bsnes/higan/sfc/coprocessor/sa1/memory.cpp

269 lines
7.9 KiB
C++
Raw Normal View History

auto SA1::busRead(uint24 addr, uint8 data) -> uint8 {
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x40fe00) == 0x002200) { //$00-3f,80-bf:2200-23ff
return readIO(addr, data);
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x408000) == 0x008000) { //$00-3f,80-bf:8000-ffff
addr = ((addr & 0x800000) >> 2) | ((addr & 0x3f0000) >> 1) | (addr & 0x7fff);
return mmcromRead(addr, data);
}
if((addr & 0xc00000) == 0xc00000) { //$c0-ff:0000-ffff
return mmcromRead(addr, data);
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x40e000) == 0x006000) { //$00-3f,80-bf:6000-7fff
return mmcSA1Read(addr, data);
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x40f800) == 0x000000) { //$00-3f,80-bf:0000-07ff
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
synchronize(cpu);
return iram.read(addr & 2047, data);
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x40f800) == 0x003000) { //$00-3f,80-bf:3000-37ff
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
synchronize(cpu);
return iram.read(addr & 2047, data);
}
if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
synchronize(cpu);
return bwram.read(addr & (bwram.size() - 1), data);
}
if((addr & 0xf00000) == 0x600000) { //$60-6f:0000-ffff
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
synchronize(cpu);
return bitmapRead(addr & 0x0fffff, data);
}
//unmapped region
return data;
}
auto SA1::busWrite(uint24 addr, uint8 data) -> void {
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x40fe00) == 0x002200) { //$00-3f,80-bf:2200-23ff
return writeIO(addr, data);
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x40e000) == 0x006000) { //$00-3f,80-bf:6000-7fff
return mmcSA1Write(addr, data);
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x40f800) == 0x000000) { //$00-3f,80-bf:0000-07ff
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
synchronize(cpu);
return iram.write(addr & 2047, data);
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x40f800) == 0x003000) { //$00-3f,80-bf:3000-37ff
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
synchronize(cpu);
return iram.write(addr & 2047, data);
}
if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
synchronize(cpu);
return bwram.write(addr & (bwram.size() - 1), data);
}
if((addr & 0xf00000) == 0x600000) { //$60-6f:0000-ffff
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
synchronize(cpu);
return bitmapWrite(addr & 0x0fffff, data);
}
}
//$230c (VDPL), $230d (VDPH) use this bus to read variable-length data.
//this is used both to keep VBR-reads from accessing MMIO registers, and
//to avoid syncing the S-CPU and SA-1*; as both chips are able to access
//these ports.
auto SA1::vbrRead(uint24 addr, uint8 data) -> uint8 {
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x408000) == 0x008000) { //$00-3f,80-bf:8000-ffff
addr = ((addr & 0x800000) >> 2) | ((addr & 0x3f0000) >> 1) | (addr & 0x7fff);
return mmcromRead(addr, data);
}
if((addr & 0xc00000) == 0xc00000) { //$c0-ff:0000-ffff
return mmcromRead(addr, data);
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x40e000) == 0x006000) { //$00-3f,80-bf:6000-7fff
return bwram.read(addr & (bwram.size() - 1), data);
}
if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff
return bwram.read(addr & (bwram.size() - 1), data);
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x40f800) == 0x000000) { //$00-3f,80-bf:0000-07ff
return iram.read(addr & 2047, data);
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if((addr & 0x40f800) == 0x003000) { //$00-3f,80-bf:3000-37ff
return iram.read(addr & 2047, data);
}
return 0x00;
}
//ROM, I-RAM and MMIO registers are accessed at ~10.74MHz (2 clock ticks)
//BW-RAM is accessed at ~5.37MHz (4 clock ticks)
//tick() == 2 clock ticks
//note: bus conflict delays are not emulated at this time
Update to v099r14 release. byuu says: Changelog: - (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel like they were contributing enough to be worth it] - cleaned up nall::integer,natural,real functionality - toInteger, toNatural, toReal for parsing strings to numbers - fromInteger, fromNatural, fromReal for creating strings from numbers - (string,Markup::Node,SQL-based-classes)::(integer,natural,real) left unchanged - template<typename T> numeral(T value, long padding, char padchar) -> string for print() formatting - deduces integer,natural,real based on T ... cast the value if you want to override - there still exists binary,octal,hex,pointer for explicit print() formatting - lstring -> string_vector [but using lstring = string_vector; is declared] - would be nice to remove the using lstring eventually ... but that'd probably require 10,000 lines of changes >_> - format -> string_format [no using here; format was too ambiguous] - using integer = Integer<sizeof(int)*8>; and using natural = Natural<sizeof(uint)*8>; declared - for consistency with boolean. These three are meant for creating zero-initialized values implicitly (various uses) - R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees up struct IO {} io; naming] - SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {} (status,registers); now - still some CPU::Status status values ... they didn't really fit into IO functionality ... will have to think about this more - SFC CPU, PPU, SMP now use step() exclusively instead of addClocks() calling into step() - SFC CPU joypad1_bits, joypad2_bits were unused; killed them - SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it - SFC PPU OAM moved into PPU::Object; since nothing else uses it - the raw uint8[544] array is gone. OAM::read() constructs values from the OAM::Object[512] table now - this avoids having to determine how we want to sub-divide the two OAM memory sections - this also eliminates the OAM::synchronize() functionality - probably more I'm forgetting The FPS fluctuations are driving me insane. This WIP went from 128fps to 137fps. Settled on 133.5fps for the final build. But nothing I changed should have affected performance at all. This level of fluctuation makes it damn near impossible to know whether I'm speeding things up or slowing things down with changes.
2016-07-01 11:50:32 +00:00
auto SA1::idle() -> void {
tick();
}
auto SA1::read(uint24 addr) -> uint8 {
tick();
if(((addr & 0x40e000) == 0x006000) || ((addr & 0xd00000) == 0x400000)) tick();
return busRead(addr, r.mdr);
}
auto SA1::write(uint24 addr, uint8 data) -> void {
tick();
if(((addr & 0x40e000) == 0x006000) || ((addr & 0xd00000) == 0x400000)) tick();
busWrite(addr, r.mdr = data);
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
//note: addresses are translated prior to invoking this function:
//$00-3f,80-bf:8000-ffff mask=0x408000 => $00-3f:0000-ffff
//$c0-ff:0000-ffff mask=0
auto SA1::mmcromRead(uint24 addr, uint8) -> uint8 {
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
//reset vector overrides
if((addr & 0xffffe0) == 0x007fe0) { //$00:ffe0-ffef
if(addr == 0x7fea && sa1.mmio.cpu_nvsw) return sa1.mmio.snv >> 0;
if(addr == 0x7feb && sa1.mmio.cpu_nvsw) return sa1.mmio.snv >> 8;
if(addr == 0x7fee && sa1.mmio.cpu_ivsw) return sa1.mmio.siv >> 0;
if(addr == 0x7fef && sa1.mmio.cpu_ivsw) return sa1.mmio.siv >> 8;
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
}
static auto read = [](uint addr) {
return sa1.rom.read(bus.mirror(addr, sa1.rom.size()));
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
};
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
bool lo = addr < 0x400000; //*bmode==0 only applies to $00-3f,80-bf:8000-ffff
addr &= 0x3fffff;
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if(addr < 0x100000) { //$00-1f,8000-ffff; $c0-cf:0000-ffff
if(lo && mmio.cbmode == 0) return read(addr);
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
return read((mmio.cb << 20) | (addr & 0x0fffff));
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if(addr < 0x200000) { //$20-3f,8000-ffff; $d0-df:0000-ffff
if(lo && mmio.dbmode == 0) return read(addr);
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
return read((mmio.db << 20) | (addr & 0x0fffff));
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if(addr < 0x300000) { //$80-9f,8000-ffff; $e0-ef:0000-ffff
if(lo && mmio.ebmode == 0) return read(addr);
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
return read((mmio.eb << 20) | (addr & 0x0fffff));
}
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if(addr < 0x400000) { //$a0-bf,8000-ffff; $f0-ff:0000-ffff
if(lo && mmio.fbmode == 0) return read(addr);
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
return read((mmio.fb << 20) | (addr & 0x0fffff));
}
return 0x00;
}
auto SA1::mmcromWrite(uint24 addr, uint8 data) -> void {
}
auto SA1::mmcbwramRead(uint24 addr, uint8 data) -> uint8 {
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if(addr < 0x2000) { //$00-3f,80-bf:6000-7fff
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
cpu.synchronize(sa1);
addr = bus.mirror(mmio.sbm * 0x2000 + (addr & 0x1fff), cpubwram.size());
return cpubwram.read(addr);
}
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff
return cpubwram.read(addr & 0x0fffff);
}
return data;
}
auto SA1::mmcbwramWrite(uint24 addr, uint8 data) -> void {
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
if(addr < 0x2000) { //$00-3f,80-bf:6000-7fff
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
cpu.synchronize(sa1);
addr = bus.mirror(mmio.sbm * 0x2000 + (addr & 0x1fff), cpubwram.size());
return cpubwram.write(addr, data);
}
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
if((addr & 0xf00000) == 0x400000) { //$40-4f:0000-ffff
return cpubwram.write(addr & 0x0fffff, data);
}
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
}
auto SA1::mmcSA1Read(uint addr, uint8 data) -> uint8 {
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
synchronize(cpu);
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
if(mmio.sw46 == 0) {
//$40-43:0000-ffff x 32 projection
addr = bus.mirror((mmio.cbm & 0x1f) * 0x2000 + (addr & 0x1fff), bwram.size());
return bwram.read(addr, data);
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
} else {
//$60-6f:0000-ffff x 128 projection
addr = bus.mirror(mmio.cbm * 0x2000 + (addr & 0x1fff), 0x100000);
return bitmapRead(addr, data);
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
}
}
auto SA1::mmcSA1Write(uint addr, uint8 data) -> void {
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
synchronize(cpu);
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
if(mmio.sw46 == 0) {
//$40-43:0000-ffff x 32 projection
addr = bus.mirror((mmio.cbm & 0x1f) * 0x2000 + (addr & 0x1fff), bwram.size());
bwram.write(addr, data);
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
} else {
//$60-6f:0000-ffff x 128 projection
addr = bus.mirror(mmio.cbm * 0x2000 + (addr & 0x1fff), 0x100000);
bitmapWrite(addr, data);
}
}
auto SA1::bitmapRead(uint addr, uint8 data) -> uint8 {
if(mmio.bbf == 0) {
//4bpp
uint shift = addr & 1;
addr = (addr >> 1) & (bwram.size() - 1);
switch(shift) {
case 0: return (bwram.read(addr) >> 0) & 15;
case 1: return (bwram.read(addr) >> 4) & 15;
}
} else {
//2bpp
uint shift = addr & 3;
addr = (addr >> 2) & (bwram.size() - 1);
switch(shift) {
case 0: return (bwram.read(addr) >> 0) & 3;
case 1: return (bwram.read(addr) >> 2) & 3;
case 2: return (bwram.read(addr) >> 4) & 3;
case 3: return (bwram.read(addr) >> 6) & 3;
}
Update to v074r03 release. byuu says: You guys are going to hate the hell out of this one. It's twenty hours of non-stop work, no exaggeration at all. Started at 4AM, just wrapped up now at 8PM. I rewrote the entire memory subsystem. Old system: 65536 pages that map 256 bytes each Mapping a new page overwrites old page Granularity capped at 256 bytes minimum, requiring ST-001x to map 60:0000-00ff instead of 60:0000,0001 Classes inherit from MMIO and Memory, forcing only one mappable function per class, and fixed names MMIO sub-mapper inside memory: 00-3f:2000-5fff for one-byte granularity Can dynamically change the map at run-time, MMC register settings perform dynamic remapping New system: XML mapping is still based around banklo-bankhi:addrlo-addrhi, as that shapes almost everything on the SNES very well Internally, 2048 pages that map 8192 bytes each Pages are vectors, scans O(n) from last to first (O(log n) would not help, n is never > 3) Can multi-cast writes, but not reads [for the obvious reason of: which read do you return?] Can map reads and writes separately Granularity of one for entire 24-bit address range, no need for MMIO - whatever is in XML is exactly what you get Read/Write tables bind function callbacks, so I can have any number of functions with any names from any classes with no inheritance (no more uPD7725DR, uPD7725SR helpers, etc) Less memory usage overall due to less tables [ I tried 16 million tables and it used 2GB of RAM >_o ] Cannot dynamically change the map at run-time, MMC read/write functions perform address translation [worse average case speed, better worst case speed] Now the hate me part, functors can't beat virtual functions for speed. There are speed penalties involved: -4.5% on average games -11% on SuperFX games (SFX has its own bus) -15% on SA-1 games (SA-1 has two buses) Of course the two that need the speed the most get the biggest hits. I'm afraid there's really not a lot of wiggle room to boost speed back up. I suppose one bright spot is that we can much more easily try out entirely new mapping systems now, since the dynamic portions have been eliminated.
2011-01-15 04:30:29 +00:00
}
}
auto SA1::bitmapWrite(uint addr, uint8 data) -> void {
if(mmio.bbf == 0) {
//4bpp
uint shift = addr & 1;
addr = (addr >> 1) & (bwram.size() - 1);
switch(shift) {
case 0: data = (bwram.read(addr) & 0xf0) | ((data & 15) << 0); break;
case 1: data = (bwram.read(addr) & 0x0f) | ((data & 15) << 4); break;
}
} else {
//2bpp
uint shift = addr & 3;
addr = (addr >> 2) & (bwram.size() - 1);
switch(shift) {
case 0: data = (bwram.read(addr) & 0xfc) | ((data & 3) << 0); break;
case 1: data = (bwram.read(addr) & 0xf3) | ((data & 3) << 2); break;
case 2: data = (bwram.read(addr) & 0xcf) | ((data & 3) << 4); break;
case 3: data = (bwram.read(addr) & 0x3f) | ((data & 3) << 6); break;
}
}
bwram.write(addr, data);
}