2016-01-11 10:31:30 +00:00
|
|
|
#pragma once
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
|
|
|
|
namespace Emulator {
|
|
|
|
|
|
|
|
struct Interface {
|
|
|
|
struct Information {
|
2016-01-30 06:40:35 +00:00
|
|
|
string manufacturer;
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
string name;
|
Update to v088r12 release.
byuu says:
Changelog:
- all hotkeys from target-ui now exist in target-ethos
- controller port menus now show up when you load a system (hidden if
there are no options to choose from)
- tools menu auto-hides with no game open ... not much point to it then
- since we aren't using RawInput's multi-KB/MS support anyway, input and
hotkey mappings remove KB0:: and turn MS0:: into Mouse::, makes it
a lot easier to read
- added mute audio, sync video, sync audio, mask overscan
- added video settings: saturation, gamma, luminance, overscan
horizontal, overscan vertical
- added audio settings: frequency, latency, resampler, volume
- added input settings: when focus is lost [ ] pause emulator [ ] allow
input
- pausing and autopausing works
- status messages hooked up (show a message in status bar for a few
seconds, then revert to normal status text)
- sub systems (SGB, BSX, ST) sorted below primary systems list
- added geometry settings cache
- Emulator::Interface cleanups and simplifications
- save states go into (cart foldername.extension/bsnes/state-#.bsa) now.
Idea is to put emulator-specific data in their own subfolders
Caveats / Missing:
- SGB input does not work
- Sufami Turbo second slot doesn't work yet
- BS-X BIOS won't show the data pack
- need XML mapping information window
- need cheat editor and cheat database
- need state manager
- need video shaders
- need driver selection
- need NSS DIP switch settings
- need to hide controllers that have no inputs from the input mapping
list
So for video settings, I used to have contrast/brightness/gamma.
Contrast was just a multiplier on intensity of each channel, and
brightness was an addition or subtraction against each channel. They
kind of overlapped and weren't that effective. The new setup has
saturation, gamma and luminance.
Saturation of 100% is normal. If you lower it, color information goes
away. 0% = grayscale. If you raise it, color intensity increases (and
clamps.) This is wonderful for GBA games, since they are oversaturated
to fucking death. Of course we'll want to normalize that inside the
core, so the same sat. value works on all systems, but for now it's
nice. If you raise saturation above 100%, it basically acts like
contrast used to. It's just that lowering it fades to grayscale rather
than black.
Adding doesn't really work well for brightness, it throws off the
relative distance between channels and looks like shit. So now we have
luminance, which takes over the old contrast <100% role, and just fades
the pixels toward black. Obviously, luminance > 100% would be the same
as saturation > 100%, so that isn't allowed, it caps at 100% now.
Gamma's the same old function. Gamma curve on the lower-half of the
color range.
Effects are applied in the order they appear in the GUI: color ->
saturate -> gammify -> luminate -> output.
2012-05-04 12:47:41 +00:00
|
|
|
bool overscan;
|
2012-04-29 23:58:41 +00:00
|
|
|
bool resettable;
|
Update to v089r08 release.
byuu says:
Changelog:
- Super Game Boy, BS-X Satellaview and Sufami Turbo cartridges all load
manifests that specify their file names, and they all work
- Sufami Turbo can now properly handle carts without RAM, or empty slots
entirely
- Emulator::Interface structures no longer specify any file names, ever
- exposed "capability.(cheats,states)" now. So far, this just means the
GBA doesn't show the cheat editor, since it doesn't support cheat
codes yet
- as such, state manager and cheat editor windows auto-hide (may be
a tiny bit inconvenient, but it makes not having to sync them or deal
with input when no cart is loaded easier)
- added "AbsoluteInput" type, which returns mouse coordinates from
-32767,-32767 (top left) to +32767,+32767 (bottom right) or
-32768,-32768 (offscreen)
AbsoluteInput is just something I'm toying with. Idea is to support eg
Super Scope or Justifier, or possibly some future Famicom controllers
that are absolute-indexed. The coordinates are scaled, so the bigger
your window, the more precise they are. But obviously you can't get more
precise than the emulated system, so 1x scale will behave the same
anyway. I haven't hooked it up yet, need to mess with the idea of custom
cursors via phoenix for that first. Also not sure if it will feel
smoother or not ... if you resize the window, your mouse will seem to
move slower. Still, not having to capture the mouse for SS/JS may be
nicer yet. But we'll see ... just experimenting for now.
2012-05-27 23:50:50 +00:00
|
|
|
struct Capability {
|
|
|
|
bool states;
|
|
|
|
bool cheats;
|
|
|
|
} capability;
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
} information;
|
|
|
|
|
Update to v098r11 release.
byuu says:
Changelog:
- fixed nall/path.hpp compilation issue
- fixed ruby/audio/xaudio header declaration compilation issue (again)
- cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the
file was whitespace overkill)
- added null terminator entry to nall/windows/utf8.hpp argc[] array
- nall/windows/guid.hpp uses the Windows API for generating the GUID
- this should stop all the bug reports where two nall users were
generating GUIDs at the exact same second
- fixed hiro/cocoa compilation issue with uint# types
- fixed major higan/sfc Super Game Boy audio latency issue
- fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions
- major cleanups to higan/processor/r65816 core
- merged emulation/native-mode opcodes
- use camel-case naming on memory.hpp functions
- simplify address masking code for memory.hpp functions
- simplify a few opcodes themselves (avoid redundant copies, etc)
- rename regs.* to r.* to match modern convention of other CPU cores
- removed device.order<> concept from Emulator::Interface
- cores will now do the translation to make the job of the UI easier
- fixed plurality naming of arrays in Emulator::Interface
- example: emulator.ports[p].devices[d].inputs[i]
- example: vector<Medium> media
- probably more surprises
Major show-stoppers to the next official release:
- we need to work on GB core improvements: LY=153/0 case, multiple STAT
IRQs case, GBC audio output regs, etc.
- we need to re-add software cursors for light guns (Super Scope,
Justifier)
- after the above, we need to fix the turbo button for the Super Scope
I really have no idea how I want to implement the light guns. Ideally,
we'd want it in higan/video, so we can support the NES Zapper with the
same code. But this isn't going to be easy, because only the SNES knows
when its output is interlaced, and its resolutions can vary as
{256,512}x{224,240,448,480} which requires pixel doubling that was
hard-coded to the SNES-specific behavior, but isn't appropriate to be
exposed in higan/video.
2016-05-25 11:13:02 +00:00
|
|
|
struct Medium {
|
2015-11-10 11:02:29 +00:00
|
|
|
uint id;
|
Update to v088r12 release.
byuu says:
Changelog:
- all hotkeys from target-ui now exist in target-ethos
- controller port menus now show up when you load a system (hidden if
there are no options to choose from)
- tools menu auto-hides with no game open ... not much point to it then
- since we aren't using RawInput's multi-KB/MS support anyway, input and
hotkey mappings remove KB0:: and turn MS0:: into Mouse::, makes it
a lot easier to read
- added mute audio, sync video, sync audio, mask overscan
- added video settings: saturation, gamma, luminance, overscan
horizontal, overscan vertical
- added audio settings: frequency, latency, resampler, volume
- added input settings: when focus is lost [ ] pause emulator [ ] allow
input
- pausing and autopausing works
- status messages hooked up (show a message in status bar for a few
seconds, then revert to normal status text)
- sub systems (SGB, BSX, ST) sorted below primary systems list
- added geometry settings cache
- Emulator::Interface cleanups and simplifications
- save states go into (cart foldername.extension/bsnes/state-#.bsa) now.
Idea is to put emulator-specific data in their own subfolders
Caveats / Missing:
- SGB input does not work
- Sufami Turbo second slot doesn't work yet
- BS-X BIOS won't show the data pack
- need XML mapping information window
- need cheat editor and cheat database
- need state manager
- need video shaders
- need driver selection
- need NSS DIP switch settings
- need to hide controllers that have no inputs from the input mapping
list
So for video settings, I used to have contrast/brightness/gamma.
Contrast was just a multiplier on intensity of each channel, and
brightness was an addition or subtraction against each channel. They
kind of overlapped and weren't that effective. The new setup has
saturation, gamma and luminance.
Saturation of 100% is normal. If you lower it, color information goes
away. 0% = grayscale. If you raise it, color intensity increases (and
clamps.) This is wonderful for GBA games, since they are oversaturated
to fucking death. Of course we'll want to normalize that inside the
core, so the same sat. value works on all systems, but for now it's
nice. If you raise saturation above 100%, it basically acts like
contrast used to. It's just that lowering it fades to grayscale rather
than black.
Adding doesn't really work well for brightness, it throws off the
relative distance between channels and looks like shit. So now we have
luminance, which takes over the old contrast <100% role, and just fades
the pixels toward black. Obviously, luminance > 100% would be the same
as saturation > 100%, so that isn't allowed, it caps at 100% now.
Gamma's the same old function. Gamma curve on the lower-half of the
color range.
Effects are applied in the order they appear in the GUI: color ->
saturate -> gammify -> luminate -> output.
2012-05-04 12:47:41 +00:00
|
|
|
string name;
|
2016-06-25 08:53:11 +00:00
|
|
|
string type; //extension
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
};
|
Update to v098r11 release.
byuu says:
Changelog:
- fixed nall/path.hpp compilation issue
- fixed ruby/audio/xaudio header declaration compilation issue (again)
- cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the
file was whitespace overkill)
- added null terminator entry to nall/windows/utf8.hpp argc[] array
- nall/windows/guid.hpp uses the Windows API for generating the GUID
- this should stop all the bug reports where two nall users were
generating GUIDs at the exact same second
- fixed hiro/cocoa compilation issue with uint# types
- fixed major higan/sfc Super Game Boy audio latency issue
- fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions
- major cleanups to higan/processor/r65816 core
- merged emulation/native-mode opcodes
- use camel-case naming on memory.hpp functions
- simplify address masking code for memory.hpp functions
- simplify a few opcodes themselves (avoid redundant copies, etc)
- rename regs.* to r.* to match modern convention of other CPU cores
- removed device.order<> concept from Emulator::Interface
- cores will now do the translation to make the job of the UI easier
- fixed plurality naming of arrays in Emulator::Interface
- example: emulator.ports[p].devices[d].inputs[i]
- example: vector<Medium> media
- probably more surprises
Major show-stoppers to the next official release:
- we need to work on GB core improvements: LY=153/0 case, multiple STAT
IRQs case, GBC audio output regs, etc.
- we need to re-add software cursors for light guns (Super Scope,
Justifier)
- after the above, we need to fix the turbo button for the Super Scope
I really have no idea how I want to implement the light guns. Ideally,
we'd want it in higan/video, so we can support the NES Zapper with the
same code. But this isn't going to be easy, because only the SNES knows
when its output is interlaced, and its resolutions can vary as
{256,512}x{224,240,448,480} which requires pixel doubling that was
hard-coded to the SNES-specific behavior, but isn't appropriate to be
exposed in higan/video.
2016-05-25 11:13:02 +00:00
|
|
|
vector<Medium> media;
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
|
2012-05-06 06:34:46 +00:00
|
|
|
struct Device {
|
2015-11-10 11:02:29 +00:00
|
|
|
uint id;
|
Update to v088r12 release.
byuu says:
Changelog:
- all hotkeys from target-ui now exist in target-ethos
- controller port menus now show up when you load a system (hidden if
there are no options to choose from)
- tools menu auto-hides with no game open ... not much point to it then
- since we aren't using RawInput's multi-KB/MS support anyway, input and
hotkey mappings remove KB0:: and turn MS0:: into Mouse::, makes it
a lot easier to read
- added mute audio, sync video, sync audio, mask overscan
- added video settings: saturation, gamma, luminance, overscan
horizontal, overscan vertical
- added audio settings: frequency, latency, resampler, volume
- added input settings: when focus is lost [ ] pause emulator [ ] allow
input
- pausing and autopausing works
- status messages hooked up (show a message in status bar for a few
seconds, then revert to normal status text)
- sub systems (SGB, BSX, ST) sorted below primary systems list
- added geometry settings cache
- Emulator::Interface cleanups and simplifications
- save states go into (cart foldername.extension/bsnes/state-#.bsa) now.
Idea is to put emulator-specific data in their own subfolders
Caveats / Missing:
- SGB input does not work
- Sufami Turbo second slot doesn't work yet
- BS-X BIOS won't show the data pack
- need XML mapping information window
- need cheat editor and cheat database
- need state manager
- need video shaders
- need driver selection
- need NSS DIP switch settings
- need to hide controllers that have no inputs from the input mapping
list
So for video settings, I used to have contrast/brightness/gamma.
Contrast was just a multiplier on intensity of each channel, and
brightness was an addition or subtraction against each channel. They
kind of overlapped and weren't that effective. The new setup has
saturation, gamma and luminance.
Saturation of 100% is normal. If you lower it, color information goes
away. 0% = grayscale. If you raise it, color intensity increases (and
clamps.) This is wonderful for GBA games, since they are oversaturated
to fucking death. Of course we'll want to normalize that inside the
core, so the same sat. value works on all systems, but for now it's
nice. If you raise saturation above 100%, it basically acts like
contrast used to. It's just that lowering it fades to grayscale rather
than black.
Adding doesn't really work well for brightness, it throws off the
relative distance between channels and looks like shit. So now we have
luminance, which takes over the old contrast <100% role, and just fades
the pixels toward black. Obviously, luminance > 100% would be the same
as saturation > 100%, so that isn't allowed, it caps at 100% now.
Gamma's the same old function. Gamma curve on the lower-half of the
color range.
Effects are applied in the order they appear in the GUI: color ->
saturate -> gammify -> luminate -> output.
2012-05-04 12:47:41 +00:00
|
|
|
string name;
|
2012-05-06 06:34:46 +00:00
|
|
|
struct Input {
|
2015-11-10 11:02:29 +00:00
|
|
|
uint type; //0 = digital, 1 = analog (relative), 2 = rumble
|
Update to v088r12 release.
byuu says:
Changelog:
- all hotkeys from target-ui now exist in target-ethos
- controller port menus now show up when you load a system (hidden if
there are no options to choose from)
- tools menu auto-hides with no game open ... not much point to it then
- since we aren't using RawInput's multi-KB/MS support anyway, input and
hotkey mappings remove KB0:: and turn MS0:: into Mouse::, makes it
a lot easier to read
- added mute audio, sync video, sync audio, mask overscan
- added video settings: saturation, gamma, luminance, overscan
horizontal, overscan vertical
- added audio settings: frequency, latency, resampler, volume
- added input settings: when focus is lost [ ] pause emulator [ ] allow
input
- pausing and autopausing works
- status messages hooked up (show a message in status bar for a few
seconds, then revert to normal status text)
- sub systems (SGB, BSX, ST) sorted below primary systems list
- added geometry settings cache
- Emulator::Interface cleanups and simplifications
- save states go into (cart foldername.extension/bsnes/state-#.bsa) now.
Idea is to put emulator-specific data in their own subfolders
Caveats / Missing:
- SGB input does not work
- Sufami Turbo second slot doesn't work yet
- BS-X BIOS won't show the data pack
- need XML mapping information window
- need cheat editor and cheat database
- need state manager
- need video shaders
- need driver selection
- need NSS DIP switch settings
- need to hide controllers that have no inputs from the input mapping
list
So for video settings, I used to have contrast/brightness/gamma.
Contrast was just a multiplier on intensity of each channel, and
brightness was an addition or subtraction against each channel. They
kind of overlapped and weren't that effective. The new setup has
saturation, gamma and luminance.
Saturation of 100% is normal. If you lower it, color information goes
away. 0% = grayscale. If you raise it, color intensity increases (and
clamps.) This is wonderful for GBA games, since they are oversaturated
to fucking death. Of course we'll want to normalize that inside the
core, so the same sat. value works on all systems, but for now it's
nice. If you raise saturation above 100%, it basically acts like
contrast used to. It's just that lowering it fades to grayscale rather
than black.
Adding doesn't really work well for brightness, it throws off the
relative distance between channels and looks like shit. So now we have
luminance, which takes over the old contrast <100% role, and just fades
the pixels toward black. Obviously, luminance > 100% would be the same
as saturation > 100%, so that isn't allowed, it caps at 100% now.
Gamma's the same old function. Gamma curve on the lower-half of the
color range.
Effects are applied in the order they appear in the GUI: color ->
saturate -> gammify -> luminate -> output.
2012-05-04 12:47:41 +00:00
|
|
|
string name;
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
};
|
Update to v098r11 release.
byuu says:
Changelog:
- fixed nall/path.hpp compilation issue
- fixed ruby/audio/xaudio header declaration compilation issue (again)
- cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the
file was whitespace overkill)
- added null terminator entry to nall/windows/utf8.hpp argc[] array
- nall/windows/guid.hpp uses the Windows API for generating the GUID
- this should stop all the bug reports where two nall users were
generating GUIDs at the exact same second
- fixed hiro/cocoa compilation issue with uint# types
- fixed major higan/sfc Super Game Boy audio latency issue
- fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions
- major cleanups to higan/processor/r65816 core
- merged emulation/native-mode opcodes
- use camel-case naming on memory.hpp functions
- simplify address masking code for memory.hpp functions
- simplify a few opcodes themselves (avoid redundant copies, etc)
- rename regs.* to r.* to match modern convention of other CPU cores
- removed device.order<> concept from Emulator::Interface
- cores will now do the translation to make the job of the UI easier
- fixed plurality naming of arrays in Emulator::Interface
- example: emulator.ports[p].devices[d].inputs[i]
- example: vector<Medium> media
- probably more surprises
Major show-stoppers to the next official release:
- we need to work on GB core improvements: LY=153/0 case, multiple STAT
IRQs case, GBC audio output regs, etc.
- we need to re-add software cursors for light guns (Super Scope,
Justifier)
- after the above, we need to fix the turbo button for the Super Scope
I really have no idea how I want to implement the light guns. Ideally,
we'd want it in higan/video, so we can support the NES Zapper with the
same code. But this isn't going to be easy, because only the SNES knows
when its output is interlaced, and its resolutions can vary as
{256,512}x{224,240,448,480} which requires pixel doubling that was
hard-coded to the SNES-specific behavior, but isn't appropriate to be
exposed in higan/video.
2016-05-25 11:13:02 +00:00
|
|
|
vector<Input> inputs;
|
2012-05-06 06:34:46 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct Port {
|
2015-11-10 11:02:29 +00:00
|
|
|
uint id;
|
2012-05-06 06:34:46 +00:00
|
|
|
string name;
|
Update to v098r11 release.
byuu says:
Changelog:
- fixed nall/path.hpp compilation issue
- fixed ruby/audio/xaudio header declaration compilation issue (again)
- cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the
file was whitespace overkill)
- added null terminator entry to nall/windows/utf8.hpp argc[] array
- nall/windows/guid.hpp uses the Windows API for generating the GUID
- this should stop all the bug reports where two nall users were
generating GUIDs at the exact same second
- fixed hiro/cocoa compilation issue with uint# types
- fixed major higan/sfc Super Game Boy audio latency issue
- fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions
- major cleanups to higan/processor/r65816 core
- merged emulation/native-mode opcodes
- use camel-case naming on memory.hpp functions
- simplify address masking code for memory.hpp functions
- simplify a few opcodes themselves (avoid redundant copies, etc)
- rename regs.* to r.* to match modern convention of other CPU cores
- removed device.order<> concept from Emulator::Interface
- cores will now do the translation to make the job of the UI easier
- fixed plurality naming of arrays in Emulator::Interface
- example: emulator.ports[p].devices[d].inputs[i]
- example: vector<Medium> media
- probably more surprises
Major show-stoppers to the next official release:
- we need to work on GB core improvements: LY=153/0 case, multiple STAT
IRQs case, GBC audio output regs, etc.
- we need to re-add software cursors for light guns (Super Scope,
Justifier)
- after the above, we need to fix the turbo button for the Super Scope
I really have no idea how I want to implement the light guns. Ideally,
we'd want it in higan/video, so we can support the NES Zapper with the
same code. But this isn't going to be easy, because only the SNES knows
when its output is interlaced, and its resolutions can vary as
{256,512}x{224,240,448,480} which requires pixel doubling that was
hard-coded to the SNES-specific behavior, but isn't appropriate to be
exposed in higan/video.
2016-05-25 11:13:02 +00:00
|
|
|
vector<Device> devices;
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
};
|
Update to v098r11 release.
byuu says:
Changelog:
- fixed nall/path.hpp compilation issue
- fixed ruby/audio/xaudio header declaration compilation issue (again)
- cleaned up xaudio2.hpp file to match my coding syntax (12.5% of the
file was whitespace overkill)
- added null terminator entry to nall/windows/utf8.hpp argc[] array
- nall/windows/guid.hpp uses the Windows API for generating the GUID
- this should stop all the bug reports where two nall users were
generating GUIDs at the exact same second
- fixed hiro/cocoa compilation issue with uint# types
- fixed major higan/sfc Super Game Boy audio latency issue
- fixed higan/sfc CPU core bug with pei, [dp], [dp]+y instructions
- major cleanups to higan/processor/r65816 core
- merged emulation/native-mode opcodes
- use camel-case naming on memory.hpp functions
- simplify address masking code for memory.hpp functions
- simplify a few opcodes themselves (avoid redundant copies, etc)
- rename regs.* to r.* to match modern convention of other CPU cores
- removed device.order<> concept from Emulator::Interface
- cores will now do the translation to make the job of the UI easier
- fixed plurality naming of arrays in Emulator::Interface
- example: emulator.ports[p].devices[d].inputs[i]
- example: vector<Medium> media
- probably more surprises
Major show-stoppers to the next official release:
- we need to work on GB core improvements: LY=153/0 case, multiple STAT
IRQs case, GBC audio output regs, etc.
- we need to re-add software cursors for light guns (Super Scope,
Justifier)
- after the above, we need to fix the turbo button for the Super Scope
I really have no idea how I want to implement the light guns. Ideally,
we'd want it in higan/video, so we can support the NES Zapper with the
same code. But this isn't going to be easy, because only the SNES knows
when its output is interlaced, and its resolutions can vary as
{256,512}x{224,240,448,480} which requires pixel doubling that was
hard-coded to the SNES-specific behavior, but isn't appropriate to be
exposed in higan/video.
2016-05-25 11:13:02 +00:00
|
|
|
vector<Port> ports;
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
|
Update to v088r15 release.
byuu says:
Changelog:
- default placement of presentation window optimized for 1024x768
displays or larger (sorry if yours is smaller, move the window
yourself.)
- Direct3D waits until a previous Vblank ends before waiting for the
next Vblank to begin (fixes video timing analysis, and ---really---
fast computers.)
- Window::setVisible(false) clears modality, but also fixed in Browser
code as well (fixes loading images on Windows hanging)
- Browser won't consume full CPU resources (but timing analysis will,
I don't want stalls to affect the results.)
- closing settings window while analyzing stops analysis
- you can load the SGB BIOS without a game (why the hell you would want
to ...)
- escape closes the Browser window (it won't close other dialogs, it has
to be hooked up per-window)
- just for fun, joypad hat up/down moves in Browser file list, any
joypad button loads selected game [not very useful, lacks repeat, and
there aren't GUI load file open buttons]
- Super Scope and Justifier crosshairs render correctly (probably
doesn't belong in the core, but it's not something I suspect people
want to do themselves ...)
- you can load GB, SGB, GB, SGB ... without problems (not happy with how
I did this, but I don't want to add an Interface::setInterface()
function yet)
- PAL timing works as I want now (if you want 50fps on a 60hz monitor,
you must not use sync video) [needed to update the DSP frequency when
toggling video/audio sync]
- not going to save input port selection for now (lot of work), but it
will properly keep your port setting across cartridge loads at least
[just goes to controller on emulator restart]
- SFC overscan on and off both work as expected now (off centers image,
on shows entire image)
- laevateinn compiles properly now
- ethos goes to ~/.config/bsnes now that target-ui is dead [honestly,
I recommend deleting the old folder and starting over]
- Emulator::Interface callbacks converted to virtual binding structure
that GUI inherits from (simplifies binding callbacks)
- this breaks Super Game Boy for a bit, I need to rethink
system-specific bindings without direct inheritance
Timing analysis works spectacularly well on Windows, too. You won't get
your 100% perfect rate (unless maybe you leave the analysis running
overnight?), but it'll get really freaking close this way.
2012-05-07 23:29:03 +00:00
|
|
|
struct Bind {
|
2016-06-20 11:00:32 +00:00
|
|
|
virtual auto path(uint) -> string { return ""; }
|
|
|
|
virtual auto open(uint, string, vfs::file::mode, bool) -> vfs::shared::file { return {}; }
|
2016-06-25 08:53:11 +00:00
|
|
|
virtual auto load(uint, string, string) -> maybe<uint> { return nothing; }
|
Update to v096r07 release.
byuu says:
Changelog:
- configuration files are now stored in localpath() instead of configpath()
- Video gamma/saturation/luminance sliders are gone now, sorry
- added Video Filter->Blur Emulation [1]
- added Video Filter->Scanline Emulation [2]
- improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn]
[1] For the Famicom, this does nothing. For the Super Famicom, this
performs horizontal blending for proper pseudo-hires translucency. For
the Game Boy, Game Boy Color, and Game Boy Advance, this performs
interframe blending (each frame is the average of the current and
previous frame), which is important for things like the GBVideoPlayer.
[2] Right now, this only applies to the Super Famicom, but it'll come to
the Famicom in the future. For the Super Famicom, this option doesn't
just add scanlines, it simulates the phosphor decay that's visible in
interlace mode. If you observe an interlaced game like RPM Racing on
a real SNES, you'll notice that even on perfectly still screens, the
image appears to shake. This option emulates that effect.
Note 1: the buffering right now is a little sub-optimal, so there will
be a slight speed hit with this new support. Since the core is now
generating native ARGB8888 colors, it might as well call out to the
interface to lock/unlock/refresh the video, that way it can render
directly to the screen. Although ... that might not be such a hot idea,
since the GBx interframe blending reads from the target buffer, and that
tends to be a catastrophic option for performance.
Note 2: the balanced and performance profiles for the SNES are
completely busted again. This WIP took 6 1/2 hours, and I'm exhausted.
Very much not looking forward to working on those, since those two have
all kinds of fucked up speedup tricks for non-interlaced and/or
non-hires video modes.
Note 3: if you're on Windows and you saved your system folders somewhere
else, now'd be a good time to move them to %localappdata%/higan
2016-01-15 10:06:51 +00:00
|
|
|
virtual auto videoRefresh(const uint32*, uint, uint, uint) -> void {}
|
2016-06-01 11:23:22 +00:00
|
|
|
virtual auto audioSample(const double*, uint) -> void {}
|
2015-11-10 11:02:29 +00:00
|
|
|
virtual auto inputPoll(uint, uint, uint) -> int16 { return 0; }
|
|
|
|
virtual auto inputRumble(uint, uint, uint, bool) -> void {}
|
Update to v099r14 release.
byuu says:
Changelog:
- (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel
like they were contributing enough to be worth it]
- cleaned up nall::integer,natural,real functionality
- toInteger, toNatural, toReal for parsing strings to numbers
- fromInteger, fromNatural, fromReal for creating strings from numbers
- (string,Markup::Node,SQL-based-classes)::(integer,natural,real)
left unchanged
- template<typename T> numeral(T value, long padding, char padchar)
-> string for print() formatting
- deduces integer,natural,real based on T ... cast the value if you
want to override
- there still exists binary,octal,hex,pointer for explicit print()
formatting
- lstring -> string_vector [but using lstring = string_vector; is
declared]
- would be nice to remove the using lstring eventually ... but that'd
probably require 10,000 lines of changes >_>
- format -> string_format [no using here; format was too ambiguous]
- using integer = Integer<sizeof(int)*8>; and using natural =
Natural<sizeof(uint)*8>; declared
- for consistency with boolean. These three are meant for creating
zero-initialized values implicitly (various uses)
- R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees
up struct IO {} io; naming]
- SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {}
(status,registers); now
- still some CPU::Status status values ... they didn't really fit into
IO functionality ... will have to think about this more
- SFC CPU, PPU, SMP now use step() exclusively instead of addClocks()
calling into step()
- SFC CPU joypad1_bits, joypad2_bits were unused; killed them
- SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it
- SFC PPU OAM moved into PPU::Object; since nothing else uses it
- the raw uint8[544] array is gone. OAM::read() constructs values from
the OAM::Object[512] table now
- this avoids having to determine how we want to sub-divide the two
OAM memory sections
- this also eliminates the OAM::synchronize() functionality
- probably more I'm forgetting
The FPS fluctuations are driving me insane. This WIP went from 128fps to
137fps. Settled on 133.5fps for the final build. But nothing I changed
should have affected performance at all. This level of fluctuation makes
it damn near impossible to know whether I'm speeding things up or slowing
things down with changes.
2016-07-01 11:50:32 +00:00
|
|
|
virtual auto dipSettings(Markup::Node) -> uint { return 0; }
|
2015-06-15 22:26:47 +00:00
|
|
|
virtual auto notify(string text) -> void { print(text, "\n"); }
|
2013-05-02 11:25:45 +00:00
|
|
|
};
|
|
|
|
Bind* bind = nullptr;
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
|
Update to v088r12 release.
byuu says:
Changelog:
- all hotkeys from target-ui now exist in target-ethos
- controller port menus now show up when you load a system (hidden if
there are no options to choose from)
- tools menu auto-hides with no game open ... not much point to it then
- since we aren't using RawInput's multi-KB/MS support anyway, input and
hotkey mappings remove KB0:: and turn MS0:: into Mouse::, makes it
a lot easier to read
- added mute audio, sync video, sync audio, mask overscan
- added video settings: saturation, gamma, luminance, overscan
horizontal, overscan vertical
- added audio settings: frequency, latency, resampler, volume
- added input settings: when focus is lost [ ] pause emulator [ ] allow
input
- pausing and autopausing works
- status messages hooked up (show a message in status bar for a few
seconds, then revert to normal status text)
- sub systems (SGB, BSX, ST) sorted below primary systems list
- added geometry settings cache
- Emulator::Interface cleanups and simplifications
- save states go into (cart foldername.extension/bsnes/state-#.bsa) now.
Idea is to put emulator-specific data in their own subfolders
Caveats / Missing:
- SGB input does not work
- Sufami Turbo second slot doesn't work yet
- BS-X BIOS won't show the data pack
- need XML mapping information window
- need cheat editor and cheat database
- need state manager
- need video shaders
- need driver selection
- need NSS DIP switch settings
- need to hide controllers that have no inputs from the input mapping
list
So for video settings, I used to have contrast/brightness/gamma.
Contrast was just a multiplier on intensity of each channel, and
brightness was an addition or subtraction against each channel. They
kind of overlapped and weren't that effective. The new setup has
saturation, gamma and luminance.
Saturation of 100% is normal. If you lower it, color information goes
away. 0% = grayscale. If you raise it, color intensity increases (and
clamps.) This is wonderful for GBA games, since they are oversaturated
to fucking death. Of course we'll want to normalize that inside the
core, so the same sat. value works on all systems, but for now it's
nice. If you raise saturation above 100%, it basically acts like
contrast used to. It's just that lowering it fades to grayscale rather
than black.
Adding doesn't really work well for brightness, it throws off the
relative distance between channels and looks like shit. So now we have
luminance, which takes over the old contrast <100% role, and just fades
the pixels toward black. Obviously, luminance > 100% would be the same
as saturation > 100%, so that isn't allowed, it caps at 100% now.
Gamma's the same old function. Gamma curve on the lower-half of the
color range.
Effects are applied in the order they appear in the GUI: color ->
saturate -> gammify -> luminate -> output.
2012-05-04 12:47:41 +00:00
|
|
|
//callback bindings (provided by user interface)
|
2016-06-20 11:00:32 +00:00
|
|
|
auto path(uint id) -> string { return bind->path(id); }
|
|
|
|
auto open(uint id, string name, vfs::file::mode mode, bool required = false) -> vfs::shared::file { return bind->open(id, name, mode, required); }
|
2016-06-25 08:53:11 +00:00
|
|
|
auto load(uint id, string name, string type) -> maybe<uint> { return bind->load(id, name, type); }
|
Update to v096r07 release.
byuu says:
Changelog:
- configuration files are now stored in localpath() instead of configpath()
- Video gamma/saturation/luminance sliders are gone now, sorry
- added Video Filter->Blur Emulation [1]
- added Video Filter->Scanline Emulation [2]
- improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn]
[1] For the Famicom, this does nothing. For the Super Famicom, this
performs horizontal blending for proper pseudo-hires translucency. For
the Game Boy, Game Boy Color, and Game Boy Advance, this performs
interframe blending (each frame is the average of the current and
previous frame), which is important for things like the GBVideoPlayer.
[2] Right now, this only applies to the Super Famicom, but it'll come to
the Famicom in the future. For the Super Famicom, this option doesn't
just add scanlines, it simulates the phosphor decay that's visible in
interlace mode. If you observe an interlaced game like RPM Racing on
a real SNES, you'll notice that even on perfectly still screens, the
image appears to shake. This option emulates that effect.
Note 1: the buffering right now is a little sub-optimal, so there will
be a slight speed hit with this new support. Since the core is now
generating native ARGB8888 colors, it might as well call out to the
interface to lock/unlock/refresh the video, that way it can render
directly to the screen. Although ... that might not be such a hot idea,
since the GBx interframe blending reads from the target buffer, and that
tends to be a catastrophic option for performance.
Note 2: the balanced and performance profiles for the SNES are
completely busted again. This WIP took 6 1/2 hours, and I'm exhausted.
Very much not looking forward to working on those, since those two have
all kinds of fucked up speedup tricks for non-interlaced and/or
non-hires video modes.
Note 3: if you're on Windows and you saved your system folders somewhere
else, now'd be a good time to move them to %localappdata%/higan
2016-01-15 10:06:51 +00:00
|
|
|
auto videoRefresh(const uint32* data, uint pitch, uint width, uint height) -> void { return bind->videoRefresh(data, pitch, width, height); }
|
2016-06-01 11:23:22 +00:00
|
|
|
auto audioSample(const double* samples, uint channels) -> void { return bind->audioSample(samples, channels); }
|
2015-11-10 11:02:29 +00:00
|
|
|
auto inputPoll(uint port, uint device, uint input) -> int16 { return bind->inputPoll(port, device, input); }
|
|
|
|
auto inputRumble(uint port, uint device, uint input, bool enable) -> void { return bind->inputRumble(port, device, input, enable); }
|
Update to v099r14 release.
byuu says:
Changelog:
- (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel
like they were contributing enough to be worth it]
- cleaned up nall::integer,natural,real functionality
- toInteger, toNatural, toReal for parsing strings to numbers
- fromInteger, fromNatural, fromReal for creating strings from numbers
- (string,Markup::Node,SQL-based-classes)::(integer,natural,real)
left unchanged
- template<typename T> numeral(T value, long padding, char padchar)
-> string for print() formatting
- deduces integer,natural,real based on T ... cast the value if you
want to override
- there still exists binary,octal,hex,pointer for explicit print()
formatting
- lstring -> string_vector [but using lstring = string_vector; is
declared]
- would be nice to remove the using lstring eventually ... but that'd
probably require 10,000 lines of changes >_>
- format -> string_format [no using here; format was too ambiguous]
- using integer = Integer<sizeof(int)*8>; and using natural =
Natural<sizeof(uint)*8>; declared
- for consistency with boolean. These three are meant for creating
zero-initialized values implicitly (various uses)
- R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees
up struct IO {} io; naming]
- SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {}
(status,registers); now
- still some CPU::Status status values ... they didn't really fit into
IO functionality ... will have to think about this more
- SFC CPU, PPU, SMP now use step() exclusively instead of addClocks()
calling into step()
- SFC CPU joypad1_bits, joypad2_bits were unused; killed them
- SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it
- SFC PPU OAM moved into PPU::Object; since nothing else uses it
- the raw uint8[544] array is gone. OAM::read() constructs values from
the OAM::Object[512] table now
- this avoids having to determine how we want to sub-divide the two
OAM memory sections
- this also eliminates the OAM::synchronize() functionality
- probably more I'm forgetting
The FPS fluctuations are driving me insane. This WIP went from 128fps to
137fps. Settled on 133.5fps for the final build. But nothing I changed
should have affected performance at all. This level of fluctuation makes
it damn near impossible to know whether I'm speeding things up or slowing
things down with changes.
2016-07-01 11:50:32 +00:00
|
|
|
auto dipSettings(Markup::Node node) -> uint { return bind->dipSettings(node); }
|
2015-06-15 22:26:47 +00:00
|
|
|
template<typename... P> auto notify(P&&... p) -> void { return bind->notify({forward<P>(p)...}); }
|
Update to v088r14 release.
byuu says:
Changelog:
- added NSS DIP switch settings window (when loading NSS carts with
appropriate manifest.xml file)
- added video shader selection (they go in ~/.config/bsnes/Video
Shaders/ now)
- added driver selection
- added timing settings (not only allows video/audio settings, also has
code to dynamically compute the values for you ... and it actually
works pretty good!)
- moved "None" controller device to bottom of list (it is the least
likely to be used, after all)
- added Interface::path() to support MSU1, USART, Link
- input and hotkey mappings remember list position after assignment
- and more!
target-ethos now has all of the functionality of target-ui, and more.
Final code size for the port is 101.2KB (ethos) vs 167.6KB (ui).
A ~67% reduction in code size, yet it does even more! And you can add or
remove an entire system with only three lines of code (Makefile include,
header include, interface append.)
The only problem left is that the BS-X BIOS won't load the BS Zelda no
Densetsu file.
I can't figure out why it's not working, would appreciate any
assistance, but otherwise I'm probably just going to leave it broken for
v089, sorry.
So the show stoppers for a new release at this point are:
- fix laevateinn to compile with the new interface changes (shouldn't be
too hard, it'll still use the old, direct interface.)
- clean up Emulator::Interface as much as possible (trim down
Information, mediaRequest should use an alternate struct designed to
load firmware / slots separately)
- enhance purify to strip SNES ROM headers, and it really needs a GUI
interface
- it would be highly desirable to make a launcher that can create
a cartridge folder from an existing ROM set (* ethos will need to
accept command-line arguments for this.)
- probably need to remember which controller was selected in each port
for each system across runs
- need to fix the cursor for Super Scope / Justifier games (move from
19-bit to 32-bit colors broke it)
- have to refactor that cache.(hv)offset thing to fix ASP
2012-05-06 23:27:42 +00:00
|
|
|
|
|
|
|
//information
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
virtual auto manifest() -> string = 0;
|
2015-06-15 22:26:47 +00:00
|
|
|
virtual auto title() -> string = 0;
|
Update to v098r06 release.
byuu says:
Changelog:
- emulation cores now refresh video from host thread instead of
cothreads (fix AMD crash)
- SFC: fixed another bug with leap year months in SharpRTC emulation
- SFC: cleaned up camelCase on function names for
armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes
- GB: added MBC1M emulation (requires manually setting mapper=MBC1M in
manifest.bml for now, sorry)
- audio: implemented Emulator::Audio mixer and effects processor
- audio: implemented Emulator::Stream interface
- it is now possible to have more than two audio streams: eg SNES
+ SGB + MSU1 + Voicer-Kun (eventually)
- audio: added reverb delay + reverb level settings; exposed balance
configuration in UI
- video: reworked palette generation to re-enable saturation, gamma,
luminance adjustments
- higan/emulator.cpp is gone since there was nothing left in it
I know you guys are going to say the color adjust/balance/reverb stuff
is pointless. And indeed it mostly is. But I like the idea of allowing
some fun special effects and configurability that isn't system-wide.
Note: there seems to be some kind of added audio lag in the SGB
emulation now, and I don't really understand why. The code should be
effectively identical to what I had before. The only main thing is that
I'm sampling things to 48000hz instead of 32040hz before mixing. There's
no point where I'm intentionally introducing added latency though. I'm
kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be
much appreciated :/
I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as
well, and that would be very bad.
2016-04-22 13:35:51 +00:00
|
|
|
|
|
|
|
//video information
|
Update to v101r06 release.
byuu says:
I reworked the video sizing code. Ended up wasting five fucking hours
fighting GTK. When you call `gtk_widget_set_size_request`, it doesn't
actually happen then. This is kind of a big deal because when I then go
to draw onto the viewport, the actual viewport child window is still the
old size, so the image gets distorted. It recovers in a frame or so with
emulation, but if we were to put a still image on there, it would stay
distorted.
The first thought is, `while(gtk_events_pending())
gtk_main_iteration_do(false);` right after the `set_size_request`. But
nope, it tells you there's no events pending. So then you think, go
deeper, use `XPending()` instead. Same thing, GTK hasn't actually issued
the command to Xlib yet. So then you think, if the widget is realized,
just call a blocking `gtk_main_iteration`. One call does nothing, two
calls results in a deadlock on the second one ... do it before program
startup, and the main window will never appear. Great.
Oh, and it's not just the viewport. It's also the widget container area
of the windows, as well as the window itself, as well as the fullscreen
mode toggle effect. They all do this.
For the latter three, I couldn't find anything that worked, so I just
added 20ms loops of constantly calling `gtk_main_iteration_do(false)`
after each one of those things. The downside here is toggling the status
bar takes 40ms, so you'll see it and it'll feel a tiny bit sluggish.
But I can't have a 20ms wait on each widget resize, that would be
catastrophic to performance on windows with lots of widgets.
I tried hooking configure-event and size-allocate, but they were very
unreliable. So instead I ended up with a loop that waits up to a maximm
of 20ms that inspects the `widget->allocation.(width,height)` values
directly and waits for them to be what we asked for with
`set_size_request`.
There was some extreme ugliness in GTK with calling
`gtk_main_iteration_do` recursively (`hiro::Widget::setGeometry` is
called recursively), so I had to lock it to only happen on the top level
widgets (the child ones should get resized while waiting on the
top-level ones, so it should be fine in practice), and also only run it
on realized widgets.
Even still, I'm getting ~3 timeouts when opening the settings dialog in
higan, but no other windows. But, this is the best I can do for now.
And the reason for all of this pain? Yeah, updated the video code.
So the Emulator::Interface now has this:
struct VideoSize { uint width, height; }; //or requiem for a tuple
auto videoSize() -> VideoSize;
auto videoSize(uint width, uint height, bool arc) -> VideoSize;
The first function, for now, is just returning the literal surface size.
I may remove this ... one thing I want to allow for is cores that send
different texture sizes based on interlace/hires/overscan/etc settings.
The second function is more interesting. Instead of having the UI trying
to figure out sizing, I figure the emulation cores can do a better job
and we can customize it per-core now. So it gets the window's width and
height, and whether the user asked for aspect correction, and then
computes the best width/height ratio possible. For now they're all just
doing multiples of a 1x scale to the UI 2x,3x,4x modes.
We still need a third function, which will probably be what I repurpose
videoSize() for: to return the 'effective' size for pixel shaders, to
then feed into ruby, to then feed into quark, to then feed into our
shaders. Since shaders use normalized coordinates for pixel fetching,
this should work out just fine. The real texture size will be exposed to
quark shaders as well, of course.
Now for the main window ... it's just hard-coded to be 640x480, 960x720,
1280x960 for now. It works nicely for some cores on some modes, not so
much for others. Work in progress I guess.
I also took the opportunity to draw the about dialog box logo on the
main window. Got a bit fancy and used the old spherical gradient and
impose functionality of nall/image on it. Very minor highlight, nothing
garish. Just something nicer than a solid black window.
If you guys want to mess around with sizes, placements, and gradient
styles/colors/shapes ... feel free. If you come up with something nicer,
do share.
That's what led to all the GTK hell ... the logo wasn't drawing right as
you resized the window. But now it is, though I am not at all happy with
the hacking I had to do.
I also had to improve the video update code as a result of this:
- when you unload a game, it blacks out the screen
- if you are not quitting the emulator, it'll draw the logo; if
you are, it won't
- when you load a game, it black out the logo
These options prevent any unsightliness from resizing the viewport with
image data on it already
I need to redraw the logo when toggling fullscreen with no game loaded
as well for Windows, it seems.
2016-08-13 13:57:48 +00:00
|
|
|
struct VideoSize { uint width, height; };
|
|
|
|
virtual auto videoSize() -> VideoSize = 0;
|
|
|
|
virtual auto videoSize(uint width, uint height, bool arc) -> VideoSize = 0;
|
2015-06-15 22:26:47 +00:00
|
|
|
virtual auto videoFrequency() -> double = 0;
|
Update to v099r06 release.
byuu says:
Changelog:
- Super Famicom core converted to use nall/vfs
- excludes Super Game Boy; since that's invoked from inside the GB core
This was definitely the major obstacle to test nall/vfs'
applicability. Things worked out pretty great in the end.
We went from 22.0KiB (cartridge) + 18.6KiB (interface) to 24.5KiB
(cartridge) + 11.4KiB (interface). Or 40.7KiB to 36.0KiB. This removes
a very large source of indirection. Before it was: "coprocessor <=>
cartridge <=> interface" for loading and saving data, and now it's just
"coprocessor <=> cartridge". And it may make sense to eventually turn
this into just "cartridge -> coprocessor" by making each coprocessor
class handle its own markup parsing.
It's nice to have all the manifest parsing in one location (well, sans
MSU1); but it's also nice for loading/unloading to be handled by each
coprocessor itself. So I'll have to think longer about that one.
I've also started handling Interface::save() differently. Instead of
keeping track of memory IDs and filenames, and iterating through that
vector of objects ... instead I now have a system that mirrors the markup
parsing on loading, but handles saving instead. This was actually the
reason the code size savings weren't more significant, but I like this
style more. As before, it removes an extra level of indirection.
So ... next up, I need to port over the GB, then GBA, then WS
cores. These shouldn't take too long since they're all very simple with
just ROM+RAM(+RTC) right now. Then get the SGB callbacks using vfs. Then
after that, gut all the old stream stuff from nall and higan. Kill the
(load,save)Request stuff, rename the load(Gamepak)Request to something
simpler, and then we should be good.
Anyway ... these are some huge changes.
2016-06-21 05:22:52 +00:00
|
|
|
virtual auto videoColors() -> uint32 = 0;
|
|
|
|
virtual auto videoColor(uint32 color) -> uint64 = 0;
|
Update to v098r06 release.
byuu says:
Changelog:
- emulation cores now refresh video from host thread instead of
cothreads (fix AMD crash)
- SFC: fixed another bug with leap year months in SharpRTC emulation
- SFC: cleaned up camelCase on function names for
armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes
- GB: added MBC1M emulation (requires manually setting mapper=MBC1M in
manifest.bml for now, sorry)
- audio: implemented Emulator::Audio mixer and effects processor
- audio: implemented Emulator::Stream interface
- it is now possible to have more than two audio streams: eg SNES
+ SGB + MSU1 + Voicer-Kun (eventually)
- audio: added reverb delay + reverb level settings; exposed balance
configuration in UI
- video: reworked palette generation to re-enable saturation, gamma,
luminance adjustments
- higan/emulator.cpp is gone since there was nothing left in it
I know you guys are going to say the color adjust/balance/reverb stuff
is pointless. And indeed it mostly is. But I like the idea of allowing
some fun special effects and configurability that isn't system-wide.
Note: there seems to be some kind of added audio lag in the SGB
emulation now, and I don't really understand why. The code should be
effectively identical to what I had before. The only main thing is that
I'm sampling things to 48000hz instead of 32040hz before mixing. There's
no point where I'm intentionally introducing added latency though. I'm
kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be
much appreciated :/
I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as
well, and that would be very bad.
2016-04-22 13:35:51 +00:00
|
|
|
|
|
|
|
//audio information
|
2015-06-15 22:26:47 +00:00
|
|
|
virtual auto audioFrequency() -> double = 0;
|
Update to v088r14 release.
byuu says:
Changelog:
- added NSS DIP switch settings window (when loading NSS carts with
appropriate manifest.xml file)
- added video shader selection (they go in ~/.config/bsnes/Video
Shaders/ now)
- added driver selection
- added timing settings (not only allows video/audio settings, also has
code to dynamically compute the values for you ... and it actually
works pretty good!)
- moved "None" controller device to bottom of list (it is the least
likely to be used, after all)
- added Interface::path() to support MSU1, USART, Link
- input and hotkey mappings remember list position after assignment
- and more!
target-ethos now has all of the functionality of target-ui, and more.
Final code size for the port is 101.2KB (ethos) vs 167.6KB (ui).
A ~67% reduction in code size, yet it does even more! And you can add or
remove an entire system with only three lines of code (Makefile include,
header include, interface append.)
The only problem left is that the BS-X BIOS won't load the BS Zelda no
Densetsu file.
I can't figure out why it's not working, would appreciate any
assistance, but otherwise I'm probably just going to leave it broken for
v089, sorry.
So the show stoppers for a new release at this point are:
- fix laevateinn to compile with the new interface changes (shouldn't be
too hard, it'll still use the old, direct interface.)
- clean up Emulator::Interface as much as possible (trim down
Information, mediaRequest should use an alternate struct designed to
load firmware / slots separately)
- enhance purify to strip SNES ROM headers, and it really needs a GUI
interface
- it would be highly desirable to make a launcher that can create
a cartridge folder from an existing ROM set (* ethos will need to
accept command-line arguments for this.)
- probably need to remember which controller was selected in each port
for each system across runs
- need to fix the cursor for Super Scope / Justifier games (move from
19-bit to 32-bit colors broke it)
- have to refactor that cache.(hv)offset thing to fix ASP
2012-05-06 23:27:42 +00:00
|
|
|
|
Update to v088r11 release.
byuu says:
Changelog:
- phoenix has added Window::setModal(bool modal = true);
- file dialog is now modal. This allows emulation cores to request data
and get it immediately before continuing the loading process
- save data is hooked up for most systems, still need to handle
subsystem slot saves (Sufami Turbo, basically.)
- toggle fullscreen key binding added (Alt+Enter for now. I think F11 is
probably better though, Enter is often mapped to game start button.)
- video scaling is in (center, scale, stretch), works the same in
windowed and fullscreen mode (stretch hides resize window option), all
in the settings menu now
- enough structure to map all saved paths for the browser and to load
BS-X slotted carts, BS-X carts, single Sufami Turbo carts
Caveats / Missing:
- Super Game Boy input doesn't work yet (due to change in callback
binding)
- doesn't load secondary Sufami Turbo slot yet
- BS-X BIOS isn't show the data pack games to load for some reason (ugh,
I hate the shit out of debugging BS-X stuff ...)
- need mute audio, sync audio+video toggle, save/load state menu and
quick keys, XML mapping information window
- need cheat editor and cheat database
- need state manager
- need to sort subsystems below main systems in load menu (basically
just see if media.slot.size() > 0)
- need video shaders (will probably leave off filters for the time being
... due to that 24/30-bit thing)
- need video adjustments (contrast etc, overscan masks)
- need audio adjustments (frequency, latency, resampler, volume,
per-system frequency)
- need driver selection and input focus policy (driver crash detection
would be nice too)
- need NSS DIP switch settings (that one will be really fun)
- need to save and load window geometry settings
- need to hook up controller selection (won't be fun), create a map to
hide controllers with no inputs to reassign
2012-05-03 12:36:47 +00:00
|
|
|
//media interface
|
2015-06-15 22:26:47 +00:00
|
|
|
virtual auto loaded() -> bool { return false; }
|
|
|
|
virtual auto sha256() -> string { return ""; }
|
Update to v099r08 release.
byuu says:
Changelog:
- nall/vfs work 100% completed; even SGB games load now
- emulation cores now call load() for the base cartridges as well
- updated port/device handling; portmask is gone; device ID bug should
be resolved now
- SNES controller port 1 multitap option was removed
- added support for 128KiB SNES PPU VRAM (for now, edit sfc/ppu/ppu.hpp
VRAM::size=0x10000; to enable)
Overall, nall/vfs was a huge success!! We've substantially reduced
the amount of boilerplate code everywhere, while still allowing (even
easier than before) support for RAM-based game loading/saving. All of
nall/stream is dead and buried.
I am considering removing Emulator::Interface::Medium::id and/or
bootable flag. Or at least, doing something different with it. The
values for the non-bootable GB/BS/ST entries duplicate the ID that is
supposed to be unique. They are for GB/GBC and WS/WSC. Maybe I'll use
this as the hardware revision selection ID, and then gut non-bootable
options. There's really no reason for that to be there. I think at one
point I was using it to generate library tabs for non-bootable systems,
but we don't do that anymore anyway.
Emulator::Interface::load() may not need the required flag anymore ... it
doesn't really do anything right now anyway.
I have a few reasons for having the cores load the base cartridge. Most
importantly, it is going to enable a special mode for the WonderSwan /
WonderSwan Color in the future. If we ever get the IPLROMs dumped ... it's
possible to boot these systems with no games inserted to set user profile
information and such. There are also other systems that may accept being
booted without a cartridge. To reach this state, you would load a game and
then cancel the load dialog. Right now, this results in games not loading.
The second reason is this prevents nasty crashes when loading fails. So
if you're missing a required manifest, the emulator won't die a violent
death anymore. It's able to back out at any point.
The third reason is consistency: loading the base cartridge works the
same as the slot cartridges.
The fourth reason is Emulator::Interface::open(uint pathID)
values. Before, the GB, SB, GBC modes were IDs 1,2,3 respectively. This
complicated things because you had to pass the correct ID. But now
instead, Emulator::Interface::load() returns maybe<uint> that is nothing
when no game is selected, and a pathID for a valid game. And now open()
can take this ID to access this game's folder contents.
The downside, which is temporary, is that command-line loading is
currently broken. But I do intend on restoring it. In fact, I want to do
better than before and allow multi-cart booting from the command-line by
specifying the base cartridge and then slot cartridges. The idea should
be pretty simple: keep a queue of pending filenames that we fill from
the command-line and/or drag-and-drop operations on the main window,
and then empty out the queue or prompt for load dialogs from the UI
when booting a system. This also might be a bit more unorthodox compared
to the traditional emulator design of "loadGame(filename)", but ... oh
well. It's easy enough still.
The port/device changes are fun. We simplified things quite a bit. The
portmask stuff is gone entirely. While ports and devices keep IDs,
this is really just sugar-coating so UIs can use for(auto& port :
emulator->ports) and access port.id; rather than having to use for(auto
n : range(emulator->ports)) { auto& port = emulator->ports[n]; ... };
but they should otherwise generally be identical to the order they appear
in their respective ranges. Still, don't rely on that.
Input::id is gone. There was no point since we also got rid of the nasty
Input::order vector. Since I was in here, I went ahead and caved on the
pedantics and renamed Input::guid to Input::userData.
I removed the SNES controller port 1 multitap option. Basically, the only
game that uses this is N-warp Daisakusen and, no offense to d4s, it's
not really a good game anyway. It's just a quick demo to show 8-players
on the SNES. But in the UI, all it does is confuse people into wasting
time mapping a controller they're never going to use, and they're going
to wonder which port to use. If more compelling use cases for 8-players
comes about, we can reconsider this. I left all the code to support this
in place, so all you have to do is uncomment one line to enable it again.
We now have dsnes emulation! :D
If you change PPU::VRAM::size to 0x10000 (words), then you should now
have 128KiB of VRAM. Even better, it serializes the used-VRAM size,
so your save states shouldn't crash on you if you swap between the two
(though if you try this, you're nuts.)
Note that this option does break commercial software. Yoshi's Island in
particular. This game is setting A15 on some PPU register writes, but
not on others. The end result of this is things break horribly in-game.
Also, this option is causing a very tiny speed hit for obvious reasons
with the variable masking value (I'm even using size-1 for now.) Given
how niche this is, I may just leave it a compile-time constant to avoid
the overhead cost. Otherwise, if we keep the option, then it'll go into
Super Famicom.sys/manifest.bml ... I'll flesh that out in the near-future.
----
Finally, some fun for my OCD ... my monitor suddenly cut out on me
in the middle of working on this WIP, about six hours in of non-stop
work. Had to hit a bunch of ctrl+alt+fN commands (among other things)
and trying to log in headless on another TTY to do issue commands,
trying to recover the display. Finally power cycled the monitor and it
came back up. So all my typing ended up going to who knows where.
Usually this sort of thing terrifies me enough that I scrap a WIP and
start over to ensure I didn't screw anything up during the crashed screen
when hitting keys randomly.
Obviously, everything compiles and appears to work fine. And I know
it's extremely paranoid, but OCD isn't logical, so ... I'm going
to go over every line of the 100KiB r07->r08 diff looking for any
corruption/errors/whatever.
----
Review finished.
r08 diff review notes:
- fc/controller/gamepad/gamepad.cpp:
use uint device = ID::Device::Gamepad; not id = ...;
- gb/cartridge/cartridge.hpp:
remove redundant uint _pathID; (in Information::pathID already)
- gb/cartridge/cartridge.hpp:
pull sha256 inside Information
- sfc/cartridge/load/cpp:
add " - Slot (A,B)" to interface->load("Sufami Turbo"); to be more
descriptive
- sfc/controller/gamepad/gamepad.cpp:
use uint device = ID::Device::Gamepad; not id = ...;
- sfc/interface/interface.cpp:
remove n variable from the Multitap device input generation loop
(now unused)
- sfc/interface/interface.hpp:
put struct Port above struct Device like the other classes
- ui-tomoko:
cheats.bml is reading from/writing to mediumPaths(0) [system folder
instead of game folder]
- ui-tomoko:
instead of mediumPaths(1) - call emulator->metadataPathID() or something
like that
2016-06-24 12:16:53 +00:00
|
|
|
virtual auto load(uint id) -> bool { return false; }
|
2015-06-15 22:26:47 +00:00
|
|
|
virtual auto save() -> void {}
|
|
|
|
virtual auto unload() -> void {}
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
|
|
|
|
//system interface
|
2015-11-10 11:02:29 +00:00
|
|
|
virtual auto connect(uint port, uint device) -> void {}
|
2015-06-15 22:26:47 +00:00
|
|
|
virtual auto power() -> void {}
|
|
|
|
virtual auto reset() -> void {}
|
|
|
|
virtual auto run() -> void {}
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
|
2012-05-23 11:27:45 +00:00
|
|
|
//time functions
|
2015-06-15 22:26:47 +00:00
|
|
|
virtual auto rtc() -> bool { return false; }
|
|
|
|
virtual auto rtcsync() -> void {}
|
2012-05-23 11:27:45 +00:00
|
|
|
|
Update to v088r12 release.
byuu says:
Changelog:
- all hotkeys from target-ui now exist in target-ethos
- controller port menus now show up when you load a system (hidden if
there are no options to choose from)
- tools menu auto-hides with no game open ... not much point to it then
- since we aren't using RawInput's multi-KB/MS support anyway, input and
hotkey mappings remove KB0:: and turn MS0:: into Mouse::, makes it
a lot easier to read
- added mute audio, sync video, sync audio, mask overscan
- added video settings: saturation, gamma, luminance, overscan
horizontal, overscan vertical
- added audio settings: frequency, latency, resampler, volume
- added input settings: when focus is lost [ ] pause emulator [ ] allow
input
- pausing and autopausing works
- status messages hooked up (show a message in status bar for a few
seconds, then revert to normal status text)
- sub systems (SGB, BSX, ST) sorted below primary systems list
- added geometry settings cache
- Emulator::Interface cleanups and simplifications
- save states go into (cart foldername.extension/bsnes/state-#.bsa) now.
Idea is to put emulator-specific data in their own subfolders
Caveats / Missing:
- SGB input does not work
- Sufami Turbo second slot doesn't work yet
- BS-X BIOS won't show the data pack
- need XML mapping information window
- need cheat editor and cheat database
- need state manager
- need video shaders
- need driver selection
- need NSS DIP switch settings
- need to hide controllers that have no inputs from the input mapping
list
So for video settings, I used to have contrast/brightness/gamma.
Contrast was just a multiplier on intensity of each channel, and
brightness was an addition or subtraction against each channel. They
kind of overlapped and weren't that effective. The new setup has
saturation, gamma and luminance.
Saturation of 100% is normal. If you lower it, color information goes
away. 0% = grayscale. If you raise it, color intensity increases (and
clamps.) This is wonderful for GBA games, since they are oversaturated
to fucking death. Of course we'll want to normalize that inside the
core, so the same sat. value works on all systems, but for now it's
nice. If you raise saturation above 100%, it basically acts like
contrast used to. It's just that lowering it fades to grayscale rather
than black.
Adding doesn't really work well for brightness, it throws off the
relative distance between channels and looks like shit. So now we have
luminance, which takes over the old contrast <100% role, and just fades
the pixels toward black. Obviously, luminance > 100% would be the same
as saturation > 100%, so that isn't allowed, it caps at 100% now.
Gamma's the same old function. Gamma curve on the lower-half of the
color range.
Effects are applied in the order they appear in the GUI: color ->
saturate -> gammify -> luminate -> output.
2012-05-04 12:47:41 +00:00
|
|
|
//state functions
|
2015-06-15 22:26:47 +00:00
|
|
|
virtual auto serialize() -> serializer = 0;
|
|
|
|
virtual auto unserialize(serializer&) -> bool = 0;
|
Update to v088r12 release.
byuu says:
Changelog:
- all hotkeys from target-ui now exist in target-ethos
- controller port menus now show up when you load a system (hidden if
there are no options to choose from)
- tools menu auto-hides with no game open ... not much point to it then
- since we aren't using RawInput's multi-KB/MS support anyway, input and
hotkey mappings remove KB0:: and turn MS0:: into Mouse::, makes it
a lot easier to read
- added mute audio, sync video, sync audio, mask overscan
- added video settings: saturation, gamma, luminance, overscan
horizontal, overscan vertical
- added audio settings: frequency, latency, resampler, volume
- added input settings: when focus is lost [ ] pause emulator [ ] allow
input
- pausing and autopausing works
- status messages hooked up (show a message in status bar for a few
seconds, then revert to normal status text)
- sub systems (SGB, BSX, ST) sorted below primary systems list
- added geometry settings cache
- Emulator::Interface cleanups and simplifications
- save states go into (cart foldername.extension/bsnes/state-#.bsa) now.
Idea is to put emulator-specific data in their own subfolders
Caveats / Missing:
- SGB input does not work
- Sufami Turbo second slot doesn't work yet
- BS-X BIOS won't show the data pack
- need XML mapping information window
- need cheat editor and cheat database
- need state manager
- need video shaders
- need driver selection
- need NSS DIP switch settings
- need to hide controllers that have no inputs from the input mapping
list
So for video settings, I used to have contrast/brightness/gamma.
Contrast was just a multiplier on intensity of each channel, and
brightness was an addition or subtraction against each channel. They
kind of overlapped and weren't that effective. The new setup has
saturation, gamma and luminance.
Saturation of 100% is normal. If you lower it, color information goes
away. 0% = grayscale. If you raise it, color intensity increases (and
clamps.) This is wonderful for GBA games, since they are oversaturated
to fucking death. Of course we'll want to normalize that inside the
core, so the same sat. value works on all systems, but for now it's
nice. If you raise saturation above 100%, it basically acts like
contrast used to. It's just that lowering it fades to grayscale rather
than black.
Adding doesn't really work well for brightness, it throws off the
relative distance between channels and looks like shit. So now we have
luminance, which takes over the old contrast <100% role, and just fades
the pixels toward black. Obviously, luminance > 100% would be the same
as saturation > 100%, so that isn't allowed, it caps at 100% now.
Gamma's the same old function. Gamma curve on the lower-half of the
color range.
Effects are applied in the order they appear in the GUI: color ->
saturate -> gammify -> luminate -> output.
2012-05-04 12:47:41 +00:00
|
|
|
|
2012-05-06 06:34:46 +00:00
|
|
|
//cheat functions
|
2016-07-01 11:58:12 +00:00
|
|
|
virtual auto cheatSet(const string_vector& = {}) -> void {}
|
2012-05-06 06:34:46 +00:00
|
|
|
|
Update to v096r07 release.
byuu says:
Changelog:
- configuration files are now stored in localpath() instead of configpath()
- Video gamma/saturation/luminance sliders are gone now, sorry
- added Video Filter->Blur Emulation [1]
- added Video Filter->Scanline Emulation [2]
- improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn]
[1] For the Famicom, this does nothing. For the Super Famicom, this
performs horizontal blending for proper pseudo-hires translucency. For
the Game Boy, Game Boy Color, and Game Boy Advance, this performs
interframe blending (each frame is the average of the current and
previous frame), which is important for things like the GBVideoPlayer.
[2] Right now, this only applies to the Super Famicom, but it'll come to
the Famicom in the future. For the Super Famicom, this option doesn't
just add scanlines, it simulates the phosphor decay that's visible in
interlace mode. If you observe an interlaced game like RPM Racing on
a real SNES, you'll notice that even on perfectly still screens, the
image appears to shake. This option emulates that effect.
Note 1: the buffering right now is a little sub-optimal, so there will
be a slight speed hit with this new support. Since the core is now
generating native ARGB8888 colors, it might as well call out to the
interface to lock/unlock/refresh the video, that way it can render
directly to the screen. Although ... that might not be such a hot idea,
since the GBx interframe blending reads from the target buffer, and that
tends to be a catastrophic option for performance.
Note 2: the balanced and performance profiles for the SNES are
completely busted again. This WIP took 6 1/2 hours, and I'm exhausted.
Very much not looking forward to working on those, since those two have
all kinds of fucked up speedup tricks for non-interlaced and/or
non-hires video modes.
Note 3: if you're on Windows and you saved your system folders somewhere
else, now'd be a good time to move them to %localappdata%/higan
2016-01-15 10:06:51 +00:00
|
|
|
//settings
|
|
|
|
virtual auto cap(const string& name) -> bool { return false; }
|
|
|
|
virtual auto get(const string& name) -> any { return {}; }
|
|
|
|
virtual auto set(const string& name, const any& value) -> bool { return false; }
|
2016-01-23 07:29:34 +00:00
|
|
|
|
|
|
|
//shared functions
|
|
|
|
auto videoColor(uint16 r, uint16 g, uint16 b) -> uint32;
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
};
|
|
|
|
|
Update to v099r08 release.
byuu says:
Changelog:
- nall/vfs work 100% completed; even SGB games load now
- emulation cores now call load() for the base cartridges as well
- updated port/device handling; portmask is gone; device ID bug should
be resolved now
- SNES controller port 1 multitap option was removed
- added support for 128KiB SNES PPU VRAM (for now, edit sfc/ppu/ppu.hpp
VRAM::size=0x10000; to enable)
Overall, nall/vfs was a huge success!! We've substantially reduced
the amount of boilerplate code everywhere, while still allowing (even
easier than before) support for RAM-based game loading/saving. All of
nall/stream is dead and buried.
I am considering removing Emulator::Interface::Medium::id and/or
bootable flag. Or at least, doing something different with it. The
values for the non-bootable GB/BS/ST entries duplicate the ID that is
supposed to be unique. They are for GB/GBC and WS/WSC. Maybe I'll use
this as the hardware revision selection ID, and then gut non-bootable
options. There's really no reason for that to be there. I think at one
point I was using it to generate library tabs for non-bootable systems,
but we don't do that anymore anyway.
Emulator::Interface::load() may not need the required flag anymore ... it
doesn't really do anything right now anyway.
I have a few reasons for having the cores load the base cartridge. Most
importantly, it is going to enable a special mode for the WonderSwan /
WonderSwan Color in the future. If we ever get the IPLROMs dumped ... it's
possible to boot these systems with no games inserted to set user profile
information and such. There are also other systems that may accept being
booted without a cartridge. To reach this state, you would load a game and
then cancel the load dialog. Right now, this results in games not loading.
The second reason is this prevents nasty crashes when loading fails. So
if you're missing a required manifest, the emulator won't die a violent
death anymore. It's able to back out at any point.
The third reason is consistency: loading the base cartridge works the
same as the slot cartridges.
The fourth reason is Emulator::Interface::open(uint pathID)
values. Before, the GB, SB, GBC modes were IDs 1,2,3 respectively. This
complicated things because you had to pass the correct ID. But now
instead, Emulator::Interface::load() returns maybe<uint> that is nothing
when no game is selected, and a pathID for a valid game. And now open()
can take this ID to access this game's folder contents.
The downside, which is temporary, is that command-line loading is
currently broken. But I do intend on restoring it. In fact, I want to do
better than before and allow multi-cart booting from the command-line by
specifying the base cartridge and then slot cartridges. The idea should
be pretty simple: keep a queue of pending filenames that we fill from
the command-line and/or drag-and-drop operations on the main window,
and then empty out the queue or prompt for load dialogs from the UI
when booting a system. This also might be a bit more unorthodox compared
to the traditional emulator design of "loadGame(filename)", but ... oh
well. It's easy enough still.
The port/device changes are fun. We simplified things quite a bit. The
portmask stuff is gone entirely. While ports and devices keep IDs,
this is really just sugar-coating so UIs can use for(auto& port :
emulator->ports) and access port.id; rather than having to use for(auto
n : range(emulator->ports)) { auto& port = emulator->ports[n]; ... };
but they should otherwise generally be identical to the order they appear
in their respective ranges. Still, don't rely on that.
Input::id is gone. There was no point since we also got rid of the nasty
Input::order vector. Since I was in here, I went ahead and caved on the
pedantics and renamed Input::guid to Input::userData.
I removed the SNES controller port 1 multitap option. Basically, the only
game that uses this is N-warp Daisakusen and, no offense to d4s, it's
not really a good game anyway. It's just a quick demo to show 8-players
on the SNES. But in the UI, all it does is confuse people into wasting
time mapping a controller they're never going to use, and they're going
to wonder which port to use. If more compelling use cases for 8-players
comes about, we can reconsider this. I left all the code to support this
in place, so all you have to do is uncomment one line to enable it again.
We now have dsnes emulation! :D
If you change PPU::VRAM::size to 0x10000 (words), then you should now
have 128KiB of VRAM. Even better, it serializes the used-VRAM size,
so your save states shouldn't crash on you if you swap between the two
(though if you try this, you're nuts.)
Note that this option does break commercial software. Yoshi's Island in
particular. This game is setting A15 on some PPU register writes, but
not on others. The end result of this is things break horribly in-game.
Also, this option is causing a very tiny speed hit for obvious reasons
with the variable masking value (I'm even using size-1 for now.) Given
how niche this is, I may just leave it a compile-time constant to avoid
the overhead cost. Otherwise, if we keep the option, then it'll go into
Super Famicom.sys/manifest.bml ... I'll flesh that out in the near-future.
----
Finally, some fun for my OCD ... my monitor suddenly cut out on me
in the middle of working on this WIP, about six hours in of non-stop
work. Had to hit a bunch of ctrl+alt+fN commands (among other things)
and trying to log in headless on another TTY to do issue commands,
trying to recover the display. Finally power cycled the monitor and it
came back up. So all my typing ended up going to who knows where.
Usually this sort of thing terrifies me enough that I scrap a WIP and
start over to ensure I didn't screw anything up during the crashed screen
when hitting keys randomly.
Obviously, everything compiles and appears to work fine. And I know
it's extremely paranoid, but OCD isn't logical, so ... I'm going
to go over every line of the 100KiB r07->r08 diff looking for any
corruption/errors/whatever.
----
Review finished.
r08 diff review notes:
- fc/controller/gamepad/gamepad.cpp:
use uint device = ID::Device::Gamepad; not id = ...;
- gb/cartridge/cartridge.hpp:
remove redundant uint _pathID; (in Information::pathID already)
- gb/cartridge/cartridge.hpp:
pull sha256 inside Information
- sfc/cartridge/load/cpp:
add " - Slot (A,B)" to interface->load("Sufami Turbo"); to be more
descriptive
- sfc/controller/gamepad/gamepad.cpp:
use uint device = ID::Device::Gamepad; not id = ...;
- sfc/interface/interface.cpp:
remove n variable from the Multitap device input generation loop
(now unused)
- sfc/interface/interface.hpp:
put struct Port above struct Device like the other classes
- ui-tomoko:
cheats.bml is reading from/writing to mediumPaths(0) [system folder
instead of game folder]
- ui-tomoko:
instead of mediumPaths(1) - call emulator->metadataPathID() or something
like that
2016-06-24 12:16:53 +00:00
|
|
|
//nall/vfs shorthand constants for open(), load()
|
|
|
|
struct File {
|
|
|
|
static const auto Read = vfs::file::mode::read;
|
|
|
|
static const auto Write = vfs::file::mode::write;
|
|
|
|
static const auto Optional = false;
|
|
|
|
static const auto Required = true;
|
|
|
|
};
|
|
|
|
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
}
|