2016-06-05 05:03:21 +00:00
|
|
|
auto SA1::readIO(uint24 addr, uint8) -> uint8 {
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
scheduler.active(cpu) ? cpu.synchronize(sa1) : synchronize(cpu);
|
2016-06-05 05:03:21 +00:00
|
|
|
|
|
|
|
switch(0x2300 | addr.bits(0,7)) {
|
|
|
|
|
|
|
|
//(SFR) S-CPU flag read
|
|
|
|
case 0x2300: {
|
|
|
|
uint8 data;
|
|
|
|
data = mmio.cpu_irqfl << 7;
|
|
|
|
data |= mmio.cpu_ivsw << 6;
|
|
|
|
data |= mmio.chdma_irqfl << 5;
|
|
|
|
data |= mmio.cpu_nvsw << 4;
|
|
|
|
data |= mmio.cmeg;
|
|
|
|
return data;
|
2010-08-09 13:28:56 +00:00
|
|
|
}
|
|
|
|
|
2016-06-05 05:03:21 +00:00
|
|
|
//(CFR) SA-1 flag read
|
|
|
|
case 0x2301: {
|
|
|
|
uint8 data;
|
|
|
|
data = mmio.sa1_irqfl << 7;
|
|
|
|
data |= mmio.timer_irqfl << 6;
|
|
|
|
data |= mmio.dma_irqfl << 5;
|
|
|
|
data |= mmio.sa1_nmifl << 4;
|
|
|
|
data |= mmio.smeg;
|
|
|
|
return data;
|
|
|
|
}
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2016-06-05 05:03:21 +00:00
|
|
|
//(HCR) hcounter read
|
|
|
|
case 0x2302: {
|
|
|
|
//latch counters
|
|
|
|
mmio.hcr = status.hcounter >> 2;
|
|
|
|
mmio.vcr = status.vcounter;
|
|
|
|
return mmio.hcr >> 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
case 0x2303: {
|
|
|
|
return mmio.hcr >> 8;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(VCR) vcounter read
|
|
|
|
case 0x2304: return mmio.vcr >> 0;
|
|
|
|
case 0x2305: return mmio.vcr >> 8;
|
|
|
|
|
|
|
|
//(MR) arithmetic result
|
|
|
|
case 0x2306: return mmio.mr >> 0;
|
|
|
|
case 0x2307: return mmio.mr >> 8;
|
|
|
|
case 0x2308: return mmio.mr >> 16;
|
|
|
|
case 0x2309: return mmio.mr >> 24;
|
|
|
|
case 0x230a: return mmio.mr >> 32;
|
|
|
|
|
|
|
|
//(OF) arithmetic overflow flag
|
|
|
|
case 0x230b: return mmio.overflow << 7;
|
|
|
|
|
|
|
|
//(VDPL) variable-length data read port low
|
|
|
|
case 0x230c: {
|
|
|
|
uint24 data;
|
2016-06-17 13:03:54 +00:00
|
|
|
data.byte(0) = vbrRead(mmio.va + 0);
|
|
|
|
data.byte(1) = vbrRead(mmio.va + 1);
|
|
|
|
data.byte(2) = vbrRead(mmio.va + 2);
|
2016-06-05 05:03:21 +00:00
|
|
|
data >>= mmio.vbit;
|
|
|
|
|
|
|
|
return data >> 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(VDPH) variable-length data read port high
|
|
|
|
case 0x230d: {
|
|
|
|
uint24 data;
|
2016-06-17 13:03:54 +00:00
|
|
|
data.byte(0) = vbrRead(mmio.va + 0);
|
|
|
|
data.byte(1) = vbrRead(mmio.va + 1);
|
|
|
|
data.byte(2) = vbrRead(mmio.va + 2);
|
2016-06-05 05:03:21 +00:00
|
|
|
data >>= mmio.vbit;
|
|
|
|
|
|
|
|
if(mmio.hl == 1) {
|
|
|
|
//auto-increment mode
|
|
|
|
mmio.vbit += mmio.vb;
|
|
|
|
mmio.va += (mmio.vbit >> 3);
|
|
|
|
mmio.vbit &= 7;
|
|
|
|
}
|
|
|
|
|
|
|
|
return data >> 8;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(VC) version code register
|
|
|
|
case 0x230e: {
|
|
|
|
return 0x01; //true value unknown
|
|
|
|
}
|
2010-08-09 13:28:56 +00:00
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0x00;
|
|
|
|
}
|
|
|
|
|
2016-06-05 05:03:21 +00:00
|
|
|
auto SA1::writeIO(uint24 addr, uint8 data) -> void {
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
scheduler.active(cpu) ? cpu.synchronize(sa1) : synchronize(cpu);
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2016-06-05 05:03:21 +00:00
|
|
|
switch(0x2200 | addr.bits(0,7)) {
|
2016-06-17 13:03:54 +00:00
|
|
|
|
|
|
|
//(CCNT) SA-1 control
|
|
|
|
case 0x2200: {
|
|
|
|
if(mmio.sa1_resb && !(data & 0x80)) {
|
|
|
|
//reset SA-1 CPU
|
|
|
|
r.pc.w = mmio.crv;
|
|
|
|
r.pc.b = 0x00;
|
|
|
|
}
|
|
|
|
|
|
|
|
mmio.sa1_irq = (data & 0x80);
|
|
|
|
mmio.sa1_rdyb = (data & 0x40);
|
|
|
|
mmio.sa1_resb = (data & 0x20);
|
|
|
|
mmio.sa1_nmi = (data & 0x10);
|
|
|
|
mmio.smeg = (data & 0x0f);
|
|
|
|
|
|
|
|
if(mmio.sa1_irq) {
|
|
|
|
mmio.sa1_irqfl = true;
|
|
|
|
if(mmio.sa1_irqen) mmio.sa1_irqcl = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(mmio.sa1_nmi) {
|
|
|
|
mmio.sa1_nmifl = true;
|
|
|
|
if(mmio.sa1_nmien) mmio.sa1_nmicl = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(SIE) S-CPU interrupt enable
|
|
|
|
case 0x2201: {
|
|
|
|
if(!mmio.cpu_irqen && (data & 0x80)) {
|
|
|
|
if(mmio.cpu_irqfl) {
|
|
|
|
mmio.cpu_irqcl = 0;
|
|
|
|
cpu.r.irq = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(!mmio.chdma_irqen && (data & 0x20)) {
|
|
|
|
if(mmio.chdma_irqfl) {
|
|
|
|
mmio.chdma_irqcl = 0;
|
|
|
|
cpu.r.irq = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mmio.cpu_irqen = (data & 0x80);
|
|
|
|
mmio.chdma_irqen = (data & 0x20);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(SIC) S-CPU interrupt clear
|
|
|
|
case 0x2202: {
|
|
|
|
mmio.cpu_irqcl = (data & 0x80);
|
|
|
|
mmio.chdma_irqcl = (data & 0x20);
|
|
|
|
|
|
|
|
if(mmio.cpu_irqcl ) mmio.cpu_irqfl = false;
|
|
|
|
if(mmio.chdma_irqcl) mmio.chdma_irqfl = false;
|
|
|
|
|
|
|
|
if(!mmio.cpu_irqfl && !mmio.chdma_irqfl) cpu.r.irq = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(CRV) SA-1 reset vector
|
|
|
|
case 0x2203: { mmio.crv = (mmio.crv & 0xff00) | data; return; }
|
|
|
|
case 0x2204: { mmio.crv = (data << 8) | (mmio.crv & 0xff); return; }
|
|
|
|
|
|
|
|
//(CNV) SA-1 NMI vector
|
|
|
|
case 0x2205: { mmio.cnv = (mmio.cnv & 0xff00) | data; return; }
|
|
|
|
case 0x2206: { mmio.cnv = (data << 8) | (mmio.cnv & 0xff); return; }
|
|
|
|
|
|
|
|
//(CIV) SA-1 IRQ vector
|
|
|
|
case 0x2207: { mmio.civ = (mmio.civ & 0xff00) | data; return; }
|
|
|
|
case 0x2208: { mmio.civ = (data << 8) | (mmio.civ & 0xff); return; }
|
|
|
|
|
|
|
|
//(SCNT) S-CPU control
|
|
|
|
case 0x2209: {
|
|
|
|
mmio.cpu_irq = (data & 0x80);
|
|
|
|
mmio.cpu_ivsw = (data & 0x40);
|
|
|
|
mmio.cpu_nvsw = (data & 0x10);
|
|
|
|
mmio.cmeg = (data & 0x0f);
|
|
|
|
|
|
|
|
if(mmio.cpu_irq) {
|
|
|
|
mmio.cpu_irqfl = true;
|
|
|
|
if(mmio.cpu_irqen) {
|
|
|
|
mmio.cpu_irqcl = 0;
|
|
|
|
cpu.r.irq = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(CIE) SA-1 interrupt enable
|
|
|
|
case 0x220a: {
|
|
|
|
if(!mmio.sa1_irqen && (data & 0x80) && mmio.sa1_irqfl ) mmio.sa1_irqcl = 0;
|
|
|
|
if(!mmio.timer_irqen && (data & 0x40) && mmio.timer_irqfl) mmio.timer_irqcl = 0;
|
|
|
|
if(!mmio.dma_irqen && (data & 0x20) && mmio.dma_irqfl ) mmio.dma_irqcl = 0;
|
|
|
|
if(!mmio.sa1_nmien && (data & 0x10) && mmio.sa1_nmifl ) mmio.sa1_nmicl = 0;
|
|
|
|
|
|
|
|
mmio.sa1_irqen = (data & 0x80);
|
|
|
|
mmio.timer_irqen = (data & 0x40);
|
|
|
|
mmio.dma_irqen = (data & 0x20);
|
|
|
|
mmio.sa1_nmien = (data & 0x10);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(CIC) SA-1 interrupt clear
|
|
|
|
case 0x220b: {
|
|
|
|
mmio.sa1_irqcl = (data & 0x80);
|
|
|
|
mmio.timer_irqcl = (data & 0x40);
|
|
|
|
mmio.dma_irqcl = (data & 0x20);
|
|
|
|
mmio.sa1_nmicl = (data & 0x10);
|
|
|
|
|
|
|
|
if(mmio.sa1_irqcl) mmio.sa1_irqfl = false;
|
|
|
|
if(mmio.timer_irqcl) mmio.timer_irqfl = false;
|
|
|
|
if(mmio.dma_irqcl) mmio.dma_irqfl = false;
|
|
|
|
if(mmio.sa1_nmicl) mmio.sa1_nmifl = false;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(SNV) S-CPU NMI vector
|
|
|
|
case 0x220c: { mmio.snv = (mmio.snv & 0xff00) | data; return; }
|
|
|
|
case 0x220d: { mmio.snv = (data << 8) | (mmio.snv & 0xff); return; }
|
|
|
|
|
|
|
|
//(SIV) S-CPU IRQ vector
|
|
|
|
case 0x220e: { mmio.siv = (mmio.siv & 0xff00) | data; return; }
|
|
|
|
case 0x220f: { mmio.siv = (data << 8) | (mmio.siv & 0xff); return; }
|
|
|
|
|
|
|
|
//(TMC) H/V timer control
|
|
|
|
case 0x2210: {
|
|
|
|
mmio.hvselb = (data & 0x80);
|
|
|
|
mmio.ven = (data & 0x02);
|
|
|
|
mmio.hen = (data & 0x01);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(CTR) SA-1 timer restart
|
|
|
|
case 0x2211: {
|
|
|
|
status.vcounter = 0;
|
|
|
|
status.hcounter = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(HCNT) H-count
|
|
|
|
case 0x2212: { mmio.hcnt = (mmio.hcnt & 0xff00) | (data << 0); return; }
|
|
|
|
case 0x2213: { mmio.hcnt = (mmio.hcnt & 0x00ff) | (data << 8); return; }
|
|
|
|
|
|
|
|
//(VCNT) V-count
|
|
|
|
case 0x2214: { mmio.vcnt = (mmio.vcnt & 0xff00) | (data << 0); return; }
|
|
|
|
case 0x2215: { mmio.vcnt = (mmio.vcnt & 0x00ff) | (data << 8); return; }
|
|
|
|
|
|
|
|
//(CXB) Super MMC bank C
|
|
|
|
case 0x2220: {
|
|
|
|
mmio.cbmode = (data & 0x80);
|
|
|
|
mmio.cb = (data & 0x07);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(DXB) Super MMC bank D
|
|
|
|
case 0x2221: {
|
|
|
|
mmio.dbmode = (data & 0x80);
|
|
|
|
mmio.db = (data & 0x07);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(EXB) Super MMC bank E
|
|
|
|
case 0x2222: {
|
|
|
|
mmio.ebmode = (data & 0x80);
|
|
|
|
mmio.eb = (data & 0x07);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(FXB) Super MMC bank F
|
|
|
|
case 0x2223: {
|
|
|
|
mmio.fbmode = (data & 0x80);
|
|
|
|
mmio.fb = (data & 0x07);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(BMAPS) S-CPU BW-RAM address mapping
|
|
|
|
case 0x2224: {
|
|
|
|
mmio.sbm = (data & 0x1f);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(BMAP) SA-1 BW-RAM address mapping
|
|
|
|
case 0x2225: {
|
|
|
|
mmio.sw46 = (data & 0x80);
|
|
|
|
mmio.cbm = (data & 0x7f);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(SWBE) S-CPU BW-RAM write enable
|
|
|
|
case 0x2226: {
|
|
|
|
mmio.swen = (data & 0x80);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(CWBE) SA-1 BW-RAM write enable
|
|
|
|
case 0x2227: {
|
|
|
|
mmio.cwen = (data & 0x80);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(BWPA) BW-RAM write-protected area
|
|
|
|
case 0x2228: {
|
|
|
|
mmio.bwp = (data & 0x0f);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(SIWP) S-CPU I-RAM write protection
|
|
|
|
case 0x2229: {
|
|
|
|
mmio.siwp = data;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(CIWP) SA-1 I-RAM write protection
|
|
|
|
case 0x222a: {
|
|
|
|
mmio.ciwp = data;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(DCNT) DMA control
|
|
|
|
case 0x2230: {
|
|
|
|
mmio.dmaen = (data & 0x80);
|
|
|
|
mmio.dprio = (data & 0x40);
|
|
|
|
mmio.cden = (data & 0x20);
|
|
|
|
mmio.cdsel = (data & 0x10);
|
|
|
|
mmio.dd = (data & 0x04);
|
|
|
|
mmio.sd = (data & 0x03);
|
|
|
|
|
|
|
|
if(mmio.dmaen == 0) dma.line = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(CDMA) character conversion DMA parameters
|
|
|
|
case 0x2231: {
|
|
|
|
mmio.chdend = (data & 0x80);
|
|
|
|
mmio.dmasize = (data >> 2) & 7;
|
|
|
|
mmio.dmacb = (data & 0x03);
|
|
|
|
|
|
|
|
if(mmio.chdend) cpubwram.dma = false;
|
|
|
|
if(mmio.dmasize > 5) mmio.dmasize = 5;
|
|
|
|
if(mmio.dmacb > 2) mmio.dmacb = 2;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(SDA) DMA source device start address
|
|
|
|
case 0x2232: { mmio.dsa = (mmio.dsa & 0xffff00) | (data << 0); return; }
|
|
|
|
case 0x2233: { mmio.dsa = (mmio.dsa & 0xff00ff) | (data << 8); return; }
|
|
|
|
case 0x2234: { mmio.dsa = (mmio.dsa & 0x00ffff) | (data << 16); return; }
|
|
|
|
|
|
|
|
//(DDA) DMA destination start address
|
|
|
|
case 0x2235: { mmio.dda = (mmio.dda & 0xffff00) | (data << 0); return; }
|
|
|
|
case 0x2236: { mmio.dda = (mmio.dda & 0xff00ff) | (data << 8);
|
|
|
|
if(mmio.dmaen) {
|
|
|
|
if(mmio.cden == 0 && mmio.dd == DMA::DestIRAM) {
|
|
|
|
dmaNormal();
|
|
|
|
} else if(mmio.cden == 1 && mmio.cdsel == 1) {
|
|
|
|
dmaCC1();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case 0x2237: { mmio.dda = (mmio.dda & 0x00ffff) | (data << 16);
|
|
|
|
if(mmio.dmaen) {
|
|
|
|
if(mmio.cden == 0 && mmio.dd == DMA::DestBWRAM) {
|
|
|
|
dmaNormal();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(DTC) DMA terminal counter
|
|
|
|
case 0x2238: { mmio.dtc = (mmio.dtc & 0xff00) | (data << 0); return; }
|
|
|
|
case 0x2239: { mmio.dtc = (mmio.dtc & 0x00ff) | (data << 8); return; }
|
|
|
|
|
|
|
|
//(BBF) BW-RAM bitmap format
|
|
|
|
case 0x223f: { mmio.bbf = (data & 0x80); return; }
|
|
|
|
|
|
|
|
//(BRF) bitmap register files
|
|
|
|
case 0x2240: { mmio.brf[ 0] = data; return; }
|
|
|
|
case 0x2241: { mmio.brf[ 1] = data; return; }
|
|
|
|
case 0x2242: { mmio.brf[ 2] = data; return; }
|
|
|
|
case 0x2243: { mmio.brf[ 3] = data; return; }
|
|
|
|
case 0x2244: { mmio.brf[ 4] = data; return; }
|
|
|
|
case 0x2245: { mmio.brf[ 5] = data; return; }
|
|
|
|
case 0x2246: { mmio.brf[ 6] = data; return; }
|
|
|
|
case 0x2247: { mmio.brf[ 7] = data;
|
|
|
|
if(mmio.dmaen) {
|
|
|
|
if(mmio.cden == 1 && mmio.cdsel == 0) {
|
|
|
|
dmaCC2();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case 0x2248: { mmio.brf[ 8] = data; return; }
|
|
|
|
case 0x2249: { mmio.brf[ 9] = data; return; }
|
|
|
|
case 0x224a: { mmio.brf[10] = data; return; }
|
|
|
|
case 0x224b: { mmio.brf[11] = data; return; }
|
|
|
|
case 0x224c: { mmio.brf[12] = data; return; }
|
|
|
|
case 0x224d: { mmio.brf[13] = data; return; }
|
|
|
|
case 0x224e: { mmio.brf[14] = data; return; }
|
|
|
|
case 0x224f: { mmio.brf[15] = data;
|
|
|
|
if(mmio.dmaen) {
|
|
|
|
if(mmio.cden == 1 && mmio.cdsel == 0) {
|
|
|
|
dmaCC2();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(MCNT) arithmetic control
|
|
|
|
case 0x2250: {
|
|
|
|
mmio.acm = (data & 0x02);
|
|
|
|
mmio.md = (data & 0x01);
|
|
|
|
|
|
|
|
if(mmio.acm) mmio.mr = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(MAL) multiplicand / dividend low
|
|
|
|
case 0x2251: {
|
|
|
|
mmio.ma = (mmio.ma & 0xff00) | data;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(MAH) multiplicand / dividend high
|
|
|
|
case 0x2252: {
|
|
|
|
mmio.ma = (data << 8) | (mmio.ma & 0x00ff);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(MBL) multiplier / divisor low
|
|
|
|
case 0x2253: {
|
|
|
|
mmio.mb = (mmio.mb & 0xff00) | data;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(MBH) multiplier / divisor high
|
|
|
|
//multiplication / cumulative sum only resets MB
|
|
|
|
//division resets both MA and MB
|
|
|
|
case 0x2254: {
|
|
|
|
mmio.mb = (data << 8) | (mmio.mb & 0x00ff);
|
|
|
|
|
|
|
|
if(mmio.acm == 0) {
|
|
|
|
if(mmio.md == 0) {
|
|
|
|
//signed multiplication
|
|
|
|
mmio.mr = (int16)mmio.ma * (int16)mmio.mb;
|
|
|
|
mmio.mb = 0;
|
|
|
|
} else {
|
|
|
|
//unsigned division
|
|
|
|
if(mmio.mb == 0) {
|
|
|
|
mmio.mr = 0;
|
|
|
|
} else {
|
|
|
|
int16 quotient = (int16)mmio.ma / (uint16)mmio.mb;
|
|
|
|
uint16 remainder = (int16)mmio.ma % (uint16)mmio.mb;
|
|
|
|
mmio.mr = (remainder << 16) | quotient;
|
|
|
|
}
|
|
|
|
mmio.ma = 0;
|
|
|
|
mmio.mb = 0;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
//sigma (accumulative multiplication)
|
|
|
|
mmio.mr += (int16)mmio.ma * (int16)mmio.mb;
|
|
|
|
mmio.overflow = (mmio.mr >= (1ULL << 40));
|
|
|
|
mmio.mr &= (1ULL << 40) - 1;
|
|
|
|
mmio.mb = 0;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(VBD) variable-length bit processing
|
|
|
|
case 0x2258: {
|
|
|
|
mmio.hl = (data & 0x80);
|
|
|
|
mmio.vb = (data & 0x0f);
|
|
|
|
if(mmio.vb == 0) mmio.vb = 16;
|
|
|
|
|
|
|
|
if(mmio.hl == 0) {
|
|
|
|
//fixed mode
|
|
|
|
mmio.vbit += mmio.vb;
|
|
|
|
mmio.va += (mmio.vbit >> 3);
|
|
|
|
mmio.vbit &= 7;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
//(VDA) variable-length bit game pak ROM start address
|
|
|
|
case 0x2259: { mmio.va = (mmio.va & 0xffff00) | (data << 0); return; }
|
|
|
|
case 0x225a: { mmio.va = (mmio.va & 0xff00ff) | (data << 8); return; }
|
|
|
|
case 0x225b: { mmio.va = (mmio.va & 0x00ffff) | (data << 16); mmio.vbit = 0; return; }
|
|
|
|
|
2010-08-09 13:28:56 +00:00
|
|
|
}
|
|
|
|
}
|