bsnes/higan/sfc/coprocessor/hitachidsp/hitachidsp.hpp

59 lines
1.5 KiB
C++
Raw Normal View History

Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
struct HitachiDSP : Processor::HG51B, Thread {
MappedRAM rom;
MappedRAM ram;
static auto Enter() -> void;
auto main() -> void;
Update to v079r04 release. byuu says: Back from vacation. We were successful in emulating the Cx4 using LLE during my vacation. We finished on June 15th. And now that I'm back, I've rewritten the code and merged it into bsnes official. With that, the very last HLE emulation code in bsnes has now been purged. [...] The emulation is as minimal as possible. If I don't see an opcode or feature actually used, I don't implement it. The one exception being that I do support the vector override functionality. And there are also dummy handlers for ld ?,$2e + loop, so that the chip won't stall out. But things like "byte 4" on rdram/wrram, the two-bit destination selections for all but ld, etc are treated as invalid opcodes, since we aren't 100% sure if they are there and work as we hypothesize. I also only map in known registers into the 256-entry register list. This leaves 90% of the map empty. The chip runs at 20MHz, and it will disable the ROM while running. DMA does transfer one byte at a time against the clock and also locks out the ROM. rdbus won't fetch from IRAM, only from ROM. DMA transfer only reads from ROM, and only writes to RAM. Unless someone verifies that they can do more, I'll leave it that way. I don't yet actually buffer the program ROM into the internal program RAM just yet, but that is on the to-do list. We aren't entirely sure how that works either, but my plan is to just lock the Cx4 CPU and load in 512-bytes. There's still a few unknown registers in $7f40-5f that I don't do anything with yet. The secondary chip disable is going to be the weirdest one, since MMX3 only has one chip. I'd really rather not have to specify the ROM mapping as two separate chips on MMX2 and as one on MMX3 just to support this, so I don't know yet. Save state support is of course there already. Speed hit is 118fps HLE -> 109fps LLE in most scenes. Not bad, honestly.
2011-06-22 13:27:55 +00:00
auto init() -> void;
auto load() -> void;
auto unload() -> void;
auto power() -> void;
auto reset() -> void;
Update to v079r04 release. byuu says: Back from vacation. We were successful in emulating the Cx4 using LLE during my vacation. We finished on June 15th. And now that I'm back, I've rewritten the code and merged it into bsnes official. With that, the very last HLE emulation code in bsnes has now been purged. [...] The emulation is as minimal as possible. If I don't see an opcode or feature actually used, I don't implement it. The one exception being that I do support the vector override functionality. And there are also dummy handlers for ld ?,$2e + loop, so that the chip won't stall out. But things like "byte 4" on rdram/wrram, the two-bit destination selections for all but ld, etc are treated as invalid opcodes, since we aren't 100% sure if they are there and work as we hypothesize. I also only map in known registers into the 256-entry register list. This leaves 90% of the map empty. The chip runs at 20MHz, and it will disable the ROM while running. DMA does transfer one byte at a time against the clock and also locks out the ROM. rdbus won't fetch from IRAM, only from ROM. DMA transfer only reads from ROM, and only writes to RAM. Unless someone verifies that they can do more, I'll leave it that way. I don't yet actually buffer the program ROM into the internal program RAM just yet, but that is on the to-do list. We aren't entirely sure how that works either, but my plan is to just lock the Cx4 CPU and load in 512-bytes. There's still a few unknown registers in $7f40-5f that I don't do anything with yet. The secondary chip disable is going to be the weirdest one, since MMX3 only has one chip. I'd really rather not have to specify the ROM mapping as two separate chips on MMX2 and as one on MMX3 just to support this, so I don't know yet. Save state support is of course there already. Speed hit is 118fps HLE -> 109fps LLE in most scenes. Not bad, honestly.
2011-06-22 13:27:55 +00:00
//HG51B read/write
Update to v098r06 release. byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad.
2016-04-22 13:35:51 +00:00
auto read(uint24 addr) -> uint8 override;
auto write(uint24 addr, uint8 data) -> void override;
Update to v079r04 release. byuu says: Back from vacation. We were successful in emulating the Cx4 using LLE during my vacation. We finished on June 15th. And now that I'm back, I've rewritten the code and merged it into bsnes official. With that, the very last HLE emulation code in bsnes has now been purged. [...] The emulation is as minimal as possible. If I don't see an opcode or feature actually used, I don't implement it. The one exception being that I do support the vector override functionality. And there are also dummy handlers for ld ?,$2e + loop, so that the chip won't stall out. But things like "byte 4" on rdram/wrram, the two-bit destination selections for all but ld, etc are treated as invalid opcodes, since we aren't 100% sure if they are there and work as we hypothesize. I also only map in known registers into the 256-entry register list. This leaves 90% of the map empty. The chip runs at 20MHz, and it will disable the ROM while running. DMA does transfer one byte at a time against the clock and also locks out the ROM. rdbus won't fetch from IRAM, only from ROM. DMA transfer only reads from ROM, and only writes to RAM. Unless someone verifies that they can do more, I'll leave it that way. I don't yet actually buffer the program ROM into the internal program RAM just yet, but that is on the to-do list. We aren't entirely sure how that works either, but my plan is to just lock the Cx4 CPU and load in 512-bytes. There's still a few unknown registers in $7f40-5f that I don't do anything with yet. The secondary chip disable is going to be the weirdest one, since MMX3 only has one chip. I'd really rather not have to specify the ROM mapping as two separate chips on MMX2 and as one on MMX3 just to support this, so I don't know yet. Save state support is of course there already. Speed hit is 118fps HLE -> 109fps LLE in most scenes. Not bad, honestly.
2011-06-22 13:27:55 +00:00
//CPU ROM read/write
Update to v098r06 release. byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad.
2016-04-22 13:35:51 +00:00
auto romRead(uint24 addr, uint8 data) -> uint8;
auto romWrite(uint24 addr, uint8 data) -> void;
Update to v079r04 release. byuu says: Back from vacation. We were successful in emulating the Cx4 using LLE during my vacation. We finished on June 15th. And now that I'm back, I've rewritten the code and merged it into bsnes official. With that, the very last HLE emulation code in bsnes has now been purged. [...] The emulation is as minimal as possible. If I don't see an opcode or feature actually used, I don't implement it. The one exception being that I do support the vector override functionality. And there are also dummy handlers for ld ?,$2e + loop, so that the chip won't stall out. But things like "byte 4" on rdram/wrram, the two-bit destination selections for all but ld, etc are treated as invalid opcodes, since we aren't 100% sure if they are there and work as we hypothesize. I also only map in known registers into the 256-entry register list. This leaves 90% of the map empty. The chip runs at 20MHz, and it will disable the ROM while running. DMA does transfer one byte at a time against the clock and also locks out the ROM. rdbus won't fetch from IRAM, only from ROM. DMA transfer only reads from ROM, and only writes to RAM. Unless someone verifies that they can do more, I'll leave it that way. I don't yet actually buffer the program ROM into the internal program RAM just yet, but that is on the to-do list. We aren't entirely sure how that works either, but my plan is to just lock the Cx4 CPU and load in 512-bytes. There's still a few unknown registers in $7f40-5f that I don't do anything with yet. The secondary chip disable is going to be the weirdest one, since MMX3 only has one chip. I'd really rather not have to specify the ROM mapping as two separate chips on MMX2 and as one on MMX3 just to support this, so I don't know yet. Save state support is of course there already. Speed hit is 118fps HLE -> 109fps LLE in most scenes. Not bad, honestly.
2011-06-22 13:27:55 +00:00
//CPU RAM read/write
Update to v098r06 release. byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad.
2016-04-22 13:35:51 +00:00
auto ramRead(uint24 addr, uint8 data) -> uint8;
auto ramWrite(uint24 addr, uint8 data) -> void;
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
//HG51B data RAM read/write
Update to v098r06 release. byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad.
2016-04-22 13:35:51 +00:00
auto dramRead(uint24 addr, uint8 data) -> uint8;
auto dramWrite(uint24 addr, uint8 data) -> void;
Update to higan and icarus v095r15 release. r13 and r14 weren't posted as individual releases, but their changelogs were posted. byuu says about r13: I'm not going to be posting WIPs for r13 and above for a while. The reason is that I'm working on the major manifest overhaul I've discussed previously on the icarus subforum. I'm recreating my boards database from scratch using the map files and the new map analyzer. The only games that will load are ones I've created board definitions for, and updated sfc/cartridge/markup.cpp to parse. Once I've finished all the boards, then I'll update the heuristics. Then finally, I'll sync the syntax changes over to the fc, gb, gba cores. Once that's done, I'll start posting WIPs again, along with a new build of icarus. But I'll still post changelogs as I work through things. Changelog (r13): - preservation: created new database-builder tool (merges region-specific databases with boards) - icarus: support new, external database format (~/.config/icarus/Database/(Super Famicom.bml, ...) - added 1A3B-(10,11,12); 1A3B-20 byuu says about r14: r14 work: I successfully created mappings for every board used in the US set. I also updated icarus' heuristics to use the new mappings, and created ones there for the boards that are only in the JP set. Then I patched icarus to support pulling games out of the database when it's used on a game folder to generate a manifest file. Then I updated a lot of code in higan/sfc to support the new mapping syntax. sfc/cartridge/markup.cpp is about half the size it used to be with the new mappings, and I was able to kill off both map/id and map/select entirely. Then I updated all four emulated systems (and both subsystems) to use "board" as the root node, and harmonized their syntax (made them all more consistent with each other.) Then I added a manifest viewer to the tools window+menu. It's kind of an advanced user feature, but oh well. No reason to coddle people when the feature is very useful for developers. The viewer will show all manifests in order when you load multi-cart games as well. Still not going to call any syntax 100% done right now, but thankfully with the new manifest-free folders, nobody will have to do anything to use the new format. Just download the new version and go. The Super Famicom Event stuff is currently broken (CC92/PF94 boards). That's gonna be fun to support. byuu says about r15: EDIT: small bug in icarus with heuristics. Edit core/super-famicom.cpp line 27: if(/*auto*/ markup = cartridge.markup) { Gotta remove that "auto" so that it returns valid markup. Resolved the final concerns I had with the new manifest format. Right now there are two things that are definitely broken: MCC (BS-X Town cart) and Event (CC '92 and PF'94). And there are a few things that are untested: SPC7110, EpsonRTC, SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
//CPU MMIO read/write
Update to v098r06 release. byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad.
2016-04-22 13:35:51 +00:00
auto dspRead(uint24 addr, uint8 data) -> uint8;
auto dspWrite(uint24 addr, uint8 data) -> void;
auto firmware() const -> vector<uint8>;
auto serialize(serializer&) -> void;
Update to v079r04 release. byuu says: Back from vacation. We were successful in emulating the Cx4 using LLE during my vacation. We finished on June 15th. And now that I'm back, I've rewritten the code and merged it into bsnes official. With that, the very last HLE emulation code in bsnes has now been purged. [...] The emulation is as minimal as possible. If I don't see an opcode or feature actually used, I don't implement it. The one exception being that I do support the vector override functionality. And there are also dummy handlers for ld ?,$2e + loop, so that the chip won't stall out. But things like "byte 4" on rdram/wrram, the two-bit destination selections for all but ld, etc are treated as invalid opcodes, since we aren't 100% sure if they are there and work as we hypothesize. I also only map in known registers into the 256-entry register list. This leaves 90% of the map empty. The chip runs at 20MHz, and it will disable the ROM while running. DMA does transfer one byte at a time against the clock and also locks out the ROM. rdbus won't fetch from IRAM, only from ROM. DMA transfer only reads from ROM, and only writes to RAM. Unless someone verifies that they can do more, I'll leave it that way. I don't yet actually buffer the program ROM into the internal program RAM just yet, but that is on the to-do list. We aren't entirely sure how that works either, but my plan is to just lock the Cx4 CPU and load in 512-bytes. There's still a few unknown registers in $7f40-5f that I don't do anything with yet. The secondary chip disable is going to be the weirdest one, since MMX3 only has one chip. I'd really rather not have to specify the ROM mapping as two separate chips on MMX2 and as one on MMX3 just to support this, so I don't know yet. Save state support is of course there already. Speed hit is 118fps HLE -> 109fps LLE in most scenes. Not bad, honestly.
2011-06-22 13:27:55 +00:00
uint Frequency;
uint Roms;
struct MMIO {
bool dma; //true during DMA transfers
uint24 dmaSource; //$1f40-$1f42
uint24 dmaLength; //$1f43-$1f44
uint24 dmaTarget; //$1f45-$1f47
uint8 r1f48; //$1f48
uint24 programOffset; //$1f49-$1f4b
uint8 r1f4c; //$1f4c
uint16 pageNumber; //$1f4d-$1f4e
uint8 programCounter; //$1f4f
uint8 r1f50; //$1f50
uint8 r1f51; //$1f51
uint8 r1f52; //$1f52
uint8 vector[32]; //$1f60-$1f7f
} mmio;
Update to v079r04 release. byuu says: Back from vacation. We were successful in emulating the Cx4 using LLE during my vacation. We finished on June 15th. And now that I'm back, I've rewritten the code and merged it into bsnes official. With that, the very last HLE emulation code in bsnes has now been purged. [...] The emulation is as minimal as possible. If I don't see an opcode or feature actually used, I don't implement it. The one exception being that I do support the vector override functionality. And there are also dummy handlers for ld ?,$2e + loop, so that the chip won't stall out. But things like "byte 4" on rdram/wrram, the two-bit destination selections for all but ld, etc are treated as invalid opcodes, since we aren't 100% sure if they are there and work as we hypothesize. I also only map in known registers into the 256-entry register list. This leaves 90% of the map empty. The chip runs at 20MHz, and it will disable the ROM while running. DMA does transfer one byte at a time against the clock and also locks out the ROM. rdbus won't fetch from IRAM, only from ROM. DMA transfer only reads from ROM, and only writes to RAM. Unless someone verifies that they can do more, I'll leave it that way. I don't yet actually buffer the program ROM into the internal program RAM just yet, but that is on the to-do list. We aren't entirely sure how that works either, but my plan is to just lock the Cx4 CPU and load in 512-bytes. There's still a few unknown registers in $7f40-5f that I don't do anything with yet. The secondary chip disable is going to be the weirdest one, since MMX3 only has one chip. I'd really rather not have to specify the ROM mapping as two separate chips on MMX2 and as one on MMX3 just to support this, so I don't know yet. Save state support is of course there already. Speed hit is 118fps HLE -> 109fps LLE in most scenes. Not bad, honestly.
2011-06-22 13:27:55 +00:00
};
extern HitachiDSP hitachidsp;