2011-09-27 11:55:02 +00:00
|
|
|
struct Interface;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2011-09-27 11:55:02 +00:00
|
|
|
struct System : property<System> {
|
2010-08-09 13:28:56 +00:00
|
|
|
enum class Region : unsigned { NTSC = 0, PAL = 1, Autodetect = 2 };
|
2013-01-23 08:28:35 +00:00
|
|
|
enum class ExpansionPortDevice : unsigned { None = 0, Satellaview = 1 };
|
2010-08-09 13:28:56 +00:00
|
|
|
|
|
|
|
void run();
|
|
|
|
void runtosave();
|
|
|
|
|
2011-09-15 12:41:49 +00:00
|
|
|
void init();
|
2010-08-09 13:28:56 +00:00
|
|
|
void term();
|
Update to v074r10 release.
byuu says:
Major WIP, countless changes. I really went to town on cleaning up the
source today with all kinds of new ideas. I'll post the ones I remember,
use diff -ru to get the rest.
What I like the most is my new within template:
template<unsigned lo, unsigned hi>
alwaysinline bool within(unsigned addr) {
static const unsigned mask = ~(hi ^ lo);
return (addr & mask) == lo;
}
Before, you would see code like this:
if((addr & 0xe0e000) == 0x206000) { //$20-3f:6000-7fff
The comment is basically necessary, and you have to trust that the mask
is right, or do the math yourself.
Now, it looks like this:
if(within<0x20, 0x3f, 0x6000, 0x7fff>(addr)) {
That's the same as within<0x206000, 0x3f7fff>, I just made an
SNES-variant to more closely simulate my XML mapping style:
20-3f:6000-7fff.
Now obviously this has limitations, it only works in base-2 and it can't
manage some tricky edge cases like (addr & 0x408000) == 0x008000 for
00-3f|80-bf:8000-ffff. But for the most part, I'll be using this where
I can. The Game Boy is fully ported over to it (via the MBCs), but the
SNES only has the BS-X town cartridge moved over so far. SuperFX and
SA-1 at the very least could benefit.
Next up, since the memory map is now static, there's really no reason to
remap the entire thing at power-on and reset. So it is now set up at
cartridge load and that's it. I moved the CPU/PPU/WRAM mapping out of
memory.cpp and into their respective processors. A bit of duplication
only because there are multiple processor cores for the different
profiles, but I'm not worried about that. This is also going to be
necessary to fix the debugger.
Next, Coprocessor::enable() actually does what I initially intended it
to now: it is called once to turn a chip on after cartridge load. It's
not called on power cycle anymore. This should help fix power-cycle on
my serial simulation code, and was needed to map the bus exactly one
time. Although most stuff is mapped through XML, some chips still need
some manual hooks for monitoring and such (eg S-DD1.)
Next, I've started killing off memory::, it was initially an
over-reaction to the question of where to put APURAM (in the SMP or
DSP?). The idea was to have this namespace that contained all memory for
everything. But it was very annoying and tedious, and various chips
ignored the convention anyway like ST-0011 RAM, which couldn't work
anyway since it is natively uint16 and not uint8. Cx4 will need 24-bit
RAM eventually, too. There's 8->24-bit functions in there now, because
the HLE code is hideous.
So far, all the cartridge.cpp memory:: types have been destroyed.
memory::cartrom, memory::cartram become cartridge.rom and cartridge.ram.
memory::cartrtc was moved into the SRTC and SPC7110 classes directly.
memory::bsxflash was moved into BSXFlash. memory::bsxram and
memory::bsxpram were moved into BSXCartridge (the town cartridge).
memory::st[AB](rom|ram) were moved into a new area,
snes/chip/sufamiturbo. The snes/chip moniker really doesn't work so
well, since it also has base units, and the serial communications stuff
which is through the controller port, but oh well, now it also has the
base structure for the Sufami Turbo cartridge too. So now we have
sufamiturbo.slotA.rom, sufamiturbo.slotB.ram, etc.
Next, the ST-0010/ST-0011 actually save the data RAM to disk. This
wasn't at all compatible with my old system, and I didn't want to keep
adding memory types to check inside the main UI cartridge RAM loading
and saving routines.
So I built a NonVolatileRAM vector inside SNES::Cartridge, and any chip
that has memory it wants to save and load from disk can append onto it
: data, size, id ("srm", "rtc", "nec", etc) and slot (0 = cartridge,
1 = slot A, 2 = slot B)
To load and save memory, we just do a simple: foreach(memory,
SNES::cartridge.nvram) load/saveMemory(memory).
As a result, you can now keep your save games in F1 Race of Champions II
and Hayazashi Nidan Morita Shougi. Technically I think Metal Combat
should work this way as well, having the RAM being part of the chip
itself, but for now that chip just writes directly into cartridge.ram,
so it also technically saves to disk for now.
To avoid a potential conflict with a manipulated memory map, BS-X SRAM
and PSRAM are now .bss and .bsp, and not .srm and .psr. Honestly I don't
like .srm as an extension either, but it doesn't bother me enough to
break save RAM compatibility with other emulators, so don't worry about
that changing.
I finally killed off MappedRAM initializing size to ~0 (-1U). A size of
zero means there is no memory there just the same. This was an old
holdover for handling MMIO mapping, if I recall correctly. Something
about a size of zero on MMIO-Memory objects causing it to wrap the
address, so ~0 would let it map direct addresses ... or something.
Whatever, that's not needed at all anymore.
BSXBase becomes BSXSatellaview, and I've defaulted the device to being
attached since it won't affect non-BSX games anyway. Eventually the GUI
needs to make that an option. BSXCart becomes BSXCartridge. BSXFlash
remains unchanged.
I probably need to make Coprocessor::disable() functions now to free up
memory on unload, but it shouldn't hurt anything the way it is.
libsnes is most definitely broken to all hell and back now, and the
debugger is still shot. I suppose we'll need some tricky code to work
with the old ID system, and we'll need to add some more IDs for the new
memory types.
2011-01-24 08:59:45 +00:00
|
|
|
void load();
|
Update to v075 release.
byuu says:
This release brings improved Super Game Boy emulation, the final SHA256
hashes for the DSP-(1,1B,2,3,4) and ST-(0010,0011) coprocessors, user
interface improvements, and major internal code restructuring.
Changelog (since v074):
- completely rewrote memory sub-system to support 1-byte granularity in
XML mapping
- removed Memory inheritance and MMIO class completely, any address can
be mapped to any function now
- SuperFX: removed SuperFXBus : Bus, now implemented manually
- SA-1: removed SA1Bus : Bus, now implemented manually
- entire bus mapping is now static, happens once on cartridge load
- as a result, read/write handlers now handle MMC mapping; slower
average case, far faster worst case
- namespace memory is no more, RAM arrays are stored inside the chips
they are owned by now
- GameBoy: improved CPU HALT emulation, fixes Zelda: Link's Awakening
scrolling
- GameBoy: added serial emulation (cannot connect to another GB yet),
fixes Shin Megami Tensei - Devichil
- GameBoy: improved LCD STAT emulation, fixes Sagaia
- ui: added fullscreen support (F11 key), video settings allows for
three scale settings
- ui: fixed brightness, contrast, gamma, audio volume, input frequency
values on program startup
- ui: since Qt is dead, config file becomes bsnes.cfg once again
- Super Game Boy: you can now load the BIOS without a game inserted to
see a pretty white box
- ui-gameboy: can be built without SNES components now
- libsnes: now a UI target, compile with 'make ui=ui-libsnes'
- libsnes: added WRAM, APURAM, VRAM, OAM, CGRAM access (cheat search,
etc)
- source: removed launcher/, as the Qt port is now gone
- source: Makefile restructuring to better support new ui targets
- source: lots of other internal code cleanup work
2011-01-27 08:52:34 +00:00
|
|
|
void unload();
|
2010-08-09 13:28:56 +00:00
|
|
|
void power();
|
|
|
|
void reset();
|
|
|
|
|
|
|
|
void frame();
|
|
|
|
void scanline();
|
|
|
|
|
|
|
|
//return *active* system information (settings are cached upon power-on)
|
|
|
|
readonly<Region> region;
|
|
|
|
readonly<ExpansionPortDevice> expansion;
|
|
|
|
readonly<unsigned> cpu_frequency;
|
|
|
|
readonly<unsigned> apu_frequency;
|
|
|
|
readonly<unsigned> serialize_size;
|
|
|
|
|
|
|
|
serializer serialize();
|
|
|
|
bool unserialize(serializer&);
|
|
|
|
|
|
|
|
System();
|
|
|
|
|
Update to v094r39 release.
byuu says:
Changelog:
- SNES mid-scanline BGMODE fixes finally merged (can run
atx2.zip{mode7.smc}+mtest(2).sfc properly now)
- Makefile now discards all built-in rules and variables
- switch on bool warning disabled for GCC now as well (was already
disabled for Clang)
- when loading a game, if any required files are missing, display
a warning message box (manifest.bml, program.rom, bios.rom, etc)
- when loading a game (or a game slot), if manifest.bml is missing, it
will invoke icarus to try and generate it
- if that fails (icarus is missing or the folder is bad), you will get
a warning telling you that the manifest can't be loaded
The warning prompt on missing files work for both games and the .sys
folders and their files. For some reason, failing to load the DMG/CGB
BIOS is causing a crash before I can display the modal dialog. I have no
idea why, and the stack frame backtrace is junk.
I also can't seem to abort the failed loading process. If I call
Program::unloadMedia(), I get a nasty segfault. Again with a really
nasty stack trace. So for now, it'll just end up sitting there emulating
an empty ROM (solid black screen.) In time, I'd like to fix that too.
Lastly, I need a better method than popen for Windows. popen is kind of
ugly and flashes a console window for a brief second even if the
application launched is linked with -mwindows. Not sure if there even is
one (I need to read the stdout result, so CreateProcess may not work
unless I do something nasty like "> %tmp%/temp") I'm also using the
regular popen instead of _wpopen, so for this WIP, it won't work if your
game folder has non-English letters in the path.
2015-08-04 09:00:55 +00:00
|
|
|
struct Information {
|
|
|
|
string manifest;
|
|
|
|
} information;
|
|
|
|
|
2010-08-09 13:28:56 +00:00
|
|
|
private:
|
|
|
|
void runthreadtosave();
|
|
|
|
|
|
|
|
void serialize(serializer&);
|
|
|
|
void serialize_all(serializer&);
|
|
|
|
void serialize_init();
|
|
|
|
|
|
|
|
friend class Cartridge;
|
|
|
|
friend class Video;
|
|
|
|
friend class Audio;
|
|
|
|
friend class Input;
|
|
|
|
};
|
|
|
|
|
Update to v093r02 release.
byuu says:
Changelog:
- nall: fixed major memory leak in string class
- ruby: video shaders support #define-based settings now
- phoenix/GTK+: support > 256x256 icons for window / task bar / alt-tab
- sfc: remove random/ and config/, merge into system/
- ethos: delete higan.png (48x48), replace with higan512.png (512x512)
as new higan.png
- ethos: default gamma to 100% (no color adjustment)
- ethos: use "Video Shaders/Display Emulation/" instead of "Video
Shaders/Emulation/"
- use g++ instead of g++-4.7 (g++ -v must be >= 4.7)
- use -std=c++11 instead of -std=gnu++11
- applied a few patches from Debian upstream to make their packaging job
easier
So because colors are normalized in GLSL, I won't be able to offer video
shaders absolute color literals. We will have to perform basic color
conversion inside the core.
As such, the current plan is to create some sort of Emulator::Settings
interface. With that, I'll connect an option for color correction, which
will be on by default. For FC/SFC, that will mean gamma correction
(darker / stronger colors), and for GB/GBC/GBA, it will mean simulating
the weird brightness levels of the displays. I am undecided on whether
to use pea soup green for the GB or not. By not doing so, it'll be
easier for the display emulation shader to do it.
2013-11-09 11:45:54 +00:00
|
|
|
extern System system;
|
|
|
|
|
Update to v084r03 release.
(r02 was not posted to the WIP thread)
byuu says:
Internally, all color is processed with 30-bit precision. The filters
also operate at 30-bit depth.
There's a new config file setting, video.depth, which defaults to 24.
This causes the final output to downsample to 24-bit, as most will
require.
If you set it to 30-bit, the downsampling will not occur, and bsnes will
ask ruby for a 30-bit surface. If you don't have one available, you're
going to get bad colors. Or maybe even a crash with OpenGL.
I don't yet have detection code to make sure you have an appropriate
visual in place.
30-bit mode will really only work if you are running Linux, running Xorg
at Depth 30, use the OpenGL or XShm driver, have an nVidia Quadro or AMD
FireGL card with the official drivers, and have a 30-bit capable
monitor.
Lots of planning and work for very little gain here, but it's nice that
it's finally finished.
Oh, I had to change the contrast/brightness formulas a tiny bit, but
they still work and look nice.
2011-12-03 03:22:54 +00:00
|
|
|
#include "video.hpp"
|
|
|
|
#include "audio.hpp"
|
|
|
|
#include "input.hpp"
|
2011-01-08 09:58:41 +00:00
|
|
|
|
2012-04-29 06:16:44 +00:00
|
|
|
#include <sfc/scheduler/scheduler.hpp>
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v093r02 release.
byuu says:
Changelog:
- nall: fixed major memory leak in string class
- ruby: video shaders support #define-based settings now
- phoenix/GTK+: support > 256x256 icons for window / task bar / alt-tab
- sfc: remove random/ and config/, merge into system/
- ethos: delete higan.png (48x48), replace with higan512.png (512x512)
as new higan.png
- ethos: default gamma to 100% (no color adjustment)
- ethos: use "Video Shaders/Display Emulation/" instead of "Video
Shaders/Emulation/"
- use g++ instead of g++-4.7 (g++ -v must be >= 4.7)
- use -std=c++11 instead of -std=gnu++11
- applied a few patches from Debian upstream to make their packaging job
easier
So because colors are normalized in GLSL, I won't be able to offer video
shaders absolute color literals. We will have to perform basic color
conversion inside the core.
As such, the current plan is to create some sort of Emulator::Settings
interface. With that, I'll connect an option for color correction, which
will be on by default. For FC/SFC, that will mean gamma correction
(darker / stronger colors), and for GB/GBC/GBA, it will mean simulating
the weird brightness levels of the displays. I am undecided on whether
to use pea soup green for the GB or not. By not doing so, it'll be
easier for the display emulation shader to do it.
2013-11-09 11:45:54 +00:00
|
|
|
struct Configuration {
|
|
|
|
Input::Device controller_port1 = Input::Device::Joypad;
|
|
|
|
Input::Device controller_port2 = Input::Device::Joypad;
|
|
|
|
System::ExpansionPortDevice expansion_port = System::ExpansionPortDevice::Satellaview;
|
|
|
|
System::Region region = System::Region::Autodetect;
|
|
|
|
bool random = true;
|
|
|
|
};
|
|
|
|
|
|
|
|
extern Configuration configuration;
|
|
|
|
|
|
|
|
struct Random {
|
|
|
|
void seed(unsigned seed) {
|
|
|
|
iter = seed;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned operator()(unsigned result) {
|
|
|
|
if(configuration.random == false) return result;
|
|
|
|
return iter = (iter >> 1) ^ (((iter & 1) - 1) & 0xedb88320);
|
|
|
|
}
|
|
|
|
|
|
|
|
void serialize(serializer& s) {
|
|
|
|
s.integer(iter);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
unsigned iter = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
extern Random random;
|