bsnes/higan/sfc/coprocessor/icd2/icd2.cpp

86 lines
1.6 KiB
C++
Raw Normal View History

#include <sfc/sfc.hpp>
namespace SuperFamicom {
ICD2 icd2;
#if defined(SFC_SUPERGAMEBOY)
#include "interface.cpp"
#include "mmio.cpp"
#include "serialization.cpp"
auto ICD2::Enter() -> void {
while(true) {
if(scheduler.synchronizing()) GameBoy::system.runToSave();
scheduler.synchronize();
icd2.main();
}
}
auto ICD2::main() -> void {
if(r6003 & 0x80) {
GameBoy::system.run();
step(GameBoy::system._clocksExecuted);
GameBoy::system._clocksExecuted = 0;
} else { //DMG halted
Update to v098r14 release. byuu says: Changelog: - improved attenuation of biquad filter by computing butterworth Q coefficients correctly (instead of using the same constant) - adding 1e-25 to each input sample into the biquad filters to try and prevent denormalization - updated normalization from [0.0 to 1.0] to [-1.0 to +1.0]; volume/reverb happen in floating-point mode now - good amount of work to make the base Emulator::Audio support any number of output channels - so that we don't have to do separate work on left/right channels; and can instead share the code for each channel - Emulator::Interface::audioSample(int16 left, int16 right); changed to: - Emulator::Interface::audioSample(double* samples, uint channels); - samples are normalized [-1.0 to +1.0] - for now at least, channels will be the value given to Emulator::Audio::reset() - fixed GUI crash on startup when audio driver is set to None I'm probably going to be updating ruby to accept normalized doubles as well; but I'm not sure if I will try and support anything other 2-channel audio output. It'll depend on how easy it is to do so; perhaps it'll be a per-driver setting. The denormalization thing is fierce. If that happens, it drops the emulator framerate from 220fps to about 20fps for Game Boy emulation. And that happens basically whenever audio output is silent. I'm probably also going to make a nall/denormal.hpp file at some point with platform-specific functionality to set the CPU state to "denormals as zero" where applicable. I'll still add the 1e-25 offset (inaudible) as another fallback.
2016-06-01 11:23:22 +00:00
stream->sample(0.0, 0.0);
Update to v098r11 release. byuu says: Changelog: - fixed nall/path.hpp compilation issue - fixed ruby/audio/xaudio header declaration compilation issue (again) - cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the file was whitespace overkill) - added null terminator entry to nall/windows/utf8.hpp argc[] array - nall/windows/guid.hpp uses the Windows API for generating the GUID - this should stop all the bug reports where two nall users were generating GUIDs at the exact same second - fixed hiro/cocoa compilation issue with uint# types - fixed major higan/sfc Super Game Boy audio latency issue - fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions - major cleanups to higan/processor/r65816 core - merged emulation/native-mode opcodes - use camel-case naming on memory.hpp functions - simplify address masking code for memory.hpp functions - simplify a few opcodes themselves (avoid redundant copies, etc) - rename regs.* to r.* to match modern convention of other CPU cores - removed device.order<> concept from Emulator::Interface - cores will now do the translation to make the job of the UI easier - fixed plurality naming of arrays in Emulator::Interface - example: emulator.ports[p].devices[d].inputs[i] - example: vector<Medium> media - probably more surprises Major show-stoppers to the next official release: - we need to work on GB core improvements: LY=153/0 case, multiple STAT IRQs case, GBC audio output regs, etc. - we need to re-add software cursors for light guns (Super Scope, Justifier) - after the above, we need to fix the turbo button for the Super Scope I really have no idea how I want to implement the light guns. Ideally, we'd want it in higan/video, so we can support the NES Zapper with the same code. But this isn't going to be easy, because only the SNES knows when its output is interlaced, and its resolutions can vary as {256,512}x{224,240,448,480} which requires pixel doubling that was hard-coded to the SNES-specific behavior, but isn't appropriate to be exposed in higan/video.
2016-05-25 11:13:02 +00:00
step(2); //two clocks per audio sample
}
synchronizeCPU();
}
auto ICD2::init() -> void {
}
auto ICD2::load() -> void {
bind = GameBoy::interface->bind;
hook = GameBoy::interface->hook;
Update to v088r15 release. byuu says: Changelog: - default placement of presentation window optimized for 1024x768 displays or larger (sorry if yours is smaller, move the window yourself.) - Direct3D waits until a previous Vblank ends before waiting for the next Vblank to begin (fixes video timing analysis, and ---really--- fast computers.) - Window::setVisible(false) clears modality, but also fixed in Browser code as well (fixes loading images on Windows hanging) - Browser won't consume full CPU resources (but timing analysis will, I don't want stalls to affect the results.) - closing settings window while analyzing stops analysis - you can load the SGB BIOS without a game (why the hell you would want to ...) - escape closes the Browser window (it won't close other dialogs, it has to be hooked up per-window) - just for fun, joypad hat up/down moves in Browser file list, any joypad button loads selected game [not very useful, lacks repeat, and there aren't GUI load file open buttons] - Super Scope and Justifier crosshairs render correctly (probably doesn't belong in the core, but it's not something I suspect people want to do themselves ...) - you can load GB, SGB, GB, SGB ... without problems (not happy with how I did this, but I don't want to add an Interface::setInterface() function yet) - PAL timing works as I want now (if you want 50fps on a 60hz monitor, you must not use sync video) [needed to update the DSP frequency when toggling video/audio sync] - not going to save input port selection for now (lot of work), but it will properly keep your port setting across cartridge loads at least [just goes to controller on emulator restart] - SFC overscan on and off both work as expected now (off centers image, on shows entire image) - laevateinn compiles properly now - ethos goes to ~/.config/bsnes now that target-ui is dead [honestly, I recommend deleting the old folder and starting over] - Emulator::Interface callbacks converted to virtual binding structure that GUI inherits from (simplifies binding callbacks) - this breaks Super Game Boy for a bit, I need to rethink system-specific bindings without direct inheritance Timing analysis works spectacularly well on Windows, too. You won't get your 100% perfect rate (unless maybe you leave the analysis running overnight?), but it'll get really freaking close this way.
2012-05-07 23:29:03 +00:00
GameBoy::interface->bind = this;
GameBoy::interface->hook = this;
Update to v099r07 release. byuu says: Changelog: - (hopefully) fixed BS Memory and Sufami Turbo slot loading - ported GB, GBA, WS cores to use nall/vfs - completely removed loadRequest, saveRequest functionality from Emulator::Interface and ui-tomoko - loadRequest(folder) is now load(folder) - save states now use a shared Emulator::SerializerVersion string - whenever this is bumped, all older states will break; but this makes bumping state versions way easier - also, the version string makes it a lot easier to identify compatibility windows for save states - SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr] NOTE: Super Game Boy loading is currently broken, and I'm not entirely sure how to fix it :/ The file loading handoff was -really- complicated, and so I'm kind of at a loss ... so for now, don't try it. Everything else should theoretically work, so please report any bugs you find. So, this is pretty much it. I'd be very curious to hear feedback from people who objected to the old nall/stream design, whether they are happy with the new file loading system or think it could use further improvements. The 16-bit VRAM turned out to be a wash on performance (roughly the same as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The main reason for this was because Yoshi's Island was breaking horribly until I changed the vramRead, vramWrite functions to take uint15 instead of uint16. I suspect the issue is we're using uint16s in some areas now that need to be uint15, and this game is setting the VRAM address to 0x8000+, causing us to go out of bounds on memory accesses. But ... I want to go ahead and do something cute for fun, and just because we can ... and this new interface is so incredibly perfect for it!! I want to support an SNES unit with 128KiB of VRAM. Not out of the box, but as a fun little tweakable thing. The SNES was clearly designed to support that, they just didn't use big enough VRAM chips, and left one of the lines disconnected. So ... let's connect it anyway! In the end, if we design it right, the only code difference should be one area where we mask by 15-bits instead of by 16-bits.
2016-06-24 12:09:30 +00:00
interface->load(ID::GameBoy, "Game Boy", "gb");
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
GameBoy::interface->load(GameBoy::ID::SuperGameBoy);
cartridge.loadGameBoy();
}
auto ICD2::unload() -> void {
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
GameBoy::interface->unload();
GameBoy::interface->bind = bind;
GameBoy::interface->hook = hook;
Update to v075 release. byuu says: This release brings improved Super Game Boy emulation, the final SHA256 hashes for the DSP-(1,1B,2,3,4) and ST-(0010,0011) coprocessors, user interface improvements, and major internal code restructuring. Changelog (since v074): - completely rewrote memory sub-system to support 1-byte granularity in XML mapping - removed Memory inheritance and MMIO class completely, any address can be mapped to any function now - SuperFX: removed SuperFXBus : Bus, now implemented manually - SA-1: removed SA1Bus : Bus, now implemented manually - entire bus mapping is now static, happens once on cartridge load - as a result, read/write handlers now handle MMC mapping; slower average case, far faster worst case - namespace memory is no more, RAM arrays are stored inside the chips they are owned by now - GameBoy: improved CPU HALT emulation, fixes Zelda: Link's Awakening scrolling - GameBoy: added serial emulation (cannot connect to another GB yet), fixes Shin Megami Tensei - Devichil - GameBoy: improved LCD STAT emulation, fixes Sagaia - ui: added fullscreen support (F11 key), video settings allows for three scale settings - ui: fixed brightness, contrast, gamma, audio volume, input frequency values on program startup - ui: since Qt is dead, config file becomes bsnes.cfg once again - Super Game Boy: you can now load the BIOS without a game inserted to see a pretty white box - ui-gameboy: can be built without SNES components now - libsnes: now a UI target, compile with 'make ui=ui-libsnes' - libsnes: added WRAM, APURAM, VRAM, OAM, CGRAM access (cheat search, etc) - source: removed launcher/, as the Qt port is now gone - source: Makefile restructuring to better support new ui targets - source: lots of other internal code cleanup work
2011-01-27 08:52:34 +00:00
}
auto ICD2::power() -> void {
}
Update to v098r06 release. byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad.
2016-04-22 13:35:51 +00:00
auto ICD2::reset(bool soft) -> void {
create(ICD2::Enter, cpu.frequency / 5);
Update to v098r11 release. byuu says: Changelog: - fixed nall/path.hpp compilation issue - fixed ruby/audio/xaudio header declaration compilation issue (again) - cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the file was whitespace overkill) - added null terminator entry to nall/windows/utf8.hpp argc[] array - nall/windows/guid.hpp uses the Windows API for generating the GUID - this should stop all the bug reports where two nall users were generating GUIDs at the exact same second - fixed hiro/cocoa compilation issue with uint# types - fixed major higan/sfc Super Game Boy audio latency issue - fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions - major cleanups to higan/processor/r65816 core - merged emulation/native-mode opcodes - use camel-case naming on memory.hpp functions - simplify address masking code for memory.hpp functions - simplify a few opcodes themselves (avoid redundant copies, etc) - rename regs.* to r.* to match modern convention of other CPU cores - removed device.order<> concept from Emulator::Interface - cores will now do the translation to make the job of the UI easier - fixed plurality naming of arrays in Emulator::Interface - example: emulator.ports[p].devices[d].inputs[i] - example: vector<Medium> media - probably more surprises Major show-stoppers to the next official release: - we need to work on GB core improvements: LY=153/0 case, multiple STAT IRQs case, GBC audio output regs, etc. - we need to re-add software cursors for light guns (Super Scope, Justifier) - after the above, we need to fix the turbo button for the Super Scope I really have no idea how I want to implement the light guns. Ideally, we'd want it in higan/video, so we can support the NES Zapper with the same code. But this isn't going to be easy, because only the SNES knows when its output is interlaced, and its resolutions can vary as {256,512}x{224,240,448,480} which requires pixel doubling that was hard-coded to the SNES-specific behavior, but isn't appropriate to be exposed in higan/video.
2016-05-25 11:13:02 +00:00
if(!soft) stream = Emulator::audio.createStream(2, cpu.frequency / 10);
r6003 = 0x00;
r6004 = 0xff;
r6005 = 0xff;
r6006 = 0xff;
r6007 = 0xff;
for(auto& r : r7000) r = 0x00;
mltReq = 0;
for(auto& n : output) n = 0xff;
readBank = 0;
readAddress = 0;
writeBank = 0;
writeAddress = 0;
packetSize = 0;
joypID = 3;
joyp15Lock = 0;
joyp14Lock = 0;
pulseLock = true;
GameBoy::system.init();
GameBoy::system.power();
}
#endif
}