2018-05-24 02:14:17 +00:00
|
|
|
#include <SDL2/SDL.h>
|
2010-08-09 13:28:56 +00:00
|
|
|
#include <sys/ipc.h>
|
|
|
|
#include <sys/shm.h>
|
|
|
|
|
Update to v093r12 release.
byuu says:
I've completely redone the ethos InputManager and ruby to work on
HID::Device objects instead of one giant scancode pool.
Currently only the udev driver supports the changes to ruby, so only
Linux users will be able to compile and run this WIP build.
The nice thing about the new system is that it's now possible to
uniquely identify controllers, so if you swap out gamepads, you won't
end up with it working but with all the mappings all screwed up. Since
higan lets you map multiple physical inputs to one emulated input, you
can now configure your keyboard and multiple gamepads to the same
emulated input, and then just use whatever controller you want.
Because USB gamepad makers failed to provide unique serial#s with each
controller, we have to limit the mapping to specific USB ports.
Otherwise, we couldn't distinguish two otherwise identical gamepads. So
basically your computer USB ports act like real game console input port
numbers. Which is kind of neat, I guess.
And the really nice thing about the new system is that we now have the
capability to support hotplugging input devices. I haven't yet added
this to any drivers, but I'm definitely going to add it to udev for v094
official.
Finally, with the device ID (vendor ID + product ID) exposed, we gain
one last really cool feature that we may be able to develop more in the
future. Say we created a joypad.bml file to include with higan. In it,
we'd store the Xbox 360 controller, and pre-defined button mappings for
each emulated system. So if higan detects you have an Xbox 360
controller, you can just plug it in and use it. Even better, we can
clearly specify the difference between triggers and analog axes, and
name each individual input. So you'd see "Xbox 360 Gamepad #1: Left
Trigger" instead of higan v093's "JP0::Axis2.Hi"
Note: for right now, ethos' input manager isn't filtering the device IDs
to look pretty. So you're going to see a 64-bit hex value for a device
ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
|
|
|
#include "keyboard/xlib.cpp"
|
|
|
|
#include "mouse/xlib.cpp"
|
|
|
|
#include "joypad/sdl.cpp"
|
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
struct InputSDL : InputDriver {
|
2018-08-05 09:00:15 +00:00
|
|
|
InputSDL& self = *this;
|
2018-08-01 09:07:28 +00:00
|
|
|
InputSDL(Input& super) : InputDriver(super), keyboard(super), mouse(super), joypad(super) {}
|
2018-07-31 02:23:12 +00:00
|
|
|
~InputSDL() { terminate(); }
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2018-08-01 09:07:28 +00:00
|
|
|
auto create() -> bool override {
|
Update to v103r15 release.
byuu says:
Changelog:
- ruby: rewrote the API interfaces for Video, Audio, Input
- ruby/audio: can now select the number of output channels (not useful
to higan, sorry)
- ruby/asio: various improvements
- tomoko: audio settings panel can now select separate audio devices
(for ASIO, OSS so far)
- tomoko: audio settings panel frequency and latency lists are
dynamically populated now
Note: due to the ruby API rewrite, most drivers will not compile. Right
now, the following work:
- video: Direct3D, XShm
- audio: ASIO, OSS
- input: Windows, SDL, Xlib
It takes a really long time to rewrite these (six hours to do the
above), so it's going to be a while before we're back at 100%
functionality again.
Errata:
- ASIO needs device(), setDevice()
- need to call setDevice() at program startup to populate
frequency/latency settings properly
- changing the device and/or frequency needs to update the emulator
resampler rates
The really hard part is going to be the last one: the only way to change
the emulator frequency is to flush all the audio streams and then
recompute all the coefficients for the resamplers. If this is called
during emulation, all audio streams will be erased and thus no sound
will be output. I'll most likely be forced to simply ignore
device/frequency changes until the user loads another game. It is at
least possible to toggle the latency dynamically.
2017-07-17 05:11:18 +00:00
|
|
|
return initialize();
|
2010-08-09 13:28:56 +00:00
|
|
|
}
|
|
|
|
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
auto driver() -> string override { return "SDL"; }
|
2018-07-31 02:23:12 +00:00
|
|
|
auto ready() -> bool override { return isReady; }
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
auto hasContext() -> bool override { return true; }
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
auto setContext(uintptr context) -> bool override { return initialize(); }
|
|
|
|
|
|
|
|
auto acquired() -> bool override { return mouse.acquired(); }
|
|
|
|
auto acquire() -> bool override { return mouse.acquire(); }
|
|
|
|
auto release() -> bool override { return mouse.release(); }
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
auto poll() -> vector<shared_pointer<HID::Device>> override {
|
2015-05-24 09:44:28 +00:00
|
|
|
vector<shared_pointer<HID::Device>> devices;
|
2018-07-31 02:23:12 +00:00
|
|
|
keyboard.poll(devices);
|
|
|
|
mouse.poll(devices);
|
|
|
|
joypad.poll(devices);
|
2014-01-05 09:59:17 +00:00
|
|
|
return devices;
|
2010-08-09 13:28:56 +00:00
|
|
|
}
|
|
|
|
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
auto rumble(uint64_t id, bool enable) -> bool override {
|
2014-01-05 09:59:17 +00:00
|
|
|
return false;
|
2013-12-21 10:45:58 +00:00
|
|
|
}
|
|
|
|
|
Update to v103r15 release.
byuu says:
Changelog:
- ruby: rewrote the API interfaces for Video, Audio, Input
- ruby/audio: can now select the number of output channels (not useful
to higan, sorry)
- ruby/asio: various improvements
- tomoko: audio settings panel can now select separate audio devices
(for ASIO, OSS so far)
- tomoko: audio settings panel frequency and latency lists are
dynamically populated now
Note: due to the ruby API rewrite, most drivers will not compile. Right
now, the following work:
- video: Direct3D, XShm
- audio: ASIO, OSS
- input: Windows, SDL, Xlib
It takes a really long time to rewrite these (six hours to do the
above), so it's going to be a while before we're back at 100%
functionality again.
Errata:
- ASIO needs device(), setDevice()
- need to call setDevice() at program startup to populate
frequency/latency settings properly
- changing the device and/or frequency needs to update the emulator
resampler rates
The really hard part is going to be the last one: the only way to change
the emulator frequency is to flush all the audio streams and then
recompute all the coefficients for the resamplers. If this is called
during emulation, all audio streams will be erased and thus no sound
will be output. I'll most likely be forced to simply ignore
device/frequency changes until the user loads another game. It is at
least possible to toggle the latency dynamically.
2017-07-17 05:11:18 +00:00
|
|
|
private:
|
|
|
|
auto initialize() -> bool {
|
|
|
|
terminate();
|
2018-07-31 02:23:12 +00:00
|
|
|
if(!self.context) return false;
|
|
|
|
if(!keyboard.initialize()) return false;
|
|
|
|
if(!mouse.initialize(self.context)) return false;
|
|
|
|
if(!joypad.initialize()) return false;
|
|
|
|
return isReady = true;
|
2010-08-09 13:28:56 +00:00
|
|
|
}
|
|
|
|
|
Update to v103r15 release.
byuu says:
Changelog:
- ruby: rewrote the API interfaces for Video, Audio, Input
- ruby/audio: can now select the number of output channels (not useful
to higan, sorry)
- ruby/asio: various improvements
- tomoko: audio settings panel can now select separate audio devices
(for ASIO, OSS so far)
- tomoko: audio settings panel frequency and latency lists are
dynamically populated now
Note: due to the ruby API rewrite, most drivers will not compile. Right
now, the following work:
- video: Direct3D, XShm
- audio: ASIO, OSS
- input: Windows, SDL, Xlib
It takes a really long time to rewrite these (six hours to do the
above), so it's going to be a while before we're back at 100%
functionality again.
Errata:
- ASIO needs device(), setDevice()
- need to call setDevice() at program startup to populate
frequency/latency settings properly
- changing the device and/or frequency needs to update the emulator
resampler rates
The really hard part is going to be the last one: the only way to change
the emulator frequency is to flush all the audio streams and then
recompute all the coefficients for the resamplers. If this is called
during emulation, all audio streams will be erased and thus no sound
will be output. I'll most likely be forced to simply ignore
device/frequency changes until the user loads another game. It is at
least possible to toggle the latency dynamically.
2017-07-17 05:11:18 +00:00
|
|
|
auto terminate() -> void {
|
2018-07-31 02:23:12 +00:00
|
|
|
isReady = false;
|
|
|
|
keyboard.terminate();
|
|
|
|
mouse.terminate();
|
|
|
|
joypad.terminate();
|
2010-08-09 13:28:56 +00:00
|
|
|
}
|
Update to v103r15 release.
byuu says:
Changelog:
- ruby: rewrote the API interfaces for Video, Audio, Input
- ruby/audio: can now select the number of output channels (not useful
to higan, sorry)
- ruby/asio: various improvements
- tomoko: audio settings panel can now select separate audio devices
(for ASIO, OSS so far)
- tomoko: audio settings panel frequency and latency lists are
dynamically populated now
Note: due to the ruby API rewrite, most drivers will not compile. Right
now, the following work:
- video: Direct3D, XShm
- audio: ASIO, OSS
- input: Windows, SDL, Xlib
It takes a really long time to rewrite these (six hours to do the
above), so it's going to be a while before we're back at 100%
functionality again.
Errata:
- ASIO needs device(), setDevice()
- need to call setDevice() at program startup to populate
frequency/latency settings properly
- changing the device and/or frequency needs to update the emulator
resampler rates
The really hard part is going to be the last one: the only way to change
the emulator frequency is to flush all the audio streams and then
recompute all the coefficients for the resamplers. If this is called
during emulation, all audio streams will be erased and thus no sound
will be output. I'll most likely be forced to simply ignore
device/frequency changes until the user loads another game. It is at
least possible to toggle the latency dynamically.
2017-07-17 05:11:18 +00:00
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
bool isReady = false;
|
|
|
|
InputKeyboardXlib keyboard;
|
|
|
|
InputMouseXlib mouse;
|
|
|
|
InputJoypadSDL joypad;
|
2010-08-09 13:28:56 +00:00
|
|
|
};
|