2012-03-19 11:19:53 +00:00
|
|
|
#include <gba/gba.hpp>
|
|
|
|
|
2012-04-26 10:51:13 +00:00
|
|
|
namespace GameBoyAdvance {
|
2012-03-19 11:19:53 +00:00
|
|
|
|
2013-05-02 11:25:45 +00:00
|
|
|
Interface* interface = nullptr;
|
Update to v096r07 release.
byuu says:
Changelog:
- configuration files are now stored in localpath() instead of configpath()
- Video gamma/saturation/luminance sliders are gone now, sorry
- added Video Filter->Blur Emulation [1]
- added Video Filter->Scanline Emulation [2]
- improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn]
[1] For the Famicom, this does nothing. For the Super Famicom, this
performs horizontal blending for proper pseudo-hires translucency. For
the Game Boy, Game Boy Color, and Game Boy Advance, this performs
interframe blending (each frame is the average of the current and
previous frame), which is important for things like the GBVideoPlayer.
[2] Right now, this only applies to the Super Famicom, but it'll come to
the Famicom in the future. For the Super Famicom, this option doesn't
just add scanlines, it simulates the phosphor decay that's visible in
interlace mode. If you observe an interlaced game like RPM Racing on
a real SNES, you'll notice that even on perfectly still screens, the
image appears to shake. This option emulates that effect.
Note 1: the buffering right now is a little sub-optimal, so there will
be a slight speed hit with this new support. Since the core is now
generating native ARGB8888 colors, it might as well call out to the
interface to lock/unlock/refresh the video, that way it can render
directly to the screen. Although ... that might not be such a hot idea,
since the GBx interframe blending reads from the target buffer, and that
tends to be a catastrophic option for performance.
Note 2: the balanced and performance profiles for the SNES are
completely busted again. This WIP took 6 1/2 hours, and I'm exhausted.
Very much not looking forward to working on those, since those two have
all kinds of fucked up speedup tricks for non-interlaced and/or
non-hires video modes.
Note 3: if you're on Windows and you saved your system folders somewhere
else, now'd be a good time to move them to %localappdata%/higan
2016-01-15 10:06:51 +00:00
|
|
|
Settings settings;
|
2012-03-19 11:19:53 +00:00
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
Interface::Interface() {
|
|
|
|
interface = this;
|
|
|
|
|
2016-01-30 06:40:35 +00:00
|
|
|
information.manufacturer = "Nintendo";
|
|
|
|
information.name = "Game Boy Advance";
|
|
|
|
information.width = 240;
|
|
|
|
information.height = 160;
|
|
|
|
information.overscan = false;
|
|
|
|
information.aspectRatio = 1.0;
|
|
|
|
information.resettable = false;
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
information.capability.states = true;
|
|
|
|
information.capability.cheats = false;
|
|
|
|
|
|
|
|
media.append({ID::GameBoyAdvance, "Game Boy Advance", "gba", true});
|
|
|
|
|
|
|
|
{ Device device{0, ID::Device, "Controller"};
|
|
|
|
device.input.append({ 0, 0, "A" });
|
|
|
|
device.input.append({ 1, 0, "B" });
|
|
|
|
device.input.append({ 2, 0, "Select"});
|
|
|
|
device.input.append({ 3, 0, "Start" });
|
|
|
|
device.input.append({ 4, 0, "Right" });
|
|
|
|
device.input.append({ 5, 0, "Left" });
|
|
|
|
device.input.append({ 6, 0, "Up" });
|
|
|
|
device.input.append({ 7, 0, "Down" });
|
|
|
|
device.input.append({ 8, 0, "R" });
|
|
|
|
device.input.append({ 9, 0, "L" });
|
|
|
|
device.input.append({10, 2, "Rumble"});
|
|
|
|
device.order = {6, 7, 5, 4, 1, 0, 9, 8, 2, 3, 10};
|
|
|
|
this->device.append(device);
|
|
|
|
}
|
|
|
|
|
|
|
|
port.append({0, "Device", {device[0]}});
|
|
|
|
}
|
|
|
|
|
Update to higan and icarus v095r15 release.
r13 and r14 weren't posted as individual releases, but their changelogs
were posted.
byuu says about r13:
I'm not going to be posting WIPs for r13 and above for a while.
The reason is that I'm working on the major manifest overhaul I've
discussed previously on the icarus subforum.
I'm recreating my boards database from scratch using the map files
and the new map analyzer. The only games that will load are ones
I've created board definitions for, and updated
sfc/cartridge/markup.cpp to parse. Once I've finished all the
boards, then I'll update the heuristics.
Then finally, I'll sync the syntax changes over to the fc, gb, gba
cores.
Once that's done, I'll start posting WIPs again, along with a new
build of icarus.
But I'll still post changelogs as I work through things.
Changelog (r13):
- preservation: created new database-builder tool (merges
region-specific databases with boards)
- icarus: support new, external database format
(~/.config/icarus/Database/(Super Famicom.bml, ...)
- added 1A3B-(10,11,12); 1A3B-20
byuu says about r14:
r14 work:
I successfully created mappings for every board used in the US set.
I also updated icarus' heuristics to use the new mappings, and
created ones there for the boards that are only in the JP set.
Then I patched icarus to support pulling games out of the database
when it's used on a game folder to generate a manifest file.
Then I updated a lot of code in higan/sfc to support the new mapping
syntax. sfc/cartridge/markup.cpp is about half the size it used to
be with the new mappings, and I was able to kill off both map/id and
map/select entirely.
Then I updated all four emulated systems (and both subsystems) to
use "board" as the root node, and harmonized their syntax (made them
all more consistent with each other.)
Then I added a manifest viewer to the tools window+menu. It's kind
of an advanced user feature, but oh well. No reason to coddle people
when the feature is very useful for developers. The viewer will show
all manifests in order when you load multi-cart games as well.
Still not going to call any syntax 100% done right now, but
thankfully with the new manifest-free folders, nobody will have to
do anything to use the new format. Just download the new version and
go.
The Super Famicom Event stuff is currently broken (CC92/PF94
boards). That's gonna be fun to support.
byuu says about r15:
EDIT: small bug in icarus with heuristics. Edit
core/super-famicom.cpp line 27:
if(/*auto*/ markup = cartridge.markup) {
Gotta remove that "auto" so that it returns valid markup.
Resolved the final concerns I had with the new manifest format.
Right now there are two things that are definitely broken: MCC (BS-X
Town cart) and Event (CC '92 and PF'94).
And there are a few things that are untested: SPC7110, EpsonRTC,
SharpRTC, SDD1+RAM, SufamiTurbo, BS-X slotted carts.
2015-12-19 08:52:34 +00:00
|
|
|
auto Interface::manifest() -> string {
|
|
|
|
return cartridge.manifest();
|
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::title() -> string {
|
Update to higan v091r14 and ananke v00r03 releases.
byuu says:
higan changelog:
- generates title displayed in emulator window by asking the core
- core builds title solely from "information/title" ... if it's not
there, you don't get a title at all
- sub-system load menu is gone ... since there are multiple revisions of
the SGB, this never really worked well anyway
- to load an SGB, BS-X or ST cartridge, load the base cartridge first
- "File->Load Game" moved to "Load->Import Game" ... may cause a bit of
confusion to new users, but I don't like having a single-item menu,
we'll just have to explain it to new users
- browser window redone to look like ananke
- home button here goes to ~/Emulation rather than just ~ like ananke,
since this is the home of game folders
- game folder icon is now the executable icon for the Tango theme
(orange diamond), meant to represent a complete game rather than
a game file or archive
ananke changelog:
- outputs GBC games to "Game Boy Color/" instead of "Game Boy/"
- adds the file basename to "information/title"
Known issues:
- using ananke to load a GB game trips the Super Famicom SGB mode and
fails (need to make the full-path auto-detection ignore non-bootable
systems)
- need to dump and test some BS-X media before releasing
- ananke lacks BS-X Satellaview cartridge support
- v092 isn't going to let you retarget the ananke/higan game folder path
of ~/Emulation, you will have to wait for a future version if that
bothers you so greatly
[Later, after the v092 release, byuu posted this additional changelog:
- kill laevateinn
- add title()
- add bootable, remove load
- combine file, library
- combine [][][] paths
- fix SFC subtype handling XML->BML
- update file browser to use buttons
- update file browser keyboard handling
- update system XML->BML
- fix sufami turbo hashing
- remove Cartridge::manifest
]
2012-12-25 05:31:55 +00:00
|
|
|
return cartridge.title();
|
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::videoFrequency() -> double {
|
Update to v088r14 release.
byuu says:
Changelog:
- added NSS DIP switch settings window (when loading NSS carts with
appropriate manifest.xml file)
- added video shader selection (they go in ~/.config/bsnes/Video
Shaders/ now)
- added driver selection
- added timing settings (not only allows video/audio settings, also has
code to dynamically compute the values for you ... and it actually
works pretty good!)
- moved "None" controller device to bottom of list (it is the least
likely to be used, after all)
- added Interface::path() to support MSU1, USART, Link
- input and hotkey mappings remember list position after assignment
- and more!
target-ethos now has all of the functionality of target-ui, and more.
Final code size for the port is 101.2KB (ethos) vs 167.6KB (ui).
A ~67% reduction in code size, yet it does even more! And you can add or
remove an entire system with only three lines of code (Makefile include,
header include, interface append.)
The only problem left is that the BS-X BIOS won't load the BS Zelda no
Densetsu file.
I can't figure out why it's not working, would appreciate any
assistance, but otherwise I'm probably just going to leave it broken for
v089, sorry.
So the show stoppers for a new release at this point are:
- fix laevateinn to compile with the new interface changes (shouldn't be
too hard, it'll still use the old, direct interface.)
- clean up Emulator::Interface as much as possible (trim down
Information, mediaRequest should use an alternate struct designed to
load firmware / slots separately)
- enhance purify to strip SNES ROM headers, and it really needs a GUI
interface
- it would be highly desirable to make a launcher that can create
a cartridge folder from an existing ROM set (* ethos will need to
accept command-line arguments for this.)
- probably need to remember which controller was selected in each port
for each system across runs
- need to fix the cursor for Super Scope / Justifier games (move from
19-bit to 32-bit colors broke it)
- have to refactor that cache.(hv)offset thing to fix ASP
2012-05-06 23:27:42 +00:00
|
|
|
return 16777216.0 / (228.0 * 1232.0);
|
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::audioFrequency() -> double {
|
Update to v088r14 release.
byuu says:
Changelog:
- added NSS DIP switch settings window (when loading NSS carts with
appropriate manifest.xml file)
- added video shader selection (they go in ~/.config/bsnes/Video
Shaders/ now)
- added driver selection
- added timing settings (not only allows video/audio settings, also has
code to dynamically compute the values for you ... and it actually
works pretty good!)
- moved "None" controller device to bottom of list (it is the least
likely to be used, after all)
- added Interface::path() to support MSU1, USART, Link
- input and hotkey mappings remember list position after assignment
- and more!
target-ethos now has all of the functionality of target-ui, and more.
Final code size for the port is 101.2KB (ethos) vs 167.6KB (ui).
A ~67% reduction in code size, yet it does even more! And you can add or
remove an entire system with only three lines of code (Makefile include,
header include, interface append.)
The only problem left is that the BS-X BIOS won't load the BS Zelda no
Densetsu file.
I can't figure out why it's not working, would appreciate any
assistance, but otherwise I'm probably just going to leave it broken for
v089, sorry.
So the show stoppers for a new release at this point are:
- fix laevateinn to compile with the new interface changes (shouldn't be
too hard, it'll still use the old, direct interface.)
- clean up Emulator::Interface as much as possible (trim down
Information, mediaRequest should use an alternate struct designed to
load firmware / slots separately)
- enhance purify to strip SNES ROM headers, and it really needs a GUI
interface
- it would be highly desirable to make a launcher that can create
a cartridge folder from an existing ROM set (* ethos will need to
accept command-line arguments for this.)
- probably need to remember which controller was selected in each port
for each system across runs
- need to fix the cursor for Super Scope / Justifier games (move from
19-bit to 32-bit colors broke it)
- have to refactor that cache.(hv)offset thing to fix ASP
2012-05-06 23:27:42 +00:00
|
|
|
return 16777216.0 / 512.0;
|
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::loaded() -> bool {
|
Update to v097r12 release.
byuu says:
Nothing WS-related this time.
First, I fixed expansion port device mapping. On first load, it was
mapping the expansion port device too late, so it ended up not taking
effect. I had to spin out the logic for that into
Program::connectDevices(). This was proving to be quite annoying while
testing eBoot (SNES-Hook simulation.)
Second, I fixed the audio->set(Frequency, Latency) functions to take
(uint) parameters from the configuration file, so the weird behavior
around changing settings in the audio panel should hopefully be gone
now.
Third, I rewrote the interface->load,unload functions to call into the
(Emulator)::System::load,unload functions. And I have those call out to
Cartridge::load,unload. Before, this was inverted, and Cartridge::load()
was invoking System::load(), which I felt was kind of backward.
The Super Game Boy really didn't like this change, however. And it took
me a few hours to power through it. Before, I had the Game Boy core
dummying out all the interface->(load,save)Request calls, and having the
SNES core make them for it. This is because the folder paths and IDs
will be different between the two cores.
I've redesigned things so that ICD2's Emulator::Interface overloads
loadRequest and saveRequest, and translates the requests into new
requests for the SuperFamicom core. This allows the Game Boy code to do
its own loading for everything without a bunch of Super Game Boy special
casing, and without any awkwardness around powering on with no cartridge
inserted.
This also lets the SNES side of things simply call into higher-level
GameBoy::interface->load,save(id, stream) functions instead of stabbing
at the raw underlying state inside of various Game Boy core emulation
classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
|
|
|
return system.loaded();
|
Update to v088r03 release.
byuu says:
static vector<uint8_t> file::read(const string &filename); replaces:
static bool file::read(const string &filename, uint8_t *&data, unsigned
&size); This allows automatic deletion of the underlying data.
Added vectorstream, which is obviously a vector<uint8_t> wrapper for
a data stream. Plan is for all data accesses inside my emulation cores
to take stream objects, especially MSU1. This lets you feed the core
anything: memorystream, filestream, zipstream, gzipstream, httpstream,
etc. There will still be exceptions for link and serial, those need
actual library files on disk. But those aren't official hardware devices
anyway.
So to help with speed a bit, I'm rethinking the video rendering path.
Previous system:
- core outputs system-native samples (SNES = 19-bit LRGB, NES = 9-bit
emphasis+palette, DMG = 2-bit grayscale, etc.)
- interfaceSystem transforms samples to 30-bit via lookup table inside
the emulation core
- interfaceSystem masks off overscan areas, if enabled
- interfaceUI runs filter to produce new target buffer, if enabled
- interfaceUI transforms 30-bit video to native display depth (24-bit or
30-bit), and applies color-adjustments (gamma, etc) at the same time
New system:
- all cores now generate an internal palette, and call
Interface::videoColor(uint32_t source, uint16_t red, uint16_t green,
uint16_t blue) to get native display color post-adjusted (gamma, etc
applied already.)
- all cores output to uint32_t* buffer now (output video.palette[color]
instead of just color)
- interfaceUI runs filter to produce new target buffer, if enabled
- interfaceUI memcpy()'s buffer to the video card
videoColor() is pretty neat. source is the raw pixel (as per the
old-format, 19-bit SNES, 9-bit NES, etc), and you can create a color
from that if you really want to. Or return that value to get a buffer
just like v088 and below. red, green, blue are 16-bits per channel,
because why the hell not, right? Just lop off all the bits you don't
want. If you have more bits on your display than that, fuck you :P
The last step is extremely difficult to avoid. Video cards can and do
have pitches that differ from the width of the texture. Trying to make
the core account for this would be really awful. And even if we did
that, the emulation routine would need to write directly to a video card
RAM buffer. Some APIs require you to lock the video buffer while
writing, so this would leave the video buffer locked for a long time.
Probably not catastrophic, but still awful. And lastly, if the
emulation core tried writing directly to the display texture, software
filters would no longer be possible (unless you -really- jump through
hooks and divert to a memory buffer when a filter is enabled, but ...
fuck.)
Anyway, the point of all that work was to eliminate an extra video copy,
and the need for a really painful 30-bit to 24-bit conversion (three
shifts, three masks, three array indexes.) So this basically reverts us,
performance-wise, to where we were pre-30 bit support.
[...]
The downside to this is that we're going to need a filter for each
output depth. Since the array type is uint32_t*, and I don't intend to
support higher or lower depths, we really only need 24+30-bit versions
of each filter. Kinda shitty, but oh well.
2012-04-27 12:12:53 +00:00
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::group(uint id) -> uint {
|
2012-07-15 09:47:35 +00:00
|
|
|
switch(id) {
|
Update to v094r39 release.
byuu says:
Changelog:
- SNES mid-scanline BGMODE fixes finally merged (can run
atx2.zip{mode7.smc}+mtest(2).sfc properly now)
- Makefile now discards all built-in rules and variables
- switch on bool warning disabled for GCC now as well (was already
disabled for Clang)
- when loading a game, if any required files are missing, display
a warning message box (manifest.bml, program.rom, bios.rom, etc)
- when loading a game (or a game slot), if manifest.bml is missing, it
will invoke icarus to try and generate it
- if that fails (icarus is missing or the folder is bad), you will get
a warning telling you that the manifest can't be loaded
The warning prompt on missing files work for both games and the .sys
folders and their files. For some reason, failing to load the DMG/CGB
BIOS is causing a crash before I can display the modal dialog. I have no
idea why, and the stack frame backtrace is junk.
I also can't seem to abort the failed loading process. If I call
Program::unloadMedia(), I get a nasty segfault. Again with a really
nasty stack trace. So for now, it'll just end up sitting there emulating
an empty ROM (solid black screen.) In time, I'd like to fix that too.
Lastly, I need a better method than popen for Windows. popen is kind of
ugly and flashes a console window for a brief second even if the
application launched is linked with -mwindows. Not sure if there even is
one (I need to read the stdout result, so CreateProcess may not work
unless I do something nasty like "> %tmp%/temp") I'm also using the
regular popen instead of _wpopen, so for this WIP, it won't work if your
game folder has non-English letters in the path.
2015-08-04 09:00:55 +00:00
|
|
|
case ID::SystemManifest:
|
2012-07-15 09:47:35 +00:00
|
|
|
case ID::BIOS:
|
|
|
|
return ID::System;
|
2013-01-21 12:27:15 +00:00
|
|
|
case ID::Manifest:
|
Update to v095r03 release and icarus 20151107.
byuu says:
Note: you will need the new icarus (and please use the "no manifest"
system) to run GBA games with this WIP.
Changelog:
- fixed caching of r(d) to pass armwrestler tests [Jonas Quinn]
- DMA to/from GBA BIOS should fail [Cydrak]
- fixed sign-extend and rotate on ldrs instructions [Cydrak]
- fixed 8-bit SRAM reading/writing [byuu]
- refactored GBA/cartridge
- cartridge/rom,ram.type is now cartridge/mrom,sram,eeprom,flash
- things won't crash horribly if you specify a RAM size larger than
the largest legal size in the manifest
- specialized MROM / SRAM classes replace all the shared read/write
functions that didn't work right anyway
- there's a new ruby/video.glx2 driver, which is not enabled by default
- use this if you are running Linux/BSD, but don't have OpenGL 3.2 yet
- I'm not going to support OpenGL2 on Windows/OS X, because these OSes
don't ship ancient video card drivers
- probably more. What am I, clairvoyant? :P
For endrift's tests, this gets us to 1348/1552 memory and 1016/1260
timing. Overall, this puts us back in second place. Only no$ is ahead
on memory, but bgba is even more ahead on timing.
2015-11-08 09:09:18 +00:00
|
|
|
case ID::MROM:
|
|
|
|
case ID::SRAM:
|
2012-07-15 09:47:35 +00:00
|
|
|
case ID::EEPROM:
|
Update to v095r03 release and icarus 20151107.
byuu says:
Note: you will need the new icarus (and please use the "no manifest"
system) to run GBA games with this WIP.
Changelog:
- fixed caching of r(d) to pass armwrestler tests [Jonas Quinn]
- DMA to/from GBA BIOS should fail [Cydrak]
- fixed sign-extend and rotate on ldrs instructions [Cydrak]
- fixed 8-bit SRAM reading/writing [byuu]
- refactored GBA/cartridge
- cartridge/rom,ram.type is now cartridge/mrom,sram,eeprom,flash
- things won't crash horribly if you specify a RAM size larger than
the largest legal size in the manifest
- specialized MROM / SRAM classes replace all the shared read/write
functions that didn't work right anyway
- there's a new ruby/video.glx2 driver, which is not enabled by default
- use this if you are running Linux/BSD, but don't have OpenGL 3.2 yet
- I'm not going to support OpenGL2 on Windows/OS X, because these OSes
don't ship ancient video card drivers
- probably more. What am I, clairvoyant? :P
For endrift's tests, this gets us to 1348/1552 memory and 1016/1260
timing. Overall, this puts us back in second place. Only no$ is ahead
on memory, but bgba is even more ahead on timing.
2015-11-08 09:09:18 +00:00
|
|
|
case ID::FLASH:
|
2012-07-15 09:47:35 +00:00
|
|
|
return ID::GameBoyAdvance;
|
|
|
|
}
|
|
|
|
|
|
|
|
throw;
|
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::load(uint id) -> void {
|
Update to v097r12 release.
byuu says:
Nothing WS-related this time.
First, I fixed expansion port device mapping. On first load, it was
mapping the expansion port device too late, so it ended up not taking
effect. I had to spin out the logic for that into
Program::connectDevices(). This was proving to be quite annoying while
testing eBoot (SNES-Hook simulation.)
Second, I fixed the audio->set(Frequency, Latency) functions to take
(uint) parameters from the configuration file, so the weird behavior
around changing settings in the audio panel should hopefully be gone
now.
Third, I rewrote the interface->load,unload functions to call into the
(Emulator)::System::load,unload functions. And I have those call out to
Cartridge::load,unload. Before, this was inverted, and Cartridge::load()
was invoking System::load(), which I felt was kind of backward.
The Super Game Boy really didn't like this change, however. And it took
me a few hours to power through it. Before, I had the Game Boy core
dummying out all the interface->(load,save)Request calls, and having the
SNES core make them for it. This is because the folder paths and IDs
will be different between the two cores.
I've redesigned things so that ICD2's Emulator::Interface overloads
loadRequest and saveRequest, and translates the requests into new
requests for the SuperFamicom core. This allows the Game Boy code to do
its own loading for everything without a bunch of Super Game Boy special
casing, and without any awkwardness around powering on with no cartridge
inserted.
This also lets the SNES side of things simply call into higher-level
GameBoy::interface->load,save(id, stream) functions instead of stabbing
at the raw underlying state inside of various Game Boy core emulation
classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
|
|
|
system.load();
|
2012-05-26 08:18:42 +00:00
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::save() -> void {
|
2013-05-02 11:25:45 +00:00
|
|
|
for(auto& memory : cartridge.memory) {
|
2012-05-26 08:18:42 +00:00
|
|
|
interface->saveRequest(memory.id, memory.name);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::load(uint id, const stream& stream) -> void {
|
Update to v094r39 release.
byuu says:
Changelog:
- SNES mid-scanline BGMODE fixes finally merged (can run
atx2.zip{mode7.smc}+mtest(2).sfc properly now)
- Makefile now discards all built-in rules and variables
- switch on bool warning disabled for GCC now as well (was already
disabled for Clang)
- when loading a game, if any required files are missing, display
a warning message box (manifest.bml, program.rom, bios.rom, etc)
- when loading a game (or a game slot), if manifest.bml is missing, it
will invoke icarus to try and generate it
- if that fails (icarus is missing or the folder is bad), you will get
a warning telling you that the manifest can't be loaded
The warning prompt on missing files work for both games and the .sys
folders and their files. For some reason, failing to load the DMG/CGB
BIOS is causing a crash before I can display the modal dialog. I have no
idea why, and the stack frame backtrace is junk.
I also can't seem to abort the failed loading process. If I call
Program::unloadMedia(), I get a nasty segfault. Again with a really
nasty stack trace. So for now, it'll just end up sitting there emulating
an empty ROM (solid black screen.) In time, I'd like to fix that too.
Lastly, I need a better method than popen for Windows. popen is kind of
ugly and flashes a console window for a brief second even if the
application launched is linked with -mwindows. Not sure if there even is
one (I need to read the stdout result, so CreateProcess may not work
unless I do something nasty like "> %tmp%/temp") I'm also using the
regular popen instead of _wpopen, so for this WIP, it won't work if your
game folder has non-English letters in the path.
2015-08-04 09:00:55 +00:00
|
|
|
if(id == ID::SystemManifest) {
|
|
|
|
system.information.manifest = stream.text();
|
|
|
|
}
|
|
|
|
|
Update to v088r11 release.
byuu says:
Changelog:
- phoenix has added Window::setModal(bool modal = true);
- file dialog is now modal. This allows emulation cores to request data
and get it immediately before continuing the loading process
- save data is hooked up for most systems, still need to handle
subsystem slot saves (Sufami Turbo, basically.)
- toggle fullscreen key binding added (Alt+Enter for now. I think F11 is
probably better though, Enter is often mapped to game start button.)
- video scaling is in (center, scale, stretch), works the same in
windowed and fullscreen mode (stretch hides resize window option), all
in the settings menu now
- enough structure to map all saved paths for the browser and to load
BS-X slotted carts, BS-X carts, single Sufami Turbo carts
Caveats / Missing:
- Super Game Boy input doesn't work yet (due to change in callback
binding)
- doesn't load secondary Sufami Turbo slot yet
- BS-X BIOS isn't show the data pack games to load for some reason (ugh,
I hate the shit out of debugging BS-X stuff ...)
- need mute audio, sync audio+video toggle, save/load state menu and
quick keys, XML mapping information window
- need cheat editor and cheat database
- need state manager
- need to sort subsystems below main systems in load menu (basically
just see if media.slot.size() > 0)
- need video shaders (will probably leave off filters for the time being
... due to that 24/30-bit thing)
- need video adjustments (contrast etc, overscan masks)
- need audio adjustments (frequency, latency, resampler, volume,
per-system frequency)
- need driver selection and input focus policy (driver crash detection
would be nice too)
- need NSS DIP switch settings (that one will be really fun)
- need to save and load window geometry settings
- need to hook up controller selection (won't be fun), create a map to
hide controllers with no inputs to reassign
2012-05-03 12:36:47 +00:00
|
|
|
if(id == ID::BIOS) {
|
2016-02-16 09:27:55 +00:00
|
|
|
stream.read((uint8_t*)bios.data, min(bios.size, stream.size()));
|
Update to v088r11 release.
byuu says:
Changelog:
- phoenix has added Window::setModal(bool modal = true);
- file dialog is now modal. This allows emulation cores to request data
and get it immediately before continuing the loading process
- save data is hooked up for most systems, still need to handle
subsystem slot saves (Sufami Turbo, basically.)
- toggle fullscreen key binding added (Alt+Enter for now. I think F11 is
probably better though, Enter is often mapped to game start button.)
- video scaling is in (center, scale, stretch), works the same in
windowed and fullscreen mode (stretch hides resize window option), all
in the settings menu now
- enough structure to map all saved paths for the browser and to load
BS-X slotted carts, BS-X carts, single Sufami Turbo carts
Caveats / Missing:
- Super Game Boy input doesn't work yet (due to change in callback
binding)
- doesn't load secondary Sufami Turbo slot yet
- BS-X BIOS isn't show the data pack games to load for some reason (ugh,
I hate the shit out of debugging BS-X stuff ...)
- need mute audio, sync audio+video toggle, save/load state menu and
quick keys, XML mapping information window
- need cheat editor and cheat database
- need state manager
- need to sort subsystems below main systems in load menu (basically
just see if media.slot.size() > 0)
- need video shaders (will probably leave off filters for the time being
... due to that 24/30-bit thing)
- need video adjustments (contrast etc, overscan masks)
- need audio adjustments (frequency, latency, resampler, volume,
per-system frequency)
- need driver selection and input focus policy (driver crash detection
would be nice too)
- need NSS DIP switch settings (that one will be really fun)
- need to save and load window geometry settings
- need to hook up controller selection (won't be fun), create a map to
hide controllers with no inputs to reassign
2012-05-03 12:36:47 +00:00
|
|
|
}
|
|
|
|
|
Update to v094r39 release.
byuu says:
Changelog:
- SNES mid-scanline BGMODE fixes finally merged (can run
atx2.zip{mode7.smc}+mtest(2).sfc properly now)
- Makefile now discards all built-in rules and variables
- switch on bool warning disabled for GCC now as well (was already
disabled for Clang)
- when loading a game, if any required files are missing, display
a warning message box (manifest.bml, program.rom, bios.rom, etc)
- when loading a game (or a game slot), if manifest.bml is missing, it
will invoke icarus to try and generate it
- if that fails (icarus is missing or the folder is bad), you will get
a warning telling you that the manifest can't be loaded
The warning prompt on missing files work for both games and the .sys
folders and their files. For some reason, failing to load the DMG/CGB
BIOS is causing a crash before I can display the modal dialog. I have no
idea why, and the stack frame backtrace is junk.
I also can't seem to abort the failed loading process. If I call
Program::unloadMedia(), I get a nasty segfault. Again with a really
nasty stack trace. So for now, it'll just end up sitting there emulating
an empty ROM (solid black screen.) In time, I'd like to fix that too.
Lastly, I need a better method than popen for Windows. popen is kind of
ugly and flashes a console window for a brief second even if the
application launched is linked with -mwindows. Not sure if there even is
one (I need to read the stdout result, so CreateProcess may not work
unless I do something nasty like "> %tmp%/temp") I'm also using the
regular popen instead of _wpopen, so for this WIP, it won't work if your
game folder has non-English letters in the path.
2015-08-04 09:00:55 +00:00
|
|
|
if(id == ID::Manifest) {
|
|
|
|
cartridge.information.markup = stream.text();
|
|
|
|
}
|
2013-01-21 12:27:15 +00:00
|
|
|
|
Update to v095r03 release and icarus 20151107.
byuu says:
Note: you will need the new icarus (and please use the "no manifest"
system) to run GBA games with this WIP.
Changelog:
- fixed caching of r(d) to pass armwrestler tests [Jonas Quinn]
- DMA to/from GBA BIOS should fail [Cydrak]
- fixed sign-extend and rotate on ldrs instructions [Cydrak]
- fixed 8-bit SRAM reading/writing [byuu]
- refactored GBA/cartridge
- cartridge/rom,ram.type is now cartridge/mrom,sram,eeprom,flash
- things won't crash horribly if you specify a RAM size larger than
the largest legal size in the manifest
- specialized MROM / SRAM classes replace all the shared read/write
functions that didn't work right anyway
- there's a new ruby/video.glx2 driver, which is not enabled by default
- use this if you are running Linux/BSD, but don't have OpenGL 3.2 yet
- I'm not going to support OpenGL2 on Windows/OS X, because these OSes
don't ship ancient video card drivers
- probably more. What am I, clairvoyant? :P
For endrift's tests, this gets us to 1348/1552 memory and 1016/1260
timing. Overall, this puts us back in second place. Only no$ is ahead
on memory, but bgba is even more ahead on timing.
2015-11-08 09:09:18 +00:00
|
|
|
if(id == ID::MROM) {
|
2016-02-16 09:27:55 +00:00
|
|
|
stream.read((uint8_t*)cartridge.mrom.data, min(cartridge.mrom.size, stream.size()));
|
2012-04-29 23:58:41 +00:00
|
|
|
}
|
Update to v088r11 release.
byuu says:
Changelog:
- phoenix has added Window::setModal(bool modal = true);
- file dialog is now modal. This allows emulation cores to request data
and get it immediately before continuing the loading process
- save data is hooked up for most systems, still need to handle
subsystem slot saves (Sufami Turbo, basically.)
- toggle fullscreen key binding added (Alt+Enter for now. I think F11 is
probably better though, Enter is often mapped to game start button.)
- video scaling is in (center, scale, stretch), works the same in
windowed and fullscreen mode (stretch hides resize window option), all
in the settings menu now
- enough structure to map all saved paths for the browser and to load
BS-X slotted carts, BS-X carts, single Sufami Turbo carts
Caveats / Missing:
- Super Game Boy input doesn't work yet (due to change in callback
binding)
- doesn't load secondary Sufami Turbo slot yet
- BS-X BIOS isn't show the data pack games to load for some reason (ugh,
I hate the shit out of debugging BS-X stuff ...)
- need mute audio, sync audio+video toggle, save/load state menu and
quick keys, XML mapping information window
- need cheat editor and cheat database
- need state manager
- need to sort subsystems below main systems in load menu (basically
just see if media.slot.size() > 0)
- need video shaders (will probably leave off filters for the time being
... due to that 24/30-bit thing)
- need video adjustments (contrast etc, overscan masks)
- need audio adjustments (frequency, latency, resampler, volume,
per-system frequency)
- need driver selection and input focus policy (driver crash detection
would be nice too)
- need NSS DIP switch settings (that one will be really fun)
- need to save and load window geometry settings
- need to hook up controller selection (won't be fun), create a map to
hide controllers with no inputs to reassign
2012-05-03 12:36:47 +00:00
|
|
|
|
Update to v095r03 release and icarus 20151107.
byuu says:
Note: you will need the new icarus (and please use the "no manifest"
system) to run GBA games with this WIP.
Changelog:
- fixed caching of r(d) to pass armwrestler tests [Jonas Quinn]
- DMA to/from GBA BIOS should fail [Cydrak]
- fixed sign-extend and rotate on ldrs instructions [Cydrak]
- fixed 8-bit SRAM reading/writing [byuu]
- refactored GBA/cartridge
- cartridge/rom,ram.type is now cartridge/mrom,sram,eeprom,flash
- things won't crash horribly if you specify a RAM size larger than
the largest legal size in the manifest
- specialized MROM / SRAM classes replace all the shared read/write
functions that didn't work right anyway
- there's a new ruby/video.glx2 driver, which is not enabled by default
- use this if you are running Linux/BSD, but don't have OpenGL 3.2 yet
- I'm not going to support OpenGL2 on Windows/OS X, because these OSes
don't ship ancient video card drivers
- probably more. What am I, clairvoyant? :P
For endrift's tests, this gets us to 1348/1552 memory and 1016/1260
timing. Overall, this puts us back in second place. Only no$ is ahead
on memory, but bgba is even more ahead on timing.
2015-11-08 09:09:18 +00:00
|
|
|
if(id == ID::SRAM) {
|
2016-02-16 09:27:55 +00:00
|
|
|
stream.read((uint8_t*)cartridge.sram.data, min(cartridge.sram.size, stream.size()));
|
2012-04-29 23:58:41 +00:00
|
|
|
}
|
Update to v088r11 release.
byuu says:
Changelog:
- phoenix has added Window::setModal(bool modal = true);
- file dialog is now modal. This allows emulation cores to request data
and get it immediately before continuing the loading process
- save data is hooked up for most systems, still need to handle
subsystem slot saves (Sufami Turbo, basically.)
- toggle fullscreen key binding added (Alt+Enter for now. I think F11 is
probably better though, Enter is often mapped to game start button.)
- video scaling is in (center, scale, stretch), works the same in
windowed and fullscreen mode (stretch hides resize window option), all
in the settings menu now
- enough structure to map all saved paths for the browser and to load
BS-X slotted carts, BS-X carts, single Sufami Turbo carts
Caveats / Missing:
- Super Game Boy input doesn't work yet (due to change in callback
binding)
- doesn't load secondary Sufami Turbo slot yet
- BS-X BIOS isn't show the data pack games to load for some reason (ugh,
I hate the shit out of debugging BS-X stuff ...)
- need mute audio, sync audio+video toggle, save/load state menu and
quick keys, XML mapping information window
- need cheat editor and cheat database
- need state manager
- need to sort subsystems below main systems in load menu (basically
just see if media.slot.size() > 0)
- need video shaders (will probably leave off filters for the time being
... due to that 24/30-bit thing)
- need video adjustments (contrast etc, overscan masks)
- need audio adjustments (frequency, latency, resampler, volume,
per-system frequency)
- need driver selection and input focus policy (driver crash detection
would be nice too)
- need NSS DIP switch settings (that one will be really fun)
- need to save and load window geometry settings
- need to hook up controller selection (won't be fun), create a map to
hide controllers with no inputs to reassign
2012-05-03 12:36:47 +00:00
|
|
|
|
|
|
|
if(id == ID::EEPROM) {
|
2016-02-16 09:27:55 +00:00
|
|
|
stream.read((uint8_t*)cartridge.eeprom.data, min(cartridge.eeprom.size, stream.size()));
|
2012-04-29 23:58:41 +00:00
|
|
|
}
|
Update to v088r11 release.
byuu says:
Changelog:
- phoenix has added Window::setModal(bool modal = true);
- file dialog is now modal. This allows emulation cores to request data
and get it immediately before continuing the loading process
- save data is hooked up for most systems, still need to handle
subsystem slot saves (Sufami Turbo, basically.)
- toggle fullscreen key binding added (Alt+Enter for now. I think F11 is
probably better though, Enter is often mapped to game start button.)
- video scaling is in (center, scale, stretch), works the same in
windowed and fullscreen mode (stretch hides resize window option), all
in the settings menu now
- enough structure to map all saved paths for the browser and to load
BS-X slotted carts, BS-X carts, single Sufami Turbo carts
Caveats / Missing:
- Super Game Boy input doesn't work yet (due to change in callback
binding)
- doesn't load secondary Sufami Turbo slot yet
- BS-X BIOS isn't show the data pack games to load for some reason (ugh,
I hate the shit out of debugging BS-X stuff ...)
- need mute audio, sync audio+video toggle, save/load state menu and
quick keys, XML mapping information window
- need cheat editor and cheat database
- need state manager
- need to sort subsystems below main systems in load menu (basically
just see if media.slot.size() > 0)
- need video shaders (will probably leave off filters for the time being
... due to that 24/30-bit thing)
- need video adjustments (contrast etc, overscan masks)
- need audio adjustments (frequency, latency, resampler, volume,
per-system frequency)
- need driver selection and input focus policy (driver crash detection
would be nice too)
- need NSS DIP switch settings (that one will be really fun)
- need to save and load window geometry settings
- need to hook up controller selection (won't be fun), create a map to
hide controllers with no inputs to reassign
2012-05-03 12:36:47 +00:00
|
|
|
|
Update to v095r03 release and icarus 20151107.
byuu says:
Note: you will need the new icarus (and please use the "no manifest"
system) to run GBA games with this WIP.
Changelog:
- fixed caching of r(d) to pass armwrestler tests [Jonas Quinn]
- DMA to/from GBA BIOS should fail [Cydrak]
- fixed sign-extend and rotate on ldrs instructions [Cydrak]
- fixed 8-bit SRAM reading/writing [byuu]
- refactored GBA/cartridge
- cartridge/rom,ram.type is now cartridge/mrom,sram,eeprom,flash
- things won't crash horribly if you specify a RAM size larger than
the largest legal size in the manifest
- specialized MROM / SRAM classes replace all the shared read/write
functions that didn't work right anyway
- there's a new ruby/video.glx2 driver, which is not enabled by default
- use this if you are running Linux/BSD, but don't have OpenGL 3.2 yet
- I'm not going to support OpenGL2 on Windows/OS X, because these OSes
don't ship ancient video card drivers
- probably more. What am I, clairvoyant? :P
For endrift's tests, this gets us to 1348/1552 memory and 1016/1260
timing. Overall, this puts us back in second place. Only no$ is ahead
on memory, but bgba is even more ahead on timing.
2015-11-08 09:09:18 +00:00
|
|
|
if(id == ID::FLASH) {
|
2016-02-16 09:27:55 +00:00
|
|
|
stream.read((uint8_t*)cartridge.flash.data, min(cartridge.flash.size, stream.size()));
|
2012-04-29 23:58:41 +00:00
|
|
|
}
|
2012-03-19 11:19:53 +00:00
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::save(uint id, const stream& stream) -> void {
|
Update to v095r03 release and icarus 20151107.
byuu says:
Note: you will need the new icarus (and please use the "no manifest"
system) to run GBA games with this WIP.
Changelog:
- fixed caching of r(d) to pass armwrestler tests [Jonas Quinn]
- DMA to/from GBA BIOS should fail [Cydrak]
- fixed sign-extend and rotate on ldrs instructions [Cydrak]
- fixed 8-bit SRAM reading/writing [byuu]
- refactored GBA/cartridge
- cartridge/rom,ram.type is now cartridge/mrom,sram,eeprom,flash
- things won't crash horribly if you specify a RAM size larger than
the largest legal size in the manifest
- specialized MROM / SRAM classes replace all the shared read/write
functions that didn't work right anyway
- there's a new ruby/video.glx2 driver, which is not enabled by default
- use this if you are running Linux/BSD, but don't have OpenGL 3.2 yet
- I'm not going to support OpenGL2 on Windows/OS X, because these OSes
don't ship ancient video card drivers
- probably more. What am I, clairvoyant? :P
For endrift's tests, this gets us to 1348/1552 memory and 1016/1260
timing. Overall, this puts us back in second place. Only no$ is ahead
on memory, but bgba is even more ahead on timing.
2015-11-08 09:09:18 +00:00
|
|
|
if(id == ID::SRAM) {
|
2016-02-16 09:27:55 +00:00
|
|
|
stream.write((uint8_t*)cartridge.sram.data, cartridge.sram.size);
|
Update to v088r11 release.
byuu says:
Changelog:
- phoenix has added Window::setModal(bool modal = true);
- file dialog is now modal. This allows emulation cores to request data
and get it immediately before continuing the loading process
- save data is hooked up for most systems, still need to handle
subsystem slot saves (Sufami Turbo, basically.)
- toggle fullscreen key binding added (Alt+Enter for now. I think F11 is
probably better though, Enter is often mapped to game start button.)
- video scaling is in (center, scale, stretch), works the same in
windowed and fullscreen mode (stretch hides resize window option), all
in the settings menu now
- enough structure to map all saved paths for the browser and to load
BS-X slotted carts, BS-X carts, single Sufami Turbo carts
Caveats / Missing:
- Super Game Boy input doesn't work yet (due to change in callback
binding)
- doesn't load secondary Sufami Turbo slot yet
- BS-X BIOS isn't show the data pack games to load for some reason (ugh,
I hate the shit out of debugging BS-X stuff ...)
- need mute audio, sync audio+video toggle, save/load state menu and
quick keys, XML mapping information window
- need cheat editor and cheat database
- need state manager
- need to sort subsystems below main systems in load menu (basically
just see if media.slot.size() > 0)
- need video shaders (will probably leave off filters for the time being
... due to that 24/30-bit thing)
- need video adjustments (contrast etc, overscan masks)
- need audio adjustments (frequency, latency, resampler, volume,
per-system frequency)
- need driver selection and input focus policy (driver crash detection
would be nice too)
- need NSS DIP switch settings (that one will be really fun)
- need to save and load window geometry settings
- need to hook up controller selection (won't be fun), create a map to
hide controllers with no inputs to reassign
2012-05-03 12:36:47 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if(id == ID::EEPROM) {
|
2016-02-16 09:27:55 +00:00
|
|
|
stream.write((uint8_t*)cartridge.eeprom.data, cartridge.eeprom.size);
|
Update to v088r11 release.
byuu says:
Changelog:
- phoenix has added Window::setModal(bool modal = true);
- file dialog is now modal. This allows emulation cores to request data
and get it immediately before continuing the loading process
- save data is hooked up for most systems, still need to handle
subsystem slot saves (Sufami Turbo, basically.)
- toggle fullscreen key binding added (Alt+Enter for now. I think F11 is
probably better though, Enter is often mapped to game start button.)
- video scaling is in (center, scale, stretch), works the same in
windowed and fullscreen mode (stretch hides resize window option), all
in the settings menu now
- enough structure to map all saved paths for the browser and to load
BS-X slotted carts, BS-X carts, single Sufami Turbo carts
Caveats / Missing:
- Super Game Boy input doesn't work yet (due to change in callback
binding)
- doesn't load secondary Sufami Turbo slot yet
- BS-X BIOS isn't show the data pack games to load for some reason (ugh,
I hate the shit out of debugging BS-X stuff ...)
- need mute audio, sync audio+video toggle, save/load state menu and
quick keys, XML mapping information window
- need cheat editor and cheat database
- need state manager
- need to sort subsystems below main systems in load menu (basically
just see if media.slot.size() > 0)
- need video shaders (will probably leave off filters for the time being
... due to that 24/30-bit thing)
- need video adjustments (contrast etc, overscan masks)
- need audio adjustments (frequency, latency, resampler, volume,
per-system frequency)
- need driver selection and input focus policy (driver crash detection
would be nice too)
- need NSS DIP switch settings (that one will be really fun)
- need to save and load window geometry settings
- need to hook up controller selection (won't be fun), create a map to
hide controllers with no inputs to reassign
2012-05-03 12:36:47 +00:00
|
|
|
}
|
|
|
|
|
Update to v095r03 release and icarus 20151107.
byuu says:
Note: you will need the new icarus (and please use the "no manifest"
system) to run GBA games with this WIP.
Changelog:
- fixed caching of r(d) to pass armwrestler tests [Jonas Quinn]
- DMA to/from GBA BIOS should fail [Cydrak]
- fixed sign-extend and rotate on ldrs instructions [Cydrak]
- fixed 8-bit SRAM reading/writing [byuu]
- refactored GBA/cartridge
- cartridge/rom,ram.type is now cartridge/mrom,sram,eeprom,flash
- things won't crash horribly if you specify a RAM size larger than
the largest legal size in the manifest
- specialized MROM / SRAM classes replace all the shared read/write
functions that didn't work right anyway
- there's a new ruby/video.glx2 driver, which is not enabled by default
- use this if you are running Linux/BSD, but don't have OpenGL 3.2 yet
- I'm not going to support OpenGL2 on Windows/OS X, because these OSes
don't ship ancient video card drivers
- probably more. What am I, clairvoyant? :P
For endrift's tests, this gets us to 1348/1552 memory and 1016/1260
timing. Overall, this puts us back in second place. Only no$ is ahead
on memory, but bgba is even more ahead on timing.
2015-11-08 09:09:18 +00:00
|
|
|
if(id == ID::FLASH) {
|
2016-02-16 09:27:55 +00:00
|
|
|
stream.write((uint8_t*)cartridge.flash.data, cartridge.flash.size);
|
Update to v088r11 release.
byuu says:
Changelog:
- phoenix has added Window::setModal(bool modal = true);
- file dialog is now modal. This allows emulation cores to request data
and get it immediately before continuing the loading process
- save data is hooked up for most systems, still need to handle
subsystem slot saves (Sufami Turbo, basically.)
- toggle fullscreen key binding added (Alt+Enter for now. I think F11 is
probably better though, Enter is often mapped to game start button.)
- video scaling is in (center, scale, stretch), works the same in
windowed and fullscreen mode (stretch hides resize window option), all
in the settings menu now
- enough structure to map all saved paths for the browser and to load
BS-X slotted carts, BS-X carts, single Sufami Turbo carts
Caveats / Missing:
- Super Game Boy input doesn't work yet (due to change in callback
binding)
- doesn't load secondary Sufami Turbo slot yet
- BS-X BIOS isn't show the data pack games to load for some reason (ugh,
I hate the shit out of debugging BS-X stuff ...)
- need mute audio, sync audio+video toggle, save/load state menu and
quick keys, XML mapping information window
- need cheat editor and cheat database
- need state manager
- need to sort subsystems below main systems in load menu (basically
just see if media.slot.size() > 0)
- need video shaders (will probably leave off filters for the time being
... due to that 24/30-bit thing)
- need video adjustments (contrast etc, overscan masks)
- need audio adjustments (frequency, latency, resampler, volume,
per-system frequency)
- need driver selection and input focus policy (driver crash detection
would be nice too)
- need NSS DIP switch settings (that one will be really fun)
- need to save and load window geometry settings
- need to hook up controller selection (won't be fun), create a map to
hide controllers with no inputs to reassign
2012-05-03 12:36:47 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::unload() -> void {
|
2012-05-26 08:18:42 +00:00
|
|
|
save();
|
Update to v097r12 release.
byuu says:
Nothing WS-related this time.
First, I fixed expansion port device mapping. On first load, it was
mapping the expansion port device too late, so it ended up not taking
effect. I had to spin out the logic for that into
Program::connectDevices(). This was proving to be quite annoying while
testing eBoot (SNES-Hook simulation.)
Second, I fixed the audio->set(Frequency, Latency) functions to take
(uint) parameters from the configuration file, so the weird behavior
around changing settings in the audio panel should hopefully be gone
now.
Third, I rewrote the interface->load,unload functions to call into the
(Emulator)::System::load,unload functions. And I have those call out to
Cartridge::load,unload. Before, this was inverted, and Cartridge::load()
was invoking System::load(), which I felt was kind of backward.
The Super Game Boy really didn't like this change, however. And it took
me a few hours to power through it. Before, I had the Game Boy core
dummying out all the interface->(load,save)Request calls, and having the
SNES core make them for it. This is because the folder paths and IDs
will be different between the two cores.
I've redesigned things so that ICD2's Emulator::Interface overloads
loadRequest and saveRequest, and translates the requests into new
requests for the SuperFamicom core. This allows the Game Boy code to do
its own loading for everything without a bunch of Super Game Boy special
casing, and without any awkwardness around powering on with no cartridge
inserted.
This also lets the SNES side of things simply call into higher-level
GameBoy::interface->load,save(id, stream) functions instead of stabbing
at the raw underlying state inside of various Game Boy core emulation
classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
|
|
|
system.unload();
|
2012-03-19 11:19:53 +00:00
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::power() -> void {
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
system.power();
|
2012-03-19 11:19:53 +00:00
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::reset() -> void {
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
system.power();
|
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::run() -> void {
|
Update to v088r08 release.
byuu says:
From this WIP, I'm starting on the impossible task of
a declarative-based GUI, which I'm calling Ethos.
base/ becomes emulator/, and we add emulator/interface.hpp, which is
a base API that all emulation cores must implement in full.
(Right now, it's kind of a hybrid to work with the old GUI and the new
GUI at the same time, of course.)
Unlike the old interfaces, the new base class also provides all general
usability hooks: loading and saving files and states, cheat codes, etc.
The new interface also contains information and vector structs to
describe all possible loading methods, controller bindings, etc; and
gives names for them all.
The actual GUI in fact should not include eg <gba/gba.hpp> anymore.
Should speed up GUI compilation.
So the idea going forward is that ethos will build a list of emulators
right when the application starts up.
Once you've appended an emulator to that list, you're done. No more GUI
changes are needed to support that system.
The GUI will have code to parse the emulator interfaces list, and build
all the requisite GUI options dynamically, declarative style.
Ultimately, once the project is finished, the new GUI should look ~99%
identical to the current GUI. But it'll probably be a whole lot smaller.
2012-04-29 06:29:54 +00:00
|
|
|
system.run();
|
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::serialize() -> serializer {
|
Update to v097r12 release.
byuu says:
Nothing WS-related this time.
First, I fixed expansion port device mapping. On first load, it was
mapping the expansion port device too late, so it ended up not taking
effect. I had to spin out the logic for that into
Program::connectDevices(). This was proving to be quite annoying while
testing eBoot (SNES-Hook simulation.)
Second, I fixed the audio->set(Frequency, Latency) functions to take
(uint) parameters from the configuration file, so the weird behavior
around changing settings in the audio panel should hopefully be gone
now.
Third, I rewrote the interface->load,unload functions to call into the
(Emulator)::System::load,unload functions. And I have those call out to
Cartridge::load,unload. Before, this was inverted, and Cartridge::load()
was invoking System::load(), which I felt was kind of backward.
The Super Game Boy really didn't like this change, however. And it took
me a few hours to power through it. Before, I had the Game Boy core
dummying out all the interface->(load,save)Request calls, and having the
SNES core make them for it. This is because the folder paths and IDs
will be different between the two cores.
I've redesigned things so that ICD2's Emulator::Interface overloads
loadRequest and saveRequest, and translates the requests into new
requests for the SuperFamicom core. This allows the Game Boy code to do
its own loading for everything without a bunch of Super Game Boy special
casing, and without any awkwardness around powering on with no cartridge
inserted.
This also lets the SNES side of things simply call into higher-level
GameBoy::interface->load,save(id, stream) functions instead of stabbing
at the raw underlying state inside of various Game Boy core emulation
classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
|
|
|
system.runToSave();
|
Update to v088r12 release.
byuu says:
Changelog:
- all hotkeys from target-ui now exist in target-ethos
- controller port menus now show up when you load a system (hidden if
there are no options to choose from)
- tools menu auto-hides with no game open ... not much point to it then
- since we aren't using RawInput's multi-KB/MS support anyway, input and
hotkey mappings remove KB0:: and turn MS0:: into Mouse::, makes it
a lot easier to read
- added mute audio, sync video, sync audio, mask overscan
- added video settings: saturation, gamma, luminance, overscan
horizontal, overscan vertical
- added audio settings: frequency, latency, resampler, volume
- added input settings: when focus is lost [ ] pause emulator [ ] allow
input
- pausing and autopausing works
- status messages hooked up (show a message in status bar for a few
seconds, then revert to normal status text)
- sub systems (SGB, BSX, ST) sorted below primary systems list
- added geometry settings cache
- Emulator::Interface cleanups and simplifications
- save states go into (cart foldername.extension/bsnes/state-#.bsa) now.
Idea is to put emulator-specific data in their own subfolders
Caveats / Missing:
- SGB input does not work
- Sufami Turbo second slot doesn't work yet
- BS-X BIOS won't show the data pack
- need XML mapping information window
- need cheat editor and cheat database
- need state manager
- need video shaders
- need driver selection
- need NSS DIP switch settings
- need to hide controllers that have no inputs from the input mapping
list
So for video settings, I used to have contrast/brightness/gamma.
Contrast was just a multiplier on intensity of each channel, and
brightness was an addition or subtraction against each channel. They
kind of overlapped and weren't that effective. The new setup has
saturation, gamma and luminance.
Saturation of 100% is normal. If you lower it, color information goes
away. 0% = grayscale. If you raise it, color intensity increases (and
clamps.) This is wonderful for GBA games, since they are oversaturated
to fucking death. Of course we'll want to normalize that inside the
core, so the same sat. value works on all systems, but for now it's
nice. If you raise saturation above 100%, it basically acts like
contrast used to. It's just that lowering it fades to grayscale rather
than black.
Adding doesn't really work well for brightness, it throws off the
relative distance between channels and looks like shit. So now we have
luminance, which takes over the old contrast <100% role, and just fades
the pixels toward black. Obviously, luminance > 100% would be the same
as saturation > 100%, so that isn't allowed, it caps at 100% now.
Gamma's the same old function. Gamma curve on the lower-half of the
color range.
Effects are applied in the order they appear in the GUI: color ->
saturate -> gammify -> luminate -> output.
2012-05-04 12:47:41 +00:00
|
|
|
return system.serialize();
|
|
|
|
}
|
|
|
|
|
2015-11-16 08:38:05 +00:00
|
|
|
auto Interface::unserialize(serializer& s) -> bool {
|
Update to v088r12 release.
byuu says:
Changelog:
- all hotkeys from target-ui now exist in target-ethos
- controller port menus now show up when you load a system (hidden if
there are no options to choose from)
- tools menu auto-hides with no game open ... not much point to it then
- since we aren't using RawInput's multi-KB/MS support anyway, input and
hotkey mappings remove KB0:: and turn MS0:: into Mouse::, makes it
a lot easier to read
- added mute audio, sync video, sync audio, mask overscan
- added video settings: saturation, gamma, luminance, overscan
horizontal, overscan vertical
- added audio settings: frequency, latency, resampler, volume
- added input settings: when focus is lost [ ] pause emulator [ ] allow
input
- pausing and autopausing works
- status messages hooked up (show a message in status bar for a few
seconds, then revert to normal status text)
- sub systems (SGB, BSX, ST) sorted below primary systems list
- added geometry settings cache
- Emulator::Interface cleanups and simplifications
- save states go into (cart foldername.extension/bsnes/state-#.bsa) now.
Idea is to put emulator-specific data in their own subfolders
Caveats / Missing:
- SGB input does not work
- Sufami Turbo second slot doesn't work yet
- BS-X BIOS won't show the data pack
- need XML mapping information window
- need cheat editor and cheat database
- need state manager
- need video shaders
- need driver selection
- need NSS DIP switch settings
- need to hide controllers that have no inputs from the input mapping
list
So for video settings, I used to have contrast/brightness/gamma.
Contrast was just a multiplier on intensity of each channel, and
brightness was an addition or subtraction against each channel. They
kind of overlapped and weren't that effective. The new setup has
saturation, gamma and luminance.
Saturation of 100% is normal. If you lower it, color information goes
away. 0% = grayscale. If you raise it, color intensity increases (and
clamps.) This is wonderful for GBA games, since they are oversaturated
to fucking death. Of course we'll want to normalize that inside the
core, so the same sat. value works on all systems, but for now it's
nice. If you raise saturation above 100%, it basically acts like
contrast used to. It's just that lowering it fades to grayscale rather
than black.
Adding doesn't really work well for brightness, it throws off the
relative distance between channels and looks like shit. So now we have
luminance, which takes over the old contrast <100% role, and just fades
the pixels toward black. Obviously, luminance > 100% would be the same
as saturation > 100%, so that isn't allowed, it caps at 100% now.
Gamma's the same old function. Gamma curve on the lower-half of the
color range.
Effects are applied in the order they appear in the GUI: color ->
saturate -> gammify -> luminate -> output.
2012-05-04 12:47:41 +00:00
|
|
|
return system.unserialize(s);
|
|
|
|
}
|
|
|
|
|
Update to v096r07 release.
byuu says:
Changelog:
- configuration files are now stored in localpath() instead of configpath()
- Video gamma/saturation/luminance sliders are gone now, sorry
- added Video Filter->Blur Emulation [1]
- added Video Filter->Scanline Emulation [2]
- improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn]
[1] For the Famicom, this does nothing. For the Super Famicom, this
performs horizontal blending for proper pseudo-hires translucency. For
the Game Boy, Game Boy Color, and Game Boy Advance, this performs
interframe blending (each frame is the average of the current and
previous frame), which is important for things like the GBVideoPlayer.
[2] Right now, this only applies to the Super Famicom, but it'll come to
the Famicom in the future. For the Super Famicom, this option doesn't
just add scanlines, it simulates the phosphor decay that's visible in
interlace mode. If you observe an interlaced game like RPM Racing on
a real SNES, you'll notice that even on perfectly still screens, the
image appears to shake. This option emulates that effect.
Note 1: the buffering right now is a little sub-optimal, so there will
be a slight speed hit with this new support. Since the core is now
generating native ARGB8888 colors, it might as well call out to the
interface to lock/unlock/refresh the video, that way it can render
directly to the screen. Although ... that might not be such a hot idea,
since the GBx interframe blending reads from the target buffer, and that
tends to be a catastrophic option for performance.
Note 2: the balanced and performance profiles for the SNES are
completely busted again. This WIP took 6 1/2 hours, and I'm exhausted.
Very much not looking forward to working on those, since those two have
all kinds of fucked up speedup tricks for non-interlaced and/or
non-hires video modes.
Note 3: if you're on Windows and you saved your system folders somewhere
else, now'd be a good time to move them to %localappdata%/higan
2016-01-15 10:06:51 +00:00
|
|
|
auto Interface::cap(const string& name) -> bool {
|
|
|
|
if(name == "Blur Emulation") return true;
|
|
|
|
if(name == "Color Emulation") return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::get(const string& name) -> any {
|
|
|
|
if(name == "Blur Emulation") return settings.blurEmulation;
|
|
|
|
if(name == "Color Emulation") return settings.colorEmulation;
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::set(const string& name, const any& value) -> bool {
|
Update to v098r04 release.
byuu says:
Changelog:
- SFC: fixed behavior of 21fx $21fe register when no device is connected
(must return zero)
- SFC: reduced 21fx buffer size to 1024 bytes in both directions to
mirror the FT232H we are using
- SFC: eliminated dsp/modulo-array.hpp [1]
- higan: implemented higan/video interface and migrated all cores to it
[2]
[1] the echo history buffer was 8-bytes, so there was no need for it at
all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and
has very weird behavior ... but there's only a single location in the
code where it actually writes to this buffer. It's much easier to just
write to the buffer three times there instead of implementing an entire
class just to abstract away two lines of code. This change actually
boosted the speed from ~124.5fps to around ~127.5fps, but that's within
the margin of error for GCC. I doubt it's actually faster this way.
The DSP core could really use a ton of work. It comes from a port of
blargg's spc_dsp to my coding style, but he was extremely fond of using
32-bit signed integers everywhere. There's a lot of opportunity to
remove red tape masking by resizing the variables to their actual state
sizes.
I really need to find where I put spc_dsp6.sfc from blargg. It's a great
test to verify if I've made any mistakes in my implementation that would
cause regressions. Don't suppose anyone has it?
[2] so again, the idea is that higan/audio and higan/video are going to
sit between the emulation cores and the user interfaces. The hope is to
output raw encoding data from the emulation cores without having to
worry about the video display format (generally 24-bit RGB) of the host
display. And also to avoid having to repeat myself with eg three
separate implementations of interframe blending, and so on.
Furthermore, the idea is that the user interface can configure its side
of the settings, and the emulation cores can configure their sides.
Thus, neither has to worry about the other end. And now we can spin off
new user interfaces much easier without having to mess with all of these
things.
Right now, I've implemented color emulation, interframe blending and
SNES horizontal color bleed. I did not implement scanlines (and
interlace effects for them) yet, but I probably will at some point.
Further, for right now, the WonderSwan/Color screen rotation is busted
and will only show games in the horizontal orientation. Obviously this
must be fixed before the next official release, but I'll want to think
about how to implement it.
Also, the SNES light gun pointers are missing for now.
Things are a bit messy right now as I've gone through several revisions
of how to handle these things, so a good house cleaning is in order once
everything is feature-complete again. I need to sit down and think
through how and where I want to handle things like light gun cursors,
LCD icons, and maybe even rasterized text messages.
And obviously ... higan/audio is still just nall::DSP's headers. I need
to revamp that whole interface. I want to make it quite powerful with
a true audio mixer so I can handle things like
SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.)
The video system has the concept of "effects" for things like color
bleed and interframe blending. I want to extend on this with useful
other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x
filter, etc. I'd also like to restore the saturation/gamma/luma
adjustment sliders ... I always liked allowing people to compensate for
their displays without having to change settings system-wide. Lastly,
I've always wanted to see some audio effects. Although I doubt we'll
ever get my dream of CoreAudio-style profiles, I'd like to get some
basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
|
|
|
if(name == "Blur Emulation" && value.is<bool>()) {
|
|
|
|
settings.blurEmulation = value.get<bool>();
|
|
|
|
system.configureVideoEffects();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(name == "Color Emulation" && value.is<bool>()) {
|
|
|
|
settings.colorEmulation = value.get<bool>();
|
|
|
|
system.configureVideoPalette();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
Update to v096r07 release.
byuu says:
Changelog:
- configuration files are now stored in localpath() instead of configpath()
- Video gamma/saturation/luminance sliders are gone now, sorry
- added Video Filter->Blur Emulation [1]
- added Video Filter->Scanline Emulation [2]
- improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn]
[1] For the Famicom, this does nothing. For the Super Famicom, this
performs horizontal blending for proper pseudo-hires translucency. For
the Game Boy, Game Boy Color, and Game Boy Advance, this performs
interframe blending (each frame is the average of the current and
previous frame), which is important for things like the GBVideoPlayer.
[2] Right now, this only applies to the Super Famicom, but it'll come to
the Famicom in the future. For the Super Famicom, this option doesn't
just add scanlines, it simulates the phosphor decay that's visible in
interlace mode. If you observe an interlaced game like RPM Racing on
a real SNES, you'll notice that even on perfectly still screens, the
image appears to shake. This option emulates that effect.
Note 1: the buffering right now is a little sub-optimal, so there will
be a slight speed hit with this new support. Since the core is now
generating native ARGB8888 colors, it might as well call out to the
interface to lock/unlock/refresh the video, that way it can render
directly to the screen. Although ... that might not be such a hot idea,
since the GBx interframe blending reads from the target buffer, and that
tends to be a catastrophic option for performance.
Note 2: the balanced and performance profiles for the SNES are
completely busted again. This WIP took 6 1/2 hours, and I'm exhausted.
Very much not looking forward to working on those, since those two have
all kinds of fucked up speedup tricks for non-interlaced and/or
non-hires video modes.
Note 3: if you're on Windows and you saved your system folders somewhere
else, now'd be a good time to move them to %localappdata%/higan
2016-01-15 10:06:51 +00:00
|
|
|
return false;
|
2012-03-19 11:19:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
}
|