's twenty hours
of non-stop work, no exaggeration at all. Started at 4AM, just wrapped
up now at 8PM.
I rewrote the entire memory subsystem.
Old system:
65536 pages that map 256 bytes each
Mapping a new page overwrites old page
Granularity capped at 256 bytes minimum, requiring ST-001x to map
60:0000-00ff instead of 60:0000,0001
Classes inherit from MMIO and Memory, forcing only one mappable function
per class, and fixed names
MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity
Can dynamically change the map at run-time, MMC register settings
perform dynamic remapping
New system:
XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that
shapes almost everything on the SNES very well
Internally, 2048 pages that map 8192 bytes each
Pages are vectors, scans O(n) from last to first (O(log n) would not
help, n is never > 3)
Can multi-cast writes, but not reads [for the obvious reason of: which
read do you return?]
Can map reads and writes separately
Granularity of one for entire 24-bit address range, no need for MMIO
- whatever is in XML is exactly what you get
Read/Write tables bind function callbacks, so I can have any number of
functions with any names from any classes with no inheritance (no
more uPD7725DR, uPD7725SR helpers, etc)
Less memory usage overall due to less tables [ I tried 16 million tables
and it used 2GB of RAM >_o ]
Cannot dynamically change the map at run-time, MMC read/write functions
perform address translation [worse average case speed, better worst
case speed]
Now the hate me part, functors can't beat virtual functions for speed.
There are speed penalties involved:
-4.5% on average games
-11% on SuperFX games (SFX has its own bus)
-15% on SA-1 games (SA-1 has two buses)
Of course the two that need the speed the most get the biggest hits.
I'm afraid there's really not a lot of wiggle room to boost speed back
up.
I suppose one bright spot is that we can much more easily try out
entirely new mapping systems now, since the dynamic portions have been
eliminated.
2011-01-15 04:30:29 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-06-17 13:03:54 +00:00
|
|
|
auto SA1::bitmapWrite(uint addr, uint8 data) -> void {
|
Update to v074r11 release.
byuu says:
Changelog:
- debugger compiles on all three profiles
- libsnes compiles on all three platforms (no API changes to libsnes)
- memory.cpp : namespace memory removed (wram -> cpu, apuram -> smp,
vram, oam, cgram -> ppu)
- sa1.cpp : namespace memory removed (SA-1 specific functions merged
inline to SA1::bus_read,write)
- GameBoy: added serial link support with interrupts and proper 8192hz
timing, but obviously it acts as if no other GB is connected to it
- GameBoy: added STAT OAM interrupt, and better STAT d1,d0 mode values
- UI: since Qt is dead, I've renamed the config files back to bsnes.cfg
and bsnes-geometry.cfg
- SA1: IRAM was not syncing to CPU on SA-1 side
- PPU/Accuracy and PPU/Performance needed Sprite oam renamed to Sprite
sprite; so that I could add uint8 oam[544]
- makes more sense anyway, OAM = object attribute memory, obj or
sprite are better names for Sprite rendering class
- more cleanup
2011-01-24 09:03:17 +00:00
|
|
|
if(mmio.bbf == 0) {
|
|
|
|
//4bpp
|
2015-11-14 00:52:51 +00:00
|
|
|
uint shift = addr & 1;
|
2012-07-08 02:57:34 +00:00
|
|
|
addr = (addr >> 1) & (bwram.size() - 1);
|
2013-05-05 09:21:30 +00:00
|
|
|
switch(shift) {
|
|
|
|
case 0: data = (bwram.read(addr) & 0xf0) | ((data & 15) << 0); break;
|
|
|
|
case 1: data = (bwram.read(addr) & 0x0f) | ((data & 15) << 4); break;
|
Update to v074r11 release.
byuu says:
Changelog:
- debugger compiles on all three profiles
- libsnes compiles on all three platforms (no API changes to libsnes)
- memory.cpp : namespace memory removed (wram -> cpu, apuram -> smp,
vram, oam, cgram -> ppu)
- sa1.cpp : namespace memory removed (SA-1 specific functions merged
inline to SA1::bus_read,write)
- GameBoy: added serial link support with interrupts and proper 8192hz
timing, but obviously it acts as if no other GB is connected to it
- GameBoy: added STAT OAM interrupt, and better STAT d1,d0 mode values
- UI: since Qt is dead, I've renamed the config files back to bsnes.cfg
and bsnes-geometry.cfg
- SA1: IRAM was not syncing to CPU on SA-1 side
- PPU/Accuracy and PPU/Performance needed Sprite oam renamed to Sprite
sprite; so that I could add uint8 oam[544]
- makes more sense anyway, OAM = object attribute memory, obj or
sprite are better names for Sprite rendering class
- more cleanup
2011-01-24 09:03:17 +00:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
//2bpp
|
2015-11-14 00:52:51 +00:00
|
|
|
uint shift = addr & 3;
|
2012-07-08 02:57:34 +00:00
|
|
|
addr = (addr >> 2) & (bwram.size() - 1);
|
2013-05-05 09:21:30 +00:00
|
|
|
switch(shift) {
|
|
|
|
case 0: data = (bwram.read(addr) & 0xfc) | ((data & 3) << 0); break;
|
|
|
|
case 1: data = (bwram.read(addr) & 0xf3) | ((data & 3) << 2); break;
|
|
|
|
case 2: data = (bwram.read(addr) & 0xcf) | ((data & 3) << 4); break;
|
|
|
|
case 3: data = (bwram.read(addr) & 0x3f) | ((data & 3) << 6); break;
|
Update to v074r11 release.
byuu says:
Changelog:
- debugger compiles on all three profiles
- libsnes compiles on all three platforms (no API changes to libsnes)
- memory.cpp : namespace memory removed (wram -> cpu, apuram -> smp,
vram, oam, cgram -> ppu)
- sa1.cpp : namespace memory removed (SA-1 specific functions merged
inline to SA1::bus_read,write)
- GameBoy: added serial link support with interrupts and proper 8192hz
timing, but obviously it acts as if no other GB is connected to it
- GameBoy: added STAT OAM interrupt, and better STAT d1,d0 mode values
- UI: since Qt is dead, I've renamed the config files back to bsnes.cfg
and bsnes-geometry.cfg
- SA1: IRAM was not syncing to CPU on SA-1 side
- PPU/Accuracy and PPU/Performance needed Sprite oam renamed to Sprite
sprite; so that I could add uint8 oam[544]
- makes more sense anyway, OAM = object attribute memory, obj or
sprite are better names for Sprite rendering class
- more cleanup
2011-01-24 09:03:17 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-07-08 02:57:34 +00:00
|
|
|
bwram.write(addr, data);
|
Update to v074r11 release.
byuu says:
Changelog:
- debugger compiles on all three profiles
- libsnes compiles on all three platforms (no API changes to libsnes)
- memory.cpp : namespace memory removed (wram -> cpu, apuram -> smp,
vram, oam, cgram -> ppu)
- sa1.cpp : namespace memory removed (SA-1 specific functions merged
inline to SA1::bus_read,write)
- GameBoy: added serial link support with interrupts and proper 8192hz
timing, but obviously it acts as if no other GB is connected to it
- GameBoy: added STAT OAM interrupt, and better STAT d1,d0 mode values
- UI: since Qt is dead, I've renamed the config files back to bsnes.cfg
and bsnes-geometry.cfg
- SA1: IRAM was not syncing to CPU on SA-1 side
- PPU/Accuracy and PPU/Performance needed Sprite oam renamed to Sprite
sprite; so that I could add uint8 oam[544]
- makes more sense anyway, OAM = object attribute memory, obj or
sprite are better names for Sprite rendering class
- more cleanup
2011-01-24 09:03:17 +00:00
|
|
|
}
|