bsnes/sfc/cpu/cpu.hpp

147 lines
2.6 KiB
C++
Raw Normal View History

struct CPU : Processor::R65816, Thread, public PPUcounter {
uint8 wram[128 * 1024];
Updated to v067r21 release. byuu says: This moves toward a profile-selection mode. Right now, it is incomplete. There are three binaries, one for each profile. The GUI selection doesn't actually do anything yet. There will be a launcher in a future release that loads each profile's respective binary. I reverted away from blargg's SMP library for the time being, in favor of my own. This will fix most of the csnes/bsnes-performance bugs. This causes a 10% speed hit on 64-bit platforms, and a 15% speed hit on 32-bit platforms. I hope to be able to regain that speed in the future, I may also experiment with creating my own fast-SMP core which drops bus hold delays and TEST register support (never used by anything, ever.) Save states now work in all three cores, but they are not cross-compatible. The profile name is stored in the description field of the save states, and it won't load a state if the profile name doesn't match. The debugger only works on the research target for now. Give it time and it will return for the other targets. Other than that, let's please resume testing on all three once again. See how far we get this time :) I can confirm the following games have issues on the performance profile: - Armored Police Metal Jacket (minor logo flickering, not a big deal) - Chou Aniki (won't start, so obviously unplayable) - Robocop vs The Terminator (major in-game flickering, unplayable) Anyone still have that gigantic bsnes thread archive from the ZSNES forum? Maybe I posted about how to fix those two broken games in there, heh. I really want to release this as v1.0, but my better judgment says we need to give it another week. Damn.
2010-10-20 11:22:44 +00:00
enum : bool { Threaded = true };
vector<Thread*> coprocessors;
alwaysinline void step(unsigned clocks);
alwaysinline void synchronize_smp();
void synchronize_ppu();
void synchronize_coprocessors();
void synchronize_controllers();
Updated to v067r23 release. byuu says: Added missing $4200 IRQ lock, which fixes Chou Aniki on the fast CPU core, so slower PCs can get their brotherly love on. Added range-based controller IOBit latching to the fast CPU core, which enables Super Scope and Justifier support. Uses the priority queue as well, so there is zero speed-hit. Given the way range-testing works, the trigger point may vary by 1-2 pixels when firing at the same spot. Not really a big deal when it avoids a massive speed penalty. Fixed PAL and interlace-mode HVIRQs at V=0,H<2 on the fast CPU core. Added the dot-renderer's sprite list update-on-OAM-write functionality to the scanline-based PPU renderer. Unfortunately it looks like all the speed gain was already taken from the global dirty flag I was using before, but this certainly won't hurt speed any, so whatever. Added #ifdef to stop CoInitialize(0) on non-Windows ports. Added #ifdefs to stop gradient fade on Windows port. Not going to fuck over the Linux port aesthetic because of Qt bug #47,326,927. If there's a way to tell what Qt theme is being used, I can leave it enabled for XP/Vista themes. Moved HDMA trigger from 1104 to 1112, and reduced channel overhead from 24 to 16, to better simulate one-cycle DMA->CPU sync. Code clarity: I've re-added my varint.hpp classes, and am actively using them in the accuracy cores. So far, I haven't done anything that would detriment speed, but it is certainly cool. The APU ports exposed by the CPU and SMP now take uint2 address arguments, the CPU WRAM address register is a uint17, and the IRQ H/VTIME values are uint10. This basically allows the source to clearly convey the data sizes, and eliminates the need to manually mask values when writing to registers or reading from memory. I'm going to be doing this everywhere, and it will have a speed impact eventually, because the automation means we can't skip masks when we know the data is already masked off. Source: archive contains the launcher code, so that I can look into why it's crashing on XP tomorrow. It doesn't look like Circuit USA's flags are going to work too well with this new CPU core. Still not sure what the hell Robocop vs The Terminator is doing, I'll read through the mega SNES thread for clues tomorrow. Speedy Gonzales is definitely broken, as modifying the MDR was breaking things with my current core. Probably because the new CPU core doesn't wait for a cycle edge to trigger. I was thinking that perhaps we could keep some form of cheat codes list to work as game-specific hacks for the performance core. Keeps the hacks out of the emulator, but could allow the remaining bugs to be worked around for people who have no choice but to use the performance core.
2010-08-16 09:42:20 +00:00
uint8 port_read(uint2 port) const;
void port_write(uint2 port, uint8 data);
uint8 pio();
bool joylatch();
alwaysinline bool interrupt_pending() { return status.interrupt_pending; }
Updated to v067r21 release. byuu says: This moves toward a profile-selection mode. Right now, it is incomplete. There are three binaries, one for each profile. The GUI selection doesn't actually do anything yet. There will be a launcher in a future release that loads each profile's respective binary. I reverted away from blargg's SMP library for the time being, in favor of my own. This will fix most of the csnes/bsnes-performance bugs. This causes a 10% speed hit on 64-bit platforms, and a 15% speed hit on 32-bit platforms. I hope to be able to regain that speed in the future, I may also experiment with creating my own fast-SMP core which drops bus hold delays and TEST register support (never used by anything, ever.) Save states now work in all three cores, but they are not cross-compatible. The profile name is stored in the description field of the save states, and it won't load a state if the profile name doesn't match. The debugger only works on the research target for now. Give it time and it will return for the other targets. Other than that, let's please resume testing on all three once again. See how far we get this time :) I can confirm the following games have issues on the performance profile: - Armored Police Metal Jacket (minor logo flickering, not a big deal) - Chou Aniki (won't start, so obviously unplayable) - Robocop vs The Terminator (major in-game flickering, unplayable) Anyone still have that gigantic bsnes thread archive from the ZSNES forum? Maybe I posted about how to fix those two broken games in there, heh. I really want to release this as v1.0, but my better judgment says we need to give it another week. Damn.
2010-10-20 11:22:44 +00:00
void enter();
Update to v074r10 release. byuu says: Major WIP, countless changes. I really went to town on cleaning up the source today with all kinds of new ideas. I'll post the ones I remember, use diff -ru to get the rest. What I like the most is my new within template: template<unsigned lo, unsigned hi> alwaysinline bool within(unsigned addr) { static const unsigned mask = ~(hi ^ lo); return (addr & mask) == lo; } Before, you would see code like this: if((addr & 0xe0e000) == 0x206000) { //$20-3f:6000-7fff The comment is basically necessary, and you have to trust that the mask is right, or do the math yourself. Now, it looks like this: if(within<0x20, 0x3f, 0x6000, 0x7fff>(addr)) { That's the same as within<0x206000, 0x3f7fff>, I just made an SNES-variant to more closely simulate my XML mapping style: 20-3f:6000-7fff. Now obviously this has limitations, it only works in base-2 and it can't manage some tricky edge cases like (addr & 0x408000) == 0x008000 for 00-3f|80-bf:8000-ffff. But for the most part, I'll be using this where I can. The Game Boy is fully ported over to it (via the MBCs), but the SNES only has the BS-X town cartridge moved over so far. SuperFX and SA-1 at the very least could benefit. Next up, since the memory map is now static, there's really no reason to remap the entire thing at power-on and reset. So it is now set up at cartridge load and that's it. I moved the CPU/PPU/WRAM mapping out of memory.cpp and into their respective processors. A bit of duplication only because there are multiple processor cores for the different profiles, but I'm not worried about that. This is also going to be necessary to fix the debugger. Next, Coprocessor::enable() actually does what I initially intended it to now: it is called once to turn a chip on after cartridge load. It's not called on power cycle anymore. This should help fix power-cycle on my serial simulation code, and was needed to map the bus exactly one time. Although most stuff is mapped through XML, some chips still need some manual hooks for monitoring and such (eg S-DD1.) Next, I've started killing off memory::, it was initially an over-reaction to the question of where to put APURAM (in the SMP or DSP?). The idea was to have this namespace that contained all memory for everything. But it was very annoying and tedious, and various chips ignored the convention anyway like ST-0011 RAM, which couldn't work anyway since it is natively uint16 and not uint8. Cx4 will need 24-bit RAM eventually, too. There's 8->24-bit functions in there now, because the HLE code is hideous. So far, all the cartridge.cpp memory:: types have been destroyed. memory::cartrom, memory::cartram become cartridge.rom and cartridge.ram. memory::cartrtc was moved into the SRTC and SPC7110 classes directly. memory::bsxflash was moved into BSXFlash. memory::bsxram and memory::bsxpram were moved into BSXCartridge (the town cartridge). memory::st[AB](rom|ram) were moved into a new area, snes/chip/sufamiturbo. The snes/chip moniker really doesn't work so well, since it also has base units, and the serial communications stuff which is through the controller port, but oh well, now it also has the base structure for the Sufami Turbo cartridge too. So now we have sufamiturbo.slotA.rom, sufamiturbo.slotB.ram, etc. Next, the ST-0010/ST-0011 actually save the data RAM to disk. This wasn't at all compatible with my old system, and I didn't want to keep adding memory types to check inside the main UI cartridge RAM loading and saving routines. So I built a NonVolatileRAM vector inside SNES::Cartridge, and any chip that has memory it wants to save and load from disk can append onto it : data, size, id ("srm", "rtc", "nec", etc) and slot (0 = cartridge, 1 = slot A, 2 = slot B) To load and save memory, we just do a simple: foreach(memory, SNES::cartridge.nvram) load/saveMemory(memory). As a result, you can now keep your save games in F1 Race of Champions II and Hayazashi Nidan Morita Shougi. Technically I think Metal Combat should work this way as well, having the RAM being part of the chip itself, but for now that chip just writes directly into cartridge.ram, so it also technically saves to disk for now. To avoid a potential conflict with a manipulated memory map, BS-X SRAM and PSRAM are now .bss and .bsp, and not .srm and .psr. Honestly I don't like .srm as an extension either, but it doesn't bother me enough to break save RAM compatibility with other emulators, so don't worry about that changing. I finally killed off MappedRAM initializing size to ~0 (-1U). A size of zero means there is no memory there just the same. This was an old holdover for handling MMIO mapping, if I recall correctly. Something about a size of zero on MMIO-Memory objects causing it to wrap the address, so ~0 would let it map direct addresses ... or something. Whatever, that's not needed at all anymore. BSXBase becomes BSXSatellaview, and I've defaulted the device to being attached since it won't affect non-BSX games anyway. Eventually the GUI needs to make that an option. BSXCart becomes BSXCartridge. BSXFlash remains unchanged. I probably need to make Coprocessor::disable() functions now to free up memory on unload, but it shouldn't hurt anything the way it is. libsnes is most definitely broken to all hell and back now, and the debugger is still shot. I suppose we'll need some tricky code to work with the old ID system, and we'll need to add some more IDs for the new memory types.
2011-01-24 08:59:45 +00:00
void enable();
void power();
void reset();
void serialize(serializer&);
CPU();
~CPU();
privileged:
unsigned cpu_version = 2; //allowed: 1, 2
#include "dma/dma.hpp"
#include "memory/memory.hpp"
#include "mmio/mmio.hpp"
#include "timing/timing.hpp"
struct Status {
bool interrupt_pending;
unsigned clock_count;
unsigned line_clocks;
//timing
bool irq_lock;
unsigned dram_refresh_position;
bool dram_refreshed;
unsigned hdma_init_position;
bool hdma_init_triggered;
unsigned hdma_position;
bool hdma_triggered;
bool nmi_valid;
bool nmi_line;
bool nmi_transition;
bool nmi_pending;
bool nmi_hold;
bool irq_valid;
bool irq_line;
bool irq_transition;
bool irq_pending;
bool irq_hold;
bool reset_pending;
//DMA
bool dma_active;
unsigned dma_counter;
unsigned dma_clocks;
bool dma_pending;
bool hdma_pending;
bool hdma_mode; //0 = init, 1 = run
Update to v073r01 release. byuu says: While perhaps not perfect, pretty good is better than nothing ... I've added emulation of auto-joypad poll timing. Going off ikari_01's confirmation of what we suspected, that the strobe happens every 256 clocks, I've set up emulation as follows: Upon reset, our clock counter is reset to zero. At the start of each frame, our poll counter is reset to zero. Every 256 clocks, we call the step_auto_joypad_poll() function. If we are at V=225/240+ (based on overscan setting), we check the poll counter. At zero, we poll the actual controller and set the joypad polling flag in $4212.d0 to 1. From zero through fifteen, we read in one bit for each controller and shift it into the register. At sixteen, we turn off the joypad polling flag. The 256-clock divider allows the start point of polling for each frame to fluctuate wildly like real hardware. I count regardless of auto joypad enable, as per $4212.d0's behavior; but only poll when it's actually enabled. I do not consume any actual time from this polling. I honestly don't know if I even should, or if it manages to do it in the background. If it should consume time, then this most likely happens between opcode edges and we'll have to adjust the code a good bit. All commercial games should continue to work fine, but this will likely break some hacks/translations not tested on hardware. Without the timing emulation, reading $4218-421f before V=~228 would basically give you the valid input controller values of the previous frame. Now, like hardware, it should give you a state that is part previous frame, part current frame shifted into it. Button positions won't be reliable and will shift every 256 clocks. I've also removed the Qt GUI, and renamed ui-phoenix to just ui. This removes 400kb of source code (phoenix is a lean 130kb), and drops the archive size from 564KB to 475KB. Combined with the DSP HLE, and we've knocked off ~570KB of source cruft from the entire project. I am looking forward to not having to specify which GUI is included anymore.
2010-12-27 07:29:57 +00:00
//auto joypad polling
bool auto_joypad_active;
bool auto_joypad_latch;
Update to v073r01 release. byuu says: While perhaps not perfect, pretty good is better than nothing ... I've added emulation of auto-joypad poll timing. Going off ikari_01's confirmation of what we suspected, that the strobe happens every 256 clocks, I've set up emulation as follows: Upon reset, our clock counter is reset to zero. At the start of each frame, our poll counter is reset to zero. Every 256 clocks, we call the step_auto_joypad_poll() function. If we are at V=225/240+ (based on overscan setting), we check the poll counter. At zero, we poll the actual controller and set the joypad polling flag in $4212.d0 to 1. From zero through fifteen, we read in one bit for each controller and shift it into the register. At sixteen, we turn off the joypad polling flag. The 256-clock divider allows the start point of polling for each frame to fluctuate wildly like real hardware. I count regardless of auto joypad enable, as per $4212.d0's behavior; but only poll when it's actually enabled. I do not consume any actual time from this polling. I honestly don't know if I even should, or if it manages to do it in the background. If it should consume time, then this most likely happens between opcode edges and we'll have to adjust the code a good bit. All commercial games should continue to work fine, but this will likely break some hacks/translations not tested on hardware. Without the timing emulation, reading $4218-421f before V=~228 would basically give you the valid input controller values of the previous frame. Now, like hardware, it should give you a state that is part previous frame, part current frame shifted into it. Button positions won't be reliable and will shift every 256 clocks. I've also removed the Qt GUI, and renamed ui-phoenix to just ui. This removes 400kb of source code (phoenix is a lean 130kb), and drops the archive size from 564KB to 475KB. Combined with the DSP HLE, and we've knocked off ~570KB of source cruft from the entire project. I am looking forward to not having to specify which GUI is included anymore.
2010-12-27 07:29:57 +00:00
unsigned auto_joypad_counter;
unsigned auto_joypad_clock;
//MMIO
Updated to v067r23 release. byuu says: Added missing $4200 IRQ lock, which fixes Chou Aniki on the fast CPU core, so slower PCs can get their brotherly love on. Added range-based controller IOBit latching to the fast CPU core, which enables Super Scope and Justifier support. Uses the priority queue as well, so there is zero speed-hit. Given the way range-testing works, the trigger point may vary by 1-2 pixels when firing at the same spot. Not really a big deal when it avoids a massive speed penalty. Fixed PAL and interlace-mode HVIRQs at V=0,H<2 on the fast CPU core. Added the dot-renderer's sprite list update-on-OAM-write functionality to the scanline-based PPU renderer. Unfortunately it looks like all the speed gain was already taken from the global dirty flag I was using before, but this certainly won't hurt speed any, so whatever. Added #ifdef to stop CoInitialize(0) on non-Windows ports. Added #ifdefs to stop gradient fade on Windows port. Not going to fuck over the Linux port aesthetic because of Qt bug #47,326,927. If there's a way to tell what Qt theme is being used, I can leave it enabled for XP/Vista themes. Moved HDMA trigger from 1104 to 1112, and reduced channel overhead from 24 to 16, to better simulate one-cycle DMA->CPU sync. Code clarity: I've re-added my varint.hpp classes, and am actively using them in the accuracy cores. So far, I haven't done anything that would detriment speed, but it is certainly cool. The APU ports exposed by the CPU and SMP now take uint2 address arguments, the CPU WRAM address register is a uint17, and the IRQ H/VTIME values are uint10. This basically allows the source to clearly convey the data sizes, and eliminates the need to manually mask values when writing to registers or reading from memory. I'm going to be doing this everywhere, and it will have a speed impact eventually, because the automation means we can't skip masks when we know the data is already masked off. Source: archive contains the launcher code, so that I can look into why it's crashing on XP tomorrow. It doesn't look like Circuit USA's flags are going to work too well with this new CPU core. Still not sure what the hell Robocop vs The Terminator is doing, I'll read through the mega SNES thread for clues tomorrow. Speedy Gonzales is definitely broken, as modifying the MDR was breaking things with my current core. Probably because the new CPU core doesn't wait for a cycle edge to trigger. I was thinking that perhaps we could keep some form of cheat codes list to work as game-specific hacks for the performance core. Keeps the hacks out of the emulator, but could allow the remaining bugs to be worked around for people who have no choice but to use the performance core.
2010-08-16 09:42:20 +00:00
//$2140-217f
uint8 port[4];
//$2181-$2183
Updated to v067r23 release. byuu says: Added missing $4200 IRQ lock, which fixes Chou Aniki on the fast CPU core, so slower PCs can get their brotherly love on. Added range-based controller IOBit latching to the fast CPU core, which enables Super Scope and Justifier support. Uses the priority queue as well, so there is zero speed-hit. Given the way range-testing works, the trigger point may vary by 1-2 pixels when firing at the same spot. Not really a big deal when it avoids a massive speed penalty. Fixed PAL and interlace-mode HVIRQs at V=0,H<2 on the fast CPU core. Added the dot-renderer's sprite list update-on-OAM-write functionality to the scanline-based PPU renderer. Unfortunately it looks like all the speed gain was already taken from the global dirty flag I was using before, but this certainly won't hurt speed any, so whatever. Added #ifdef to stop CoInitialize(0) on non-Windows ports. Added #ifdefs to stop gradient fade on Windows port. Not going to fuck over the Linux port aesthetic because of Qt bug #47,326,927. If there's a way to tell what Qt theme is being used, I can leave it enabled for XP/Vista themes. Moved HDMA trigger from 1104 to 1112, and reduced channel overhead from 24 to 16, to better simulate one-cycle DMA->CPU sync. Code clarity: I've re-added my varint.hpp classes, and am actively using them in the accuracy cores. So far, I haven't done anything that would detriment speed, but it is certainly cool. The APU ports exposed by the CPU and SMP now take uint2 address arguments, the CPU WRAM address register is a uint17, and the IRQ H/VTIME values are uint10. This basically allows the source to clearly convey the data sizes, and eliminates the need to manually mask values when writing to registers or reading from memory. I'm going to be doing this everywhere, and it will have a speed impact eventually, because the automation means we can't skip masks when we know the data is already masked off. Source: archive contains the launcher code, so that I can look into why it's crashing on XP tomorrow. It doesn't look like Circuit USA's flags are going to work too well with this new CPU core. Still not sure what the hell Robocop vs The Terminator is doing, I'll read through the mega SNES thread for clues tomorrow. Speedy Gonzales is definitely broken, as modifying the MDR was breaking things with my current core. Probably because the new CPU core doesn't wait for a cycle edge to trigger. I was thinking that perhaps we could keep some form of cheat codes list to work as game-specific hacks for the performance core. Keeps the hacks out of the emulator, but could allow the remaining bugs to be worked around for people who have no choice but to use the performance core.
2010-08-16 09:42:20 +00:00
uint17 wram_addr;
//$4016-$4017
bool joypad_strobe_latch;
uint32 joypad1_bits;
uint32 joypad2_bits;
//$4200
bool nmi_enabled;
bool hirq_enabled, virq_enabled;
bool auto_joypad_poll;
//$4201
uint8 pio;
//$4202-$4203
uint8 wrmpya;
uint8 wrmpyb;
//$4204-$4206
uint16 wrdiva;
Updated to v067r23 release. byuu says: Added missing $4200 IRQ lock, which fixes Chou Aniki on the fast CPU core, so slower PCs can get their brotherly love on. Added range-based controller IOBit latching to the fast CPU core, which enables Super Scope and Justifier support. Uses the priority queue as well, so there is zero speed-hit. Given the way range-testing works, the trigger point may vary by 1-2 pixels when firing at the same spot. Not really a big deal when it avoids a massive speed penalty. Fixed PAL and interlace-mode HVIRQs at V=0,H<2 on the fast CPU core. Added the dot-renderer's sprite list update-on-OAM-write functionality to the scanline-based PPU renderer. Unfortunately it looks like all the speed gain was already taken from the global dirty flag I was using before, but this certainly won't hurt speed any, so whatever. Added #ifdef to stop CoInitialize(0) on non-Windows ports. Added #ifdefs to stop gradient fade on Windows port. Not going to fuck over the Linux port aesthetic because of Qt bug #47,326,927. If there's a way to tell what Qt theme is being used, I can leave it enabled for XP/Vista themes. Moved HDMA trigger from 1104 to 1112, and reduced channel overhead from 24 to 16, to better simulate one-cycle DMA->CPU sync. Code clarity: I've re-added my varint.hpp classes, and am actively using them in the accuracy cores. So far, I haven't done anything that would detriment speed, but it is certainly cool. The APU ports exposed by the CPU and SMP now take uint2 address arguments, the CPU WRAM address register is a uint17, and the IRQ H/VTIME values are uint10. This basically allows the source to clearly convey the data sizes, and eliminates the need to manually mask values when writing to registers or reading from memory. I'm going to be doing this everywhere, and it will have a speed impact eventually, because the automation means we can't skip masks when we know the data is already masked off. Source: archive contains the launcher code, so that I can look into why it's crashing on XP tomorrow. It doesn't look like Circuit USA's flags are going to work too well with this new CPU core. Still not sure what the hell Robocop vs The Terminator is doing, I'll read through the mega SNES thread for clues tomorrow. Speedy Gonzales is definitely broken, as modifying the MDR was breaking things with my current core. Probably because the new CPU core doesn't wait for a cycle edge to trigger. I was thinking that perhaps we could keep some form of cheat codes list to work as game-specific hacks for the performance core. Keeps the hacks out of the emulator, but could allow the remaining bugs to be worked around for people who have no choice but to use the performance core.
2010-08-16 09:42:20 +00:00
uint8 wrdivb;
//$4207-$420a
uint9 hirq_pos;
uint9 virq_pos;
//$420d
unsigned rom_speed;
//$4214-$4217
uint16 rddiv;
uint16 rdmpy;
//$4218-$421f
Update to v073r01 release. byuu says: While perhaps not perfect, pretty good is better than nothing ... I've added emulation of auto-joypad poll timing. Going off ikari_01's confirmation of what we suspected, that the strobe happens every 256 clocks, I've set up emulation as follows: Upon reset, our clock counter is reset to zero. At the start of each frame, our poll counter is reset to zero. Every 256 clocks, we call the step_auto_joypad_poll() function. If we are at V=225/240+ (based on overscan setting), we check the poll counter. At zero, we poll the actual controller and set the joypad polling flag in $4212.d0 to 1. From zero through fifteen, we read in one bit for each controller and shift it into the register. At sixteen, we turn off the joypad polling flag. The 256-clock divider allows the start point of polling for each frame to fluctuate wildly like real hardware. I count regardless of auto joypad enable, as per $4212.d0's behavior; but only poll when it's actually enabled. I do not consume any actual time from this polling. I honestly don't know if I even should, or if it manages to do it in the background. If it should consume time, then this most likely happens between opcode edges and we'll have to adjust the code a good bit. All commercial games should continue to work fine, but this will likely break some hacks/translations not tested on hardware. Without the timing emulation, reading $4218-421f before V=~228 would basically give you the valid input controller values of the previous frame. Now, like hardware, it should give you a state that is part previous frame, part current frame shifted into it. Button positions won't be reliable and will shift every 256 clocks. I've also removed the Qt GUI, and renamed ui-phoenix to just ui. This removes 400kb of source code (phoenix is a lean 130kb), and drops the archive size from 564KB to 475KB. Combined with the DSP HLE, and we've knocked off ~570KB of source cruft from the entire project. I am looking forward to not having to specify which GUI is included anymore.
2010-12-27 07:29:57 +00:00
uint16 joy1;
uint16 joy2;
uint16 joy3;
uint16 joy4;
} status;
struct ALU {
unsigned mpyctr;
unsigned divctr;
unsigned shift;
} alu;
static void Enter();
void op_step();
struct Debugger {
hook<void (uint24)> op_exec;
hook<void (uint24, uint8)> op_read;
hook<void (uint24, uint8)> op_write;
Update to v085r08 release. byuu says: Changelog: - follow the Laevateinn topic to get most of it - also added NMI, IRQ step buttons to CPU debugger - also added trace masking + trace mask reset - also added memory export - cartridge loading is entirely folder-based now FitzRoy, I'll go ahead and make a second compromise with you for v086: I'll match the following: /path/to/SNES.sfc/*.sfc /path/to/NES.fc/*.prg, *.chr (split format) /path/to/NES.fc/*.fc (merged format) /path/to/GB.gb/*.gb /path/to/GBC.gbc/*.gbc Condition will be that there can only be one of each file. If there's more than one, it'll abort. That lets me name my ROMs as "Game.fc/Game.fc", and you can name yours as "Game.fc/cartridge.prg, cartridge.chr". Or whatever you want. We'll just go with that, see what fares out as the most popular, and then restrict it back to that method. The folder must have the .fc, etc extension though. That will be how we avoid false-positive folder matches. [Editor's note - the Laevateinn topic mentions these changes for v085r08: Added SMP/PPU breakpoints, SMP debugger, SMP stepping / tracing, memory editing on APU-bus / VRAM / OAM / CGRAM, save state menu, WRAM mirroring on breakpoints, protected MMIO memory regions (otherwise, viewing $002100 could crash your game.) Major missing components: - trace mask - trace mask clear / usage map clear - window geometry caching / sizing improvements - VRAM viewer - properties viewer - working memory export button The rest will most likely appear after v086 is released. ]
2012-02-12 05:35:40 +00:00
hook<void ()> op_nmi;
hook<void ()> op_irq;
} debugger;
};
extern CPU cpu;