bsnes/higan/processor/huc6280/huc6280.hpp

154 lines
4.8 KiB
C++
Raw Normal View History

//Hudson Soft HuC6280
Update to v101r30 release. byuu says: Changelog: - SMS: added cartridge ROM/RAM mirroring (fixes Alex Kidd) - SMS: fixed 8x16 sprite mode (fixes Wonder Boy, Ys graphics) - Z80: emulated "ex (sp),hl" instruction - Z80: fixed INx NF (should be set instead of cleared) - Z80: fixed loop condition check for CPxR, INxR, LDxR, OTxR (fixes walking in Wonder Boy) - SFC: removed Debugger and sfc/debugger.hpp - icarus: connected MS, GG, MD importing to the scan dialog - PCE: added emulation skeleton to higan and icarus At this point, Master System games are fairly highly compatible, sans audio. Game Gear games are running, but I need to crop the resolution and support the higher color palette that they can utilize. It's really something else the way they handled the resolution shrink on that thing. The last change is obviously going to be the biggest news. I'm very well aware it's not an ideal time to start on a new emulation core, with the MS and MD cores only just now coming to life with no audio support. But, for whatever reason, my heart's really set on working on the PC Engine. I wanted to write the final higan skeleton core, and get things ready so that whenever I'm in the mood to work on the PCE, I can do so. The skeleton is far and away the most tedious and obnoxious part of the emulator development, because it's basically all just lots of boilerplate templated code, lots of new files to create, etc. I really don't know how things are going to proceed ... but I can say with 99.9% certainty that this will be the final brand new core ever added to higan -- at least one written by me, that is. This was basically the last system from my childhood that I ever cared about. It's the last 2D system with games that I really enjoy playing. No other system is worth dividing my efforts and reducing the quality and amount of time to work on the systems I have. In the future, there will be potential for FDS, Mega CD and PCE-CD support. But those will all be add-ons, and they'll all be really difficult and challenge the entire design of higan's UI (it's entirely cartridge-driven at this time.) None of them will be entirely new cores like this one.
2017-01-11 20:27:30 +00:00
#pragma once
namespace Processor {
struct HuC6280 {
virtual auto step(uint clocks) -> void = 0;
Update to v102r03 release. byuu says: Changelog: - PCE: split VCE from VDC - HuC6280: changed bus from (uint21 addr) to (uint8 bank, uint13 addr) - added SuperGrafx emulation (adds secondary VDC, plus new VPC) The VDC now has no concept of the actual display raster timing, and instead is driven by Vpulse (start of frame) and Hpulse (start of scanline) signals from the VCE. One still can't render the start of the next scanline onto the current scanline through overly aggressive timings, but it shouldn't be too much more difficult to allow that to occur now. This process incurs quite a major speed hit, so low-end systems with Atom CPUs can't run things at 60fps anymore. The timing needs a lot of work. The pixels end up very jagged if the VCE doesn't output batches of 2-4 pixels at a time. But this should not be a requirement at all, so I'm not sure what's going wrong there. Yo, Bro and the 512-width mode of TV Sports Basketball is now broken as a result of these changes, and I'm not sure why. To load SuperGrafx games, you're going to have to change the .pce extensions to .sg or .sgx. Or you can manually move the games from the PC Engine folder to the SuperGrafx folder and change the game folder extensions. I have no way to tell the games apart. Mednafen uses CRC32 comparisons, and I may consider that since there's only five games, but I'm not sure yet. The only SuperGrafx game that's playable right now is Aldynes. And the priorities are all screwed up. I don't understand how the windows or the priorities work at all from sgxtech.txt, so ... yeah. It's pretty broken, but it's a start. I could really use some help with this, as I'm very lost right now with rendering :/ ----- Note that the SuperGrafx is technically its own system, it's not an add-on. As such, I'm giving it a separate .sys folder, and a separate library. There's debate over how to name this thing. "SuperGrafx" appears more popular than "Super Grafx". And you might also call it the "PC Engine SuperGrafx", but I decided to leave off the prefix so it appears more distinct.
2017-01-23 21:18:54 +00:00
virtual auto read(uint8 bank, uint13 addr) -> uint8 = 0;
virtual auto write(uint8 bank, uint13 addr, uint8 data) -> void = 0;
virtual auto store(uint2 addr, uint8 data) -> void = 0;
virtual auto lastCycle() -> void = 0;
Update to v101r30 release. byuu says: Changelog: - SMS: added cartridge ROM/RAM mirroring (fixes Alex Kidd) - SMS: fixed 8x16 sprite mode (fixes Wonder Boy, Ys graphics) - Z80: emulated "ex (sp),hl" instruction - Z80: fixed INx NF (should be set instead of cleared) - Z80: fixed loop condition check for CPxR, INxR, LDxR, OTxR (fixes walking in Wonder Boy) - SFC: removed Debugger and sfc/debugger.hpp - icarus: connected MS, GG, MD importing to the scan dialog - PCE: added emulation skeleton to higan and icarus At this point, Master System games are fairly highly compatible, sans audio. Game Gear games are running, but I need to crop the resolution and support the higher color palette that they can utilize. It's really something else the way they handled the resolution shrink on that thing. The last change is obviously going to be the biggest news. I'm very well aware it's not an ideal time to start on a new emulation core, with the MS and MD cores only just now coming to life with no audio support. But, for whatever reason, my heart's really set on working on the PC Engine. I wanted to write the final higan skeleton core, and get things ready so that whenever I'm in the mood to work on the PCE, I can do so. The skeleton is far and away the most tedious and obnoxious part of the emulator development, because it's basically all just lots of boilerplate templated code, lots of new files to create, etc. I really don't know how things are going to proceed ... but I can say with 99.9% certainty that this will be the final brand new core ever added to higan -- at least one written by me, that is. This was basically the last system from my childhood that I ever cared about. It's the last 2D system with games that I really enjoy playing. No other system is worth dividing my efforts and reducing the quality and amount of time to work on the systems I have. In the future, there will be potential for FDS, Mega CD and PCE-CD support. But those will all be add-ons, and they'll all be really difficult and challenge the entire design of higan's UI (it's entirely cartridge-driven at this time.) None of them will be entirely new cores like this one.
2017-01-11 20:27:30 +00:00
//huc6280.cpp
Update to v101r30 release. byuu says: Changelog: - SMS: added cartridge ROM/RAM mirroring (fixes Alex Kidd) - SMS: fixed 8x16 sprite mode (fixes Wonder Boy, Ys graphics) - Z80: emulated "ex (sp),hl" instruction - Z80: fixed INx NF (should be set instead of cleared) - Z80: fixed loop condition check for CPxR, INxR, LDxR, OTxR (fixes walking in Wonder Boy) - SFC: removed Debugger and sfc/debugger.hpp - icarus: connected MS, GG, MD importing to the scan dialog - PCE: added emulation skeleton to higan and icarus At this point, Master System games are fairly highly compatible, sans audio. Game Gear games are running, but I need to crop the resolution and support the higher color palette that they can utilize. It's really something else the way they handled the resolution shrink on that thing. The last change is obviously going to be the biggest news. I'm very well aware it's not an ideal time to start on a new emulation core, with the MS and MD cores only just now coming to life with no audio support. But, for whatever reason, my heart's really set on working on the PC Engine. I wanted to write the final higan skeleton core, and get things ready so that whenever I'm in the mood to work on the PCE, I can do so. The skeleton is far and away the most tedious and obnoxious part of the emulator development, because it's basically all just lots of boilerplate templated code, lots of new files to create, etc. I really don't know how things are going to proceed ... but I can say with 99.9% certainty that this will be the final brand new core ever added to higan -- at least one written by me, that is. This was basically the last system from my childhood that I ever cared about. It's the last 2D system with games that I really enjoy playing. No other system is worth dividing my efforts and reducing the quality and amount of time to work on the systems I have. In the future, there will be potential for FDS, Mega CD and PCE-CD support. But those will all be add-ons, and they'll all be really difficult and challenge the entire design of higan's UI (it's entirely cartridge-driven at this time.) None of them will be entirely new cores like this one.
2017-01-11 20:27:30 +00:00
auto power() -> void;
//memory.cpp
Update to v102 release. byuu says (in the public announcement): This release adds very preliminary emulation of the Sega Master System (Mark III), Sega Game Gear, Sega Mega Drive (Genesis), and NEC PC Engine (Turbografx-16). These cores do not yet offer sound emulation, save states or cheat codes. I'm always very hesitant to release a new emulation core in its alpha stages, as in the past this has resulted in lasting bad impressions of cores that have since improved greatly. For instance, the Game Boy Advance emulation offered today is easily the second most accurate around, yet it is still widely judged by its much older alpha implementation. However, it's always been tradition with higan to not hold onto code in secret. Rather than delay future releases for another year or two, I'll put my faith in you all to understand that the emulation of these systems will improve over time. I hope that by releasing things as they are now, I might be able to receive some much needed assistance in improving these cores, as the documentation for these new systems is very much less than ideal. byuu says (in the WIP forum): Changelog: - PCE: latch background scroll registers (fixes Neutopia scrolling) - PCE: clip background attribute table scrolling (fixes Blazing Lazers scrolling) - PCE: support background/sprite enable/disable bits - PCE: fix large sprite indexing (fixes Blazing Lazers title screen sprites) - HuC6280: wrap zeropage accesses to never go beyond $20xx - HuC6280: fix alternating addresses for block move instructions (fixes Neutopia II) - HuC6280: block move instructions save and restore A,X,Y registers - HuC6280: emulate BCD mode (may not be 100% correct, based on SNES BCD) (fixes Blazing Lazers scoring)
2017-01-19 21:01:15 +00:00
inline auto load8(uint8) -> uint8;
inline auto load16(uint16) -> uint8;
inline auto store8(uint8, uint8) -> void;
inline auto store16(uint16, uint8) -> void;
auto io() -> void;
auto opcode() -> uint8;
auto operand() -> uint8;
auto push(uint8) -> void;
auto pull() -> uint8;
//instructions.cpp
using fp = auto (HuC6280::*)(uint8) -> uint8;
auto algorithmADC(uint8) -> uint8;
auto algorithmAND(uint8) -> uint8;
auto algorithmASL(uint8) -> uint8;
auto algorithmBIT(uint8) -> uint8;
auto algorithmCMP(uint8) -> uint8;
auto algorithmCPX(uint8) -> uint8;
auto algorithmCPY(uint8) -> uint8;
auto algorithmDEC(uint8) -> uint8;
auto algorithmEOR(uint8) -> uint8;
auto algorithmINC(uint8) -> uint8;
auto algorithmLD (uint8) -> uint8;
auto algorithmLSR(uint8) -> uint8;
auto algorithmORA(uint8) -> uint8;
auto algorithmROL(uint8) -> uint8;
auto algorithmROR(uint8) -> uint8;
auto algorithmSBC(uint8) -> uint8;
auto algorithmTRB(uint8) -> uint8;
auto algorithmTSB(uint8) -> uint8;
using bp = auto (HuC6280::*)(uint16&, uint16&, bool) -> void;
auto algorithmTAI(uint16&, uint16&, bool) -> void;
auto algorithmTDD(uint16&, uint16&, bool) -> void;
auto algorithmTIA(uint16&, uint16&, bool) -> void;
auto algorithmTII(uint16&, uint16&, bool) -> void;
auto algorithmTIN(uint16&, uint16&, bool) -> void;
//instruction.cpp
auto interrupt(uint16 vector) -> void;
Update to v101r30 release. byuu says: Changelog: - SMS: added cartridge ROM/RAM mirroring (fixes Alex Kidd) - SMS: fixed 8x16 sprite mode (fixes Wonder Boy, Ys graphics) - Z80: emulated "ex (sp),hl" instruction - Z80: fixed INx NF (should be set instead of cleared) - Z80: fixed loop condition check for CPxR, INxR, LDxR, OTxR (fixes walking in Wonder Boy) - SFC: removed Debugger and sfc/debugger.hpp - icarus: connected MS, GG, MD importing to the scan dialog - PCE: added emulation skeleton to higan and icarus At this point, Master System games are fairly highly compatible, sans audio. Game Gear games are running, but I need to crop the resolution and support the higher color palette that they can utilize. It's really something else the way they handled the resolution shrink on that thing. The last change is obviously going to be the biggest news. I'm very well aware it's not an ideal time to start on a new emulation core, with the MS and MD cores only just now coming to life with no audio support. But, for whatever reason, my heart's really set on working on the PC Engine. I wanted to write the final higan skeleton core, and get things ready so that whenever I'm in the mood to work on the PCE, I can do so. The skeleton is far and away the most tedious and obnoxious part of the emulator development, because it's basically all just lots of boilerplate templated code, lots of new files to create, etc. I really don't know how things are going to proceed ... but I can say with 99.9% certainty that this will be the final brand new core ever added to higan -- at least one written by me, that is. This was basically the last system from my childhood that I ever cared about. It's the last 2D system with games that I really enjoy playing. No other system is worth dividing my efforts and reducing the quality and amount of time to work on the systems I have. In the future, there will be potential for FDS, Mega CD and PCE-CD support. But those will all be add-ons, and they'll all be really difficult and challenge the entire design of higan's UI (it's entirely cartridge-driven at this time.) None of them will be entirely new cores like this one.
2017-01-11 20:27:30 +00:00
auto instruction() -> void;
//instructions.cpp
auto instructionAbsoluteModify(fp, uint8 = 0) -> void;
auto instructionAbsoluteRead(fp, uint8&, uint8 = 0) -> void;
auto instructionAbsoluteWrite(uint8, uint8 = 0) -> void;
auto instructionBlockMove(bp) -> void;
auto instructionBranch(bool) -> void;
auto instructionBranchIfBitReset(uint3) -> void;
auto instructionBranchIfBitSet(uint3) -> void;
auto instructionBranchSubroutine() -> void;
auto instructionBreak() -> void;
auto instructionCallAbsolute() -> void;
auto instructionChangeSpeedLow() -> void;
auto instructionChangeSpeedHigh() -> void;
auto instructionClear(uint8&) -> void;
auto instructionClear(bool&) -> void;
auto instructionImmediate(fp, uint8&) -> void;
auto instructionImplied(fp, uint8&) -> void;
auto instructionIndirectRead(fp, uint8&, uint8 = 0) -> void;
auto instructionIndirectWrite(uint8, uint8 = 0) -> void;
auto instructionIndirectYRead(fp, uint8&) -> void;
auto instructionIndirectYWrite(uint8) -> void;
auto instructionJumpAbsolute() -> void;
auto instructionJumpIndirect(uint8 = 0) -> void;
auto instructionMemory(fp) -> void;
auto instructionNoOperation() -> void;
auto instructionPull(uint8&) -> void;
auto instructionPullP() -> void;
auto instructionPush(uint8) -> void;
auto instructionResetMemoryBit(uint3) -> void;
auto instructionReturnInterrupt() -> void;
auto instructionReturnSubroutine() -> void;
auto instructionSet(bool&) -> void;
auto instructionSetMemoryBit(uint3) -> void;
auto instructionStoreImplied(uint2) -> void;
auto instructionSwap(uint8&, uint8&) -> void;
auto instructionTestAbsolute(uint8 = 0) -> void;
auto instructionTestZeroPage(uint8 = 0) -> void;
auto instructionTransfer(uint8&, uint8&) -> void;
auto instructionTransferAccumulatorToMPR() -> void;
auto instructionTransferMPRToAccumulator() -> void;
auto instructionTransferXS() -> void;
auto instructionZeroPageModify(fp, uint8 = 0) -> void;
auto instructionZeroPageRead(fp, uint8&, uint8 = 0) -> void;
auto instructionZeroPageWrite(uint8, uint8 = 0) -> void;
//disassembler.cpp
auto disassemble(uint16 pc) -> string;
//serialization.cpp
auto serialize(serializer&) -> void;
struct Flags {
bool c; //carry
bool z; //zero
bool i; //interrupt disable
bool d; //decimal mode
bool b; //break
bool t; //memory operation
bool v; //overflow
bool n; //negative
inline operator uint8() const {
return c << 0 | z << 1 | i << 2 | d << 3 | b << 4 | t << 5 | v << 6 | n << 7;
}
inline auto& operator=(uint8 data) {
c = data.bit(0);
z = data.bit(1);
i = data.bit(2);
d = data.bit(3);
b = data.bit(4);
t = data.bit(5);
v = data.bit(6);
n = data.bit(7);
return *this;
}
};
struct Registers {
uint8 a;
uint8 x;
uint8 y;
uint8 s;
uint16 pc;
uint8 mpr[8];
uint8 mdr;
Flags p;
uint8 cs; //code speed (3 = fast, 12 = slow)
} r;
Update to v101r30 release. byuu says: Changelog: - SMS: added cartridge ROM/RAM mirroring (fixes Alex Kidd) - SMS: fixed 8x16 sprite mode (fixes Wonder Boy, Ys graphics) - Z80: emulated "ex (sp),hl" instruction - Z80: fixed INx NF (should be set instead of cleared) - Z80: fixed loop condition check for CPxR, INxR, LDxR, OTxR (fixes walking in Wonder Boy) - SFC: removed Debugger and sfc/debugger.hpp - icarus: connected MS, GG, MD importing to the scan dialog - PCE: added emulation skeleton to higan and icarus At this point, Master System games are fairly highly compatible, sans audio. Game Gear games are running, but I need to crop the resolution and support the higher color palette that they can utilize. It's really something else the way they handled the resolution shrink on that thing. The last change is obviously going to be the biggest news. I'm very well aware it's not an ideal time to start on a new emulation core, with the MS and MD cores only just now coming to life with no audio support. But, for whatever reason, my heart's really set on working on the PC Engine. I wanted to write the final higan skeleton core, and get things ready so that whenever I'm in the mood to work on the PCE, I can do so. The skeleton is far and away the most tedious and obnoxious part of the emulator development, because it's basically all just lots of boilerplate templated code, lots of new files to create, etc. I really don't know how things are going to proceed ... but I can say with 99.9% certainty that this will be the final brand new core ever added to higan -- at least one written by me, that is. This was basically the last system from my childhood that I ever cared about. It's the last 2D system with games that I really enjoy playing. No other system is worth dividing my efforts and reducing the quality and amount of time to work on the systems I have. In the future, there will be potential for FDS, Mega CD and PCE-CD support. But those will all be add-ons, and they'll all be really difficult and challenge the entire design of higan's UI (it's entirely cartridge-driven at this time.) None of them will be entirely new cores like this one.
2017-01-11 20:27:30 +00:00
};
}