Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
#define call (this->*op)
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8)>
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_adjust(uint8& r) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
r = call(r);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8)>
|
|
|
|
void SPC700::op_adjust_addr() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp.l = op_readpc();
|
|
|
|
dp.h = op_readpc();
|
|
|
|
rd = op_read(dp);
|
|
|
|
rd = call(rd);
|
|
|
|
op_write(dp, rd);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8)>
|
|
|
|
void SPC700::op_adjust_dp() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
rd = op_readdp(dp);
|
|
|
|
rd = call(rd);
|
|
|
|
op_writedp(dp, rd);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_adjust_dpw(signed n) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
rd.w = op_readdp(dp) + n;
|
|
|
|
op_writedp(dp++, rd.l);
|
|
|
|
rd.h += op_readdp(dp);
|
|
|
|
op_writedp(dp++, rd.h);
|
|
|
|
regs.p.n = rd & 0x8000;
|
|
|
|
regs.p.z = rd == 0;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8)>
|
|
|
|
void SPC700::op_adjust_dpx() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
op_io();
|
|
|
|
rd = op_readdp(dp + regs.x);
|
|
|
|
rd = call(rd);
|
|
|
|
op_writedp(dp + regs.x, rd);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_branch(bool condition) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
rd = op_readpc();
|
|
|
|
if(condition == false) return;
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
regs.pc += (int8)rd;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_branch_bit() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
sp = op_readdp(dp);
|
|
|
|
rd = op_readpc();
|
|
|
|
op_io();
|
|
|
|
if((bool)(sp & (1 << (opcode >> 5))) == (bool)(opcode & 0x10)) return;
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
regs.pc += (int8)rd;
|
|
|
|
}
|
|
|
|
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_pull(uint8& r) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
r = op_readsp();
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_push(uint8 r) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_writesp(r);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8, uint8)>
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_read_addr(uint8& r) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp.l = op_readpc();
|
|
|
|
dp.h = op_readpc();
|
|
|
|
rd = op_read(dp);
|
|
|
|
r = call(r, rd);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8, uint8)>
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_read_addri(uint8& r) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp.l = op_readpc();
|
|
|
|
dp.h = op_readpc();
|
|
|
|
op_io();
|
|
|
|
rd = op_read(dp + r);
|
|
|
|
regs.a = call(regs.a, rd);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8, uint8)>
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_read_const(uint8& r) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
rd = op_readpc();
|
|
|
|
r = call(r, rd);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8, uint8)>
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_read_dp(uint8& r) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
rd = op_readdp(dp);
|
|
|
|
r = call(r, rd);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8, uint8)>
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_read_dpi(uint8& r, uint8& i) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
op_io();
|
|
|
|
rd = op_readdp(dp + i);
|
|
|
|
r = call(r, rd);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint16 (SPC700::*op)(uint16, uint16)>
|
|
|
|
void SPC700::op_read_dpw() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
rd.l = op_readdp(dp++);
|
2012-04-29 06:16:44 +00:00
|
|
|
if(op != &SPC700::op_cpw) op_io();
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
rd.h = op_readdp(dp++);
|
|
|
|
regs.ya = call(regs.ya, rd);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8, uint8)>
|
|
|
|
void SPC700::op_read_idpx() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc() + regs.x;
|
|
|
|
op_io();
|
|
|
|
sp.l = op_readdp(dp++);
|
|
|
|
sp.h = op_readdp(dp++);
|
|
|
|
rd = op_read(sp);
|
|
|
|
regs.a = call(regs.a, rd);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8, uint8)>
|
|
|
|
void SPC700::op_read_idpy() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
op_io();
|
|
|
|
sp.l = op_readdp(dp++);
|
|
|
|
sp.h = op_readdp(dp++);
|
|
|
|
rd = op_read(sp + regs.y);
|
|
|
|
regs.a = call(regs.a, rd);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8, uint8)>
|
|
|
|
void SPC700::op_read_ix() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
rd = op_readdp(regs.x);
|
|
|
|
regs.a = call(regs.a, rd);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_set_addr_bit() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp.l = op_readpc();
|
|
|
|
dp.h = op_readpc();
|
|
|
|
bit = dp >> 13;
|
|
|
|
dp &= 0x1fff;
|
|
|
|
rd = op_read(dp);
|
|
|
|
switch(opcode >> 5) {
|
|
|
|
case 0: //orc addr:bit
|
|
|
|
case 1: //orc !addr:bit
|
|
|
|
op_io();
|
|
|
|
regs.p.c |= (rd & (1 << bit)) ^ (bool)(opcode & 0x20);
|
|
|
|
break;
|
|
|
|
case 2: //and addr:bit
|
|
|
|
case 3: //and !addr:bit
|
|
|
|
regs.p.c &= (rd & (1 << bit)) ^ (bool)(opcode & 0x20);
|
|
|
|
break;
|
|
|
|
case 4: //eor addr:bit
|
|
|
|
op_io();
|
2012-01-03 12:56:24 +00:00
|
|
|
regs.p.c ^= (bool)(rd & (1 << bit));
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
break;
|
|
|
|
case 5: //ldc addr:bit
|
|
|
|
regs.p.c = (rd & (1 << bit));
|
|
|
|
break;
|
|
|
|
case 6: //stc addr:bit
|
|
|
|
op_io();
|
|
|
|
rd = (rd & ~(1 << bit)) | (regs.p.c << bit);
|
|
|
|
op_write(dp, rd);
|
|
|
|
break;
|
|
|
|
case 7: //not addr:bit
|
|
|
|
rd ^= 1 << bit;
|
|
|
|
op_write(dp, rd);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_set_bit() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
rd = op_readdp(dp) & ~(1 << (opcode >> 5));
|
|
|
|
op_writedp(dp, rd | (!(opcode & 0x10) << (opcode >> 5)));
|
|
|
|
}
|
|
|
|
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_set_flag(bool& flag, bool data) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
if(&flag == ®s.p.i) op_io();
|
|
|
|
flag = data;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_test_addr(bool set) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp.l = op_readpc();
|
|
|
|
dp.h = op_readpc();
|
|
|
|
rd = op_read(dp);
|
|
|
|
regs.p.n = (regs.a - rd) & 0x80;
|
|
|
|
regs.p.z = (regs.a - rd) == 0;
|
|
|
|
op_read(dp);
|
|
|
|
op_write(dp, set ? rd | regs.a : rd & ~regs.a);
|
|
|
|
}
|
|
|
|
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_transfer(uint8& from, uint8& to) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
to = from;
|
|
|
|
if(&to == ®s.s) return;
|
|
|
|
regs.p.n = (to & 0x80);
|
|
|
|
regs.p.z = (to == 0);
|
|
|
|
}
|
|
|
|
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_write_addr(uint8& r) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp.l = op_readpc();
|
|
|
|
dp.h = op_readpc();
|
|
|
|
op_read(dp);
|
|
|
|
op_write(dp, r);
|
|
|
|
}
|
|
|
|
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_write_addri(uint8& i) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp.l = op_readpc();
|
|
|
|
dp.h = op_readpc();
|
|
|
|
op_io();
|
|
|
|
dp += i;
|
|
|
|
op_read(dp);
|
|
|
|
op_write(dp, regs.a);
|
|
|
|
}
|
|
|
|
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_write_dp(uint8& r) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
op_readdp(dp);
|
|
|
|
op_writedp(dp, r);
|
|
|
|
}
|
|
|
|
|
2013-05-05 09:21:30 +00:00
|
|
|
void SPC700::op_write_dpi(uint8& r, uint8& i) {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc() + i;
|
|
|
|
op_io();
|
|
|
|
op_readdp(dp);
|
|
|
|
op_writedp(dp, r);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8, uint8)>
|
|
|
|
void SPC700::op_write_dp_const() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
rd = op_readpc();
|
|
|
|
dp = op_readpc();
|
|
|
|
wr = op_readdp(dp);
|
|
|
|
wr = call(wr, rd);
|
2012-04-29 06:16:44 +00:00
|
|
|
op != &SPC700::op_cmp ? op_writedp(dp, wr) : op_io();
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8, uint8)>
|
|
|
|
void SPC700::op_write_dp_dp() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
sp = op_readpc();
|
|
|
|
rd = op_readdp(sp);
|
|
|
|
dp = op_readpc();
|
2012-04-29 06:16:44 +00:00
|
|
|
if(op != &SPC700::op_st) wr = op_readdp(dp);
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
wr = call(wr, rd);
|
2012-04-29 06:16:44 +00:00
|
|
|
op != &SPC700::op_cmp ? op_writedp(dp, wr) : op_io();
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
template<uint8 (SPC700::*op)(uint8, uint8)>
|
|
|
|
void SPC700::op_write_ix_iy() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
rd = op_readdp(regs.y);
|
|
|
|
wr = op_readdp(regs.x);
|
|
|
|
wr = call(wr, rd);
|
2012-04-29 06:16:44 +00:00
|
|
|
op != &SPC700::op_cmp ? op_writedp(regs.x, wr) : op_io();
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_bne_dp() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
sp = op_readdp(dp);
|
|
|
|
rd = op_readpc();
|
|
|
|
op_io();
|
|
|
|
if(regs.a == sp) return;
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
regs.pc += (int8)rd;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_bne_dpdec() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
wr = op_readdp(dp);
|
|
|
|
op_writedp(dp, --wr);
|
|
|
|
rd = op_readpc();
|
|
|
|
if(wr == 0) return;
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
regs.pc += (int8)rd;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_bne_dpx() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
op_io();
|
|
|
|
sp = op_readdp(dp + regs.x);
|
|
|
|
rd = op_readpc();
|
|
|
|
op_io();
|
|
|
|
if(regs.a == sp) return;
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
regs.pc += (int8)rd;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_bne_ydec() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
rd = op_readpc();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
if(--regs.y == 0) return;
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
regs.pc += (int8)rd;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_brk() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
rd.l = op_read(0xffde);
|
|
|
|
rd.h = op_read(0xffdf);
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_writesp(regs.pc.h);
|
|
|
|
op_writesp(regs.pc.l);
|
|
|
|
op_writesp(regs.p);
|
|
|
|
regs.pc = rd;
|
|
|
|
regs.p.b = 1;
|
|
|
|
regs.p.i = 0;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_clv() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
regs.p.v = 0;
|
|
|
|
regs.p.h = 0;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_cmc() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
regs.p.c = !regs.p.c;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_daa() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
if(regs.p.c || (regs.a) > 0x99) {
|
|
|
|
regs.a += 0x60;
|
|
|
|
regs.p.c = 1;
|
|
|
|
}
|
|
|
|
if(regs.p.h || (regs.a & 15) > 0x09) {
|
|
|
|
regs.a += 0x06;
|
|
|
|
}
|
|
|
|
regs.p.n = (regs.a & 0x80);
|
|
|
|
regs.p.z = (regs.a == 0);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_das() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
if(!regs.p.c || (regs.a) > 0x99) {
|
|
|
|
regs.a -= 0x60;
|
|
|
|
regs.p.c = 0;
|
|
|
|
}
|
|
|
|
if(!regs.p.h || (regs.a & 15) > 0x09) {
|
|
|
|
regs.a -= 0x06;
|
|
|
|
}
|
|
|
|
regs.p.n = (regs.a & 0x80);
|
|
|
|
regs.p.z = (regs.a == 0);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_div_ya_x() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
ya = regs.ya;
|
|
|
|
//overflow set if quotient >= 256
|
|
|
|
regs.p.v = (regs.y >= regs.x);
|
|
|
|
regs.p.h = ((regs.y & 15) >= (regs.x & 15));
|
|
|
|
if(regs.y < (regs.x << 1)) {
|
|
|
|
//if quotient is <= 511 (will fit into 9-bit result)
|
|
|
|
regs.a = ya / regs.x;
|
|
|
|
regs.y = ya % regs.x;
|
|
|
|
} else {
|
|
|
|
//otherwise, the quotient won't fit into regs.p.v + regs.a
|
|
|
|
//this emulates the odd behavior of the S-SMP in this case
|
|
|
|
regs.a = 255 - (ya - (regs.x << 9)) / (256 - regs.x);
|
|
|
|
regs.y = regs.x + (ya - (regs.x << 9)) % (256 - regs.x);
|
|
|
|
}
|
|
|
|
//result is set based on a (quotient) only
|
|
|
|
regs.p.n = (regs.a & 0x80);
|
|
|
|
regs.p.z = (regs.a == 0);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_jmp_addr() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
rd.l = op_readpc();
|
|
|
|
rd.h = op_readpc();
|
|
|
|
regs.pc = rd;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_jmp_iaddrx() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp.l = op_readpc();
|
|
|
|
dp.h = op_readpc();
|
|
|
|
op_io();
|
|
|
|
dp += regs.x;
|
|
|
|
rd.l = op_read(dp++);
|
|
|
|
rd.h = op_read(dp++);
|
|
|
|
regs.pc = rd;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_jsp_dp() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
rd = op_readpc();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_writesp(regs.pc.h);
|
|
|
|
op_writesp(regs.pc.l);
|
|
|
|
regs.pc = 0xff00 | rd;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_jsr_addr() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
rd.l = op_readpc();
|
|
|
|
rd.h = op_readpc();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_writesp(regs.pc.h);
|
|
|
|
op_writesp(regs.pc.l);
|
|
|
|
regs.pc = rd;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_jst() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = 0xffde - ((opcode >> 4) << 1);
|
|
|
|
rd.l = op_read(dp++);
|
|
|
|
rd.h = op_read(dp++);
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_writesp(regs.pc.h);
|
|
|
|
op_writesp(regs.pc.l);
|
|
|
|
regs.pc = rd;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_lda_ixinc() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
regs.a = op_readdp(regs.x++);
|
|
|
|
op_io();
|
|
|
|
regs.p.n = regs.a & 0x80;
|
|
|
|
regs.p.z = regs.a == 0;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_mul_ya() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
ya = regs.y * regs.a;
|
|
|
|
regs.a = ya;
|
|
|
|
regs.y = ya >> 8;
|
|
|
|
//result is set based on y (high-byte) only
|
|
|
|
regs.p.n = (regs.y & 0x80);
|
|
|
|
regs.p.z = (regs.y == 0);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_nop() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_plp() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
regs.p = op_readsp();
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_rti() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
regs.p = op_readsp();
|
|
|
|
rd.l = op_readsp();
|
|
|
|
rd.h = op_readsp();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
regs.pc = rd;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_rts() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
rd.l = op_readsp();
|
|
|
|
rd.h = op_readsp();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
regs.pc = rd;
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_sta_idpx() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
sp = op_readpc() + regs.x;
|
|
|
|
op_io();
|
|
|
|
dp.l = op_readdp(sp++);
|
|
|
|
dp.h = op_readdp(sp++);
|
|
|
|
op_read(dp);
|
|
|
|
op_write(dp, regs.a);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_sta_idpy() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
sp = op_readpc();
|
|
|
|
dp.l = op_readdp(sp++);
|
|
|
|
dp.h = op_readdp(sp++);
|
|
|
|
op_io();
|
|
|
|
dp += regs.y;
|
|
|
|
op_read(dp);
|
|
|
|
op_write(dp, regs.a);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_sta_ix() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
op_readdp(regs.x);
|
|
|
|
op_writedp(regs.x, regs.a);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_sta_ixinc() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_writedp(regs.x++, regs.a);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_stw_dp() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
dp = op_readpc();
|
|
|
|
op_readdp(dp);
|
|
|
|
op_writedp(dp++, regs.a);
|
|
|
|
op_writedp(dp++, regs.y);
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_wait() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
while(true) {
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
void SPC700::op_xcn() {
|
Update to v084r01 release.
I rewrote the S-SMP processor core (implementation of the 256 opcodes),
utilizing my new 6502-like syntax. It matches what bass v05r01 uses.
Took 10 hours.
Due to being able to group the "mov reg,mem" opcodes together with
"adc/sbc/ora/and/eor/cmp" sets, the total code size was reduced from
55.7KB to 42.5KB for identical accuracy and speed.
I also dropped the trick I was using to pass register variables as
template arguments, and instead just use a switch table to pass them as
function arguments. Makes the table a lot easier to read.
Passes all of my S-SMP tests, and all of blargg's
arithmetic/cycle-timing S-SMP tests. Runs Zelda 3 great as well. Didn't
test further.
This does have the potential to cause some regressions if I've messed
anything up, and none of the above tests caught it, so as always,
testing would be appreciated.
Anyway, yeah. By writing the actual processor with this new mnemonic
set, it confirms the parallels I've made.
My guess is that Sony really did clone the 6502, but was worried about
legal implications or something and changed the mnemonics last-minute.
(Note to self: need to re-enable snes.random before v085 official.)
EDIT: oh yeah, I also commented out the ALSA snd_pcm_drain() inside
term(). Without it, there is a tiny pop when the driver is
re-initialized. But with it, the entire emulator would lock up for five
whole seconds waiting on that call to complete. I'll take the pop any
day over that.
2011-11-17 12:05:35 +00:00
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
op_io();
|
|
|
|
regs.a = (regs.a >> 4) | (regs.a << 4);
|
|
|
|
regs.p.n = regs.a & 0x80;
|
|
|
|
regs.p.z = regs.a == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef call
|