bsnes/ruby/input/joypad/sdl.cpp

79 lines
2.4 KiB
C++
Raw Normal View History

#pragma once
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
struct InputJoypadSDL {
Input& input;
InputJoypadSDL(Input& input) : input(input) {}
struct Joypad {
shared_pointer<HID::Joypad> hid{new HID::Joypad};
uint id = 0;
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
SDL_Joystick* handle = nullptr;
};
vector<Joypad> joypads;
auto assign(shared_pointer<HID::Joypad> hid, uint groupID, uint inputID, int16_t value) -> void {
auto& group = hid->group(groupID);
if(group.input(inputID).value() == value) return;
input.doChange(hid, groupID, inputID, group.input(inputID).value(), value);
group.input(inputID).setValue(value);
}
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
auto poll(vector<shared_pointer<HID::Device>>& devices) -> void {
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
SDL_JoystickUpdate();
for(auto& jp : joypads) {
Update to v106r47 release. byuu says: This is probably the largest code-change diff I've done in years. I spent four days working 10-16 hours a day reworking layouts in hiro completely. The result is we now have TableLayout, which will allow for better horizontal+vertical combined alignment. Windows, GTK2, and now GTK3 are fully supported. Windows is getting the initial window geometry wrong by a bit. GTK2 and GTK3 work perfectly. I basically abandoned trying to detect resize signals, and instead keep a list of all hiro windows that are allocated, and every time the main loop runs, it will query all of them to see if they've been resized. I'm disgusted that I have to do this, but after fighting with GTK for years, I'm about sick of it. GTK was doing this crazy thing where it would trigger another size-allocate inside of a previous size-allocate, and so my layouts would be halfway through resizing all the widgets, and then the size-allocate would kick off another one. That would end up leaving the rest of the first layout loop with bad widget sizes. And if I detected a second re-entry and blocked it, then the entire window would end up with the older geometry. I started trying to build a message queue system to allow the second layout resize to occur after the first one completed, but this was just too much madness, so I went with the simpler solution. Qt4 has some geometry problems, and doesn't show tab frame layouts properly yet. Qt5 causes an ICE error and tanks my entire Xorg display server, so ... something is seriously wrong there, and it's not hiro's fault. Creating a dummy Qt5 application without even using hiro, just int main() { TestObject object; } with object performing a dynamic\_cast to a derived type segfaults. Memory is getting corrupted where GCC allocates the vtables for classes, just by linking in Qt. Could be somehow related to the -fPIC requirement that only Qt5 has ... could just be that FreeBSD 10.1 has a buggy implementation of Qt5. I don't know. It's beyond my ability to debug, so this one's going to stay broken. The Cocoa port is busted. I'll fix it up to compile again, but that's about all I'm going to do. Many optimizations mean bsnes and higan open faster. GTK2 and GTK3 both resize windows very quickly now. higan crashes when you load a game, so that's not good. bsnes works though. bsnes also has the start of a localization engine now. Still a long way to go. The makefiles received a rather substantial restructuring. Including the ruby and hiro makefiles will add the necessary compilation rules for you, which also means that moc will run for the qt4 and qt5 targets, and windres will run for the Windows targets.
2018-07-14 03:59:29 +00:00
for(auto n : range(jp.hid->axes().size())) {
assign(jp.hid, HID::Joypad::GroupID::Axis, n, (int16_t)SDL_JoystickGetAxis(jp.handle, n));
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
}
for(int n = 0; n < (int)jp.hid->hats().size() - 1; n += 2) {
uint8_t state = SDL_JoystickGetHat(jp.handle, n >> 1);
Update to v105 release. byuu says: This release provides several major improvements to Mega Drive emulation which enhances compatibility a good deal. It also includes important Super Famicom mosaic emulation improvements, plus a much-needed SuperFX save state issue fix. Changelog (since v104): - higan: many improvements to Emulator::Interface to support forks/frontends - higan: refreshed program icon - icarus: new program icon - Game Boy Advance: slight emulation speedup over v104 - Game Boy Advance: synchronize APU FIFO updates better - Mega Drive: added automatic region detection [hex_usr] - Mega Drive: support 8-bit SRAM - Game Boy Advance: fixed bug when changing to THUMB mode via MSR [MerryMage] - Master System: fix bug in backdrop color and background 0 priority [hex_usr] - Mega Drive: backgrounds always update output priority bit [Cydrak] - Mega Drive: emulated interlaced video output - Mega Drive: emulated shadow/highlight mode [Cydrak] - Super Famicom: auto joypad polling clears the shift register when starting - Super Famicom: added new low-entropy RAM initialization mode to more closely match hardware - Game Boy Advance: rumble will now time out after being left on for 500ms - ruby: improved rumble support in udev input driver [ma_rysia] - M68K: `move.b (a7)[+/-]` adjust a7 by two - M68K: illegal/lineA/lineF opcodes do not modify the stack register - Mega Drive: emulate VIP status bit - uPD7725: improved emulation of OV1/S1 flags [byuu, AWJ, Lord Nightmare] - uPD7725: improved handling of DP, RP updates [Jonas Quinn] - Super Famicom: improved emulation of mosaic effects in hires, interlace, and offset-per-tile modes [byuu, Cydrak] - ruby: improved Direct3D exclusive mode monitor selection [Cydrak] - Super Famicom: fixed save state bug affecting SuperFX games [Cydrak] - Mega Drive: added workaround for Clang compiler bug; allowing this core to work on macOS [Cydrak, Sintendo] - higan: hotkeys now also trigger when the main window lacks focus yet higan is set to allow input on focus loss - higan: fixed an edge case where `int16_t` ↔ `double` audio conversion could possibly result in overflows - higan: fixed a crash on macOS when choosing quit from the application menu [ncbncb] Changelog (since the previous WIP): - higan: restored `make console=true` - tomoko: if you allow input when main window focus is lost, hotkeys can now be triggered without focus as well - hiro/cocoa: fix crash on exit from menu [ncbncb] - ruby: smarter `double` → `int16_t` conversion to prevent underflow/overflow
2017-10-07 07:28:12 +00:00
assign(jp.hid, HID::Joypad::GroupID::Hat, n + 0, state & SDL_HAT_LEFT ? -32767 : state & SDL_HAT_RIGHT ? +32767 : 0);
assign(jp.hid, HID::Joypad::GroupID::Hat, n + 1, state & SDL_HAT_UP ? -32767 : state & SDL_HAT_DOWN ? +32767 : 0);
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
}
Update to v106r47 release. byuu says: This is probably the largest code-change diff I've done in years. I spent four days working 10-16 hours a day reworking layouts in hiro completely. The result is we now have TableLayout, which will allow for better horizontal+vertical combined alignment. Windows, GTK2, and now GTK3 are fully supported. Windows is getting the initial window geometry wrong by a bit. GTK2 and GTK3 work perfectly. I basically abandoned trying to detect resize signals, and instead keep a list of all hiro windows that are allocated, and every time the main loop runs, it will query all of them to see if they've been resized. I'm disgusted that I have to do this, but after fighting with GTK for years, I'm about sick of it. GTK was doing this crazy thing where it would trigger another size-allocate inside of a previous size-allocate, and so my layouts would be halfway through resizing all the widgets, and then the size-allocate would kick off another one. That would end up leaving the rest of the first layout loop with bad widget sizes. And if I detected a second re-entry and blocked it, then the entire window would end up with the older geometry. I started trying to build a message queue system to allow the second layout resize to occur after the first one completed, but this was just too much madness, so I went with the simpler solution. Qt4 has some geometry problems, and doesn't show tab frame layouts properly yet. Qt5 causes an ICE error and tanks my entire Xorg display server, so ... something is seriously wrong there, and it's not hiro's fault. Creating a dummy Qt5 application without even using hiro, just int main() { TestObject object; } with object performing a dynamic\_cast to a derived type segfaults. Memory is getting corrupted where GCC allocates the vtables for classes, just by linking in Qt. Could be somehow related to the -fPIC requirement that only Qt5 has ... could just be that FreeBSD 10.1 has a buggy implementation of Qt5. I don't know. It's beyond my ability to debug, so this one's going to stay broken. The Cocoa port is busted. I'll fix it up to compile again, but that's about all I'm going to do. Many optimizations mean bsnes and higan open faster. GTK2 and GTK3 both resize windows very quickly now. higan crashes when you load a game, so that's not good. bsnes works though. bsnes also has the start of a localization engine now. Still a long way to go. The makefiles received a rather substantial restructuring. Including the ruby and hiro makefiles will add the necessary compilation rules for you, which also means that moc will run for the qt4 and qt5 targets, and windres will run for the Windows targets.
2018-07-14 03:59:29 +00:00
for(auto n : range(jp.hid->buttons().size())) {
assign(jp.hid, HID::Joypad::GroupID::Button, n, (bool)SDL_JoystickGetButton(jp.handle, n));
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
}
devices.append(jp.hid);
}
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
}
auto initialize() -> bool {
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
SDL_InitSubSystem(SDL_INIT_JOYSTICK);
SDL_JoystickEventState(SDL_IGNORE);
for(auto id : range(SDL_NumJoysticks())) {
Joypad jp;
jp.id = id;
jp.handle = SDL_JoystickOpen(jp.id);
uint axes = SDL_JoystickNumAxes(jp.handle);
uint hats = SDL_JoystickNumHats(jp.handle) * 2;
uint buttons = SDL_JoystickNumButtons(jp.handle);
jp.hid->setVendorID(HID::Joypad::GenericVendorID);
jp.hid->setProductID(HID::Joypad::GenericProductID);
jp.hid->setPathID(jp.id);
for(auto n : range(axes)) jp.hid->axes().append(n);
for(auto n : range(hats)) jp.hid->hats().append(n);
for(auto n : range(buttons)) jp.hid->buttons().append(n);
jp.hid->setRumble(false);
joypads.append(jp);
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
}
return true;
}
auto terminate() -> void {
for(auto& jp : joypads) {
SDL_JoystickClose(jp.handle);
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
}
joypads.reset();
Update to v093r12 release. byuu says: I've completely redone the ethos InputManager and ruby to work on HID::Device objects instead of one giant scancode pool. Currently only the udev driver supports the changes to ruby, so only Linux users will be able to compile and run this WIP build. The nice thing about the new system is that it's now possible to uniquely identify controllers, so if you swap out gamepads, you won't end up with it working but with all the mappings all screwed up. Since higan lets you map multiple physical inputs to one emulated input, you can now configure your keyboard and multiple gamepads to the same emulated input, and then just use whatever controller you want. Because USB gamepad makers failed to provide unique serial#s with each controller, we have to limit the mapping to specific USB ports. Otherwise, we couldn't distinguish two otherwise identical gamepads. So basically your computer USB ports act like real game console input port numbers. Which is kind of neat, I guess. And the really nice thing about the new system is that we now have the capability to support hotplugging input devices. I haven't yet added this to any drivers, but I'm definitely going to add it to udev for v094 official. Finally, with the device ID (vendor ID + product ID) exposed, we gain one last really cool feature that we may be able to develop more in the future. Say we created a joypad.bml file to include with higan. In it, we'd store the Xbox 360 controller, and pre-defined button mappings for each emulated system. So if higan detects you have an Xbox 360 controller, you can just plug it in and use it. Even better, we can clearly specify the difference between triggers and analog axes, and name each individual input. So you'd see "Xbox 360 Gamepad #1: Left Trigger" instead of higan v093's "JP0::Axis2.Hi" Note: for right now, ethos' input manager isn't filtering the device IDs to look pretty. So you're going to see a 64-bit hex value for a device ID right now instead of something like Joypad#N for now.
2013-12-23 11:43:51 +00:00
SDL_QuitSubSystem(SDL_INIT_JOYSTICK);
}
};