bsnes/higan/ruby/input/rawinput.cpp

808 lines
26 KiB
C++
Raw Normal View History

//RawInput driver
//author: byuu
//this driver utilizes RawInput (WM_INPUT) to capture keyboard and mouse input.
//although this requires WinXP or newer, it is the only way to uniquely identify
//and independently map multiple keyboards and mice. DirectInput merges all
//keyboards and mice into one device per.
//
//as WM_INPUT lacks specific RAWINPUT structures for gamepads, giving only raw
//data, and because DirectInput supports up to 16 joypads, DirectInput is used
//for joypad mapping.
//
//further, Xbox 360 controllers are explicitly detected and supported through
//XInput. this is because under DirectInput, the LT / RT (trigger) buttons are
//merged into a single Z-axis -- making it impossible to detect both buttons
//being pressed at the same time. with XInput, the state of both trigger
//buttons can be read independently.
//
//so in essence, this is actually more of a hybrid driver.
#define DIRECTINPUT_VERSION 0x0800
#include <dinput.h>
#include <xinput.h>
namespace ruby {
static DWORD WINAPI RawInputThreadProc(void*);
static LRESULT CALLBACK RawInputWindowProc(HWND, UINT, WPARAM, LPARAM);
class RawInput {
public:
HANDLE mutex;
HWND hwnd;
bool initialized;
bool ready;
struct Device {
HANDLE handle;
};
struct Keyboard : Device {
bool state[nall::Keyboard::Size];
void update(RAWINPUT *input) {
unsigned code = input->data.keyboard.MakeCode;
unsigned flags = input->data.keyboard.Flags;
#define map(id, flag, name) if(code == id) state[name] = (bool)(flags == flag);
map(0x0001, 0, nall::Keyboard::Escape)
map(0x003b, 0, nall::Keyboard::F1)
map(0x003c, 0, nall::Keyboard::F2)
map(0x003d, 0, nall::Keyboard::F3)
map(0x003e, 0, nall::Keyboard::F4)
map(0x003f, 0, nall::Keyboard::F5)
map(0x0040, 0, nall::Keyboard::F6)
map(0x0041, 0, nall::Keyboard::F7)
map(0x0042, 0, nall::Keyboard::F8)
map(0x0043, 0, nall::Keyboard::F9)
map(0x0044, 0, nall::Keyboard::F10)
map(0x0057, 0, nall::Keyboard::F11)
map(0x0058, 0, nall::Keyboard::F12)
map(0x0037, 2, nall::Keyboard::PrintScreen)
map(0x0046, 0, nall::Keyboard::ScrollLock)
map(0x001d, 4, nall::Keyboard::Pause)
map(0x0029, 0, nall::Keyboard::Tilde)
map(0x0002, 0, nall::Keyboard::Num1)
map(0x0003, 0, nall::Keyboard::Num2)
map(0x0004, 0, nall::Keyboard::Num3)
map(0x0005, 0, nall::Keyboard::Num4)
map(0x0006, 0, nall::Keyboard::Num5)
map(0x0007, 0, nall::Keyboard::Num6)
map(0x0008, 0, nall::Keyboard::Num7)
map(0x0009, 0, nall::Keyboard::Num8)
map(0x000a, 0, nall::Keyboard::Num9)
map(0x000b, 0, nall::Keyboard::Num0)
map(0x000c, 0, nall::Keyboard::Dash)
map(0x000d, 0, nall::Keyboard::Equal)
map(0x000e, 0, nall::Keyboard::Backspace)
map(0x0052, 2, nall::Keyboard::Insert)
map(0x0053, 2, nall::Keyboard::Delete)
map(0x0047, 2, nall::Keyboard::Home)
map(0x004f, 2, nall::Keyboard::End)
map(0x0049, 2, nall::Keyboard::PageUp)
map(0x0051, 2, nall::Keyboard::PageDown)
map(0x001e, 0, nall::Keyboard::A)
map(0x0030, 0, nall::Keyboard::B)
map(0x002e, 0, nall::Keyboard::C)
map(0x0020, 0, nall::Keyboard::D)
map(0x0012, 0, nall::Keyboard::E)
map(0x0021, 0, nall::Keyboard::F)
map(0x0022, 0, nall::Keyboard::G)
map(0x0023, 0, nall::Keyboard::H)
map(0x0017, 0, nall::Keyboard::I)
map(0x0024, 0, nall::Keyboard::J)
map(0x0025, 0, nall::Keyboard::K)
map(0x0026, 0, nall::Keyboard::L)
map(0x0032, 0, nall::Keyboard::M)
map(0x0031, 0, nall::Keyboard::N)
map(0x0018, 0, nall::Keyboard::O)
map(0x0019, 0, nall::Keyboard::P)
map(0x0010, 0, nall::Keyboard::Q)
map(0x0013, 0, nall::Keyboard::R)
map(0x001f, 0, nall::Keyboard::S)
map(0x0014, 0, nall::Keyboard::T)
map(0x0016, 0, nall::Keyboard::U)
map(0x002f, 0, nall::Keyboard::V)
map(0x0011, 0, nall::Keyboard::W)
map(0x002d, 0, nall::Keyboard::X)
map(0x0015, 0, nall::Keyboard::Y)
map(0x002c, 0, nall::Keyboard::Z)
map(0x001a, 0, nall::Keyboard::LeftBracket)
map(0x001b, 0, nall::Keyboard::RightBracket)
map(0x002b, 0, nall::Keyboard::Backslash)
map(0x0027, 0, nall::Keyboard::Semicolon)
map(0x0028, 0, nall::Keyboard::Apostrophe)
map(0x0033, 0, nall::Keyboard::Comma)
map(0x0034, 0, nall::Keyboard::Period)
map(0x0035, 0, nall::Keyboard::Slash)
map(0x004f, 0, nall::Keyboard::Keypad1)
map(0x0050, 0, nall::Keyboard::Keypad2)
map(0x0051, 0, nall::Keyboard::Keypad3)
map(0x004b, 0, nall::Keyboard::Keypad4)
map(0x004c, 0, nall::Keyboard::Keypad5)
map(0x004d, 0, nall::Keyboard::Keypad6)
map(0x0047, 0, nall::Keyboard::Keypad7)
map(0x0048, 0, nall::Keyboard::Keypad8)
map(0x0049, 0, nall::Keyboard::Keypad9)
map(0x0052, 0, nall::Keyboard::Keypad0)
map(0x0053, 0, nall::Keyboard::Point)
map(0x001c, 2, nall::Keyboard::Enter)
map(0x004e, 0, nall::Keyboard::Add)
map(0x004a, 0, nall::Keyboard::Subtract)
map(0x0037, 0, nall::Keyboard::Multiply)
map(0x0035, 2, nall::Keyboard::Divide)
map(0x0045, 0, nall::Keyboard::NumLock)
map(0x003a, 0, nall::Keyboard::CapsLock)
//Pause signals 0x1d:4 + 0x45:0, whereas NumLock signals only 0x45:0.
//this makes it impractical to detect both Pause+NumLock independently.
//workaround: always detect Pause; detect NumLock only when Pause is released.
if(state[nall::Keyboard::Pause]) state[nall::Keyboard::NumLock] = false;
map(0x0048, 2, nall::Keyboard::Up)
map(0x0050, 2, nall::Keyboard::Down)
map(0x004b, 2, nall::Keyboard::Left)
map(0x004d, 2, nall::Keyboard::Right)
map(0x000f, 0, nall::Keyboard::Tab)
map(0x001c, 0, nall::Keyboard::Return)
map(0x0039, 0, nall::Keyboard::Spacebar)
map(0x005d, 2, nall::Keyboard::Menu)
//merge left and right modifiers to one ID
if(code == 0x002a && flags == 0) state[nall::Keyboard::Shift] = 1; //left shift
if(code == 0x002a && flags == 1) state[nall::Keyboard::Shift] = 0;
if(code == 0x0036 && flags == 0) state[nall::Keyboard::Shift] = 1; //right shift
if(code == 0x0036 && flags == 1) state[nall::Keyboard::Shift] = 0;
if(code == 0x001d && flags == 0) state[nall::Keyboard::Control] = 1; //left control
if(code == 0x001d && flags == 1) state[nall::Keyboard::Control] = 0;
if(code == 0x001d && flags == 2) state[nall::Keyboard::Control] = 1; //right control
if(code == 0x001d && flags == 3) state[nall::Keyboard::Control] = 0;
if(code == 0x0038 && flags == 0) state[nall::Keyboard::Alt] = 1; //left alt
if(code == 0x0038 && flags == 1) state[nall::Keyboard::Alt] = 0;
if(code == 0x0038 && flags == 2) state[nall::Keyboard::Alt] = 1; //right alt
if(code == 0x0038 && flags == 3) state[nall::Keyboard::Alt] = 0;
if(code == 0x005b && flags == 2) state[nall::Keyboard::Super] = 1; //left super
if(code == 0x005b && flags == 3) state[nall::Keyboard::Super] = 0;
if(code == 0x005c && flags == 2) state[nall::Keyboard::Super] = 1; //right super
if(code == 0x005c && flags == 3) state[nall::Keyboard::Super] = 0;
#undef map
}
Keyboard() {
for(unsigned i = 0; i < nall::Keyboard::Size; i++) state[i] = false;
}
};
struct Mouse : Device {
signed xDistance;
signed yDistance;
signed zDistance;
unsigned buttonState;
void sync() {
xDistance = 0;
yDistance = 0;
zDistance = 0;
}
void update(RAWINPUT *input) {
if((input->data.mouse.usFlags & 1) == MOUSE_MOVE_RELATIVE) {
xDistance += input->data.mouse.lLastX;
yDistance += input->data.mouse.lLastY;
}
if(input->data.mouse.usButtonFlags & RI_MOUSE_BUTTON_1_DOWN) buttonState |= 1 << 0;
if(input->data.mouse.usButtonFlags & RI_MOUSE_BUTTON_1_UP ) buttonState &=~ 1 << 0;
if(input->data.mouse.usButtonFlags & RI_MOUSE_BUTTON_2_DOWN) buttonState |= 1 << 2; //swap middle and right buttons,
if(input->data.mouse.usButtonFlags & RI_MOUSE_BUTTON_2_UP ) buttonState &=~ 1 << 2; //for consistency with Linux:
if(input->data.mouse.usButtonFlags & RI_MOUSE_BUTTON_3_DOWN) buttonState |= 1 << 1; //left = 0, middle = 1, right = 2
if(input->data.mouse.usButtonFlags & RI_MOUSE_BUTTON_3_UP ) buttonState &=~ 1 << 1;
if(input->data.mouse.usButtonFlags & RI_MOUSE_BUTTON_4_DOWN) buttonState |= 1 << 3;
if(input->data.mouse.usButtonFlags & RI_MOUSE_BUTTON_4_UP ) buttonState &=~ 1 << 3;
if(input->data.mouse.usButtonFlags & RI_MOUSE_BUTTON_5_DOWN) buttonState |= 1 << 4;
if(input->data.mouse.usButtonFlags & RI_MOUSE_BUTTON_5_UP ) buttonState &=~ 1 << 4;
if(input->data.mouse.usButtonFlags & RI_MOUSE_WHEEL) {
zDistance += (int16_t)input->data.mouse.usButtonData;
}
}
Mouse() {
xDistance = yDistance = zDistance = 0;
buttonState = 0;
}
};
//keep track of gamepads for the sole purpose of distinguishing XInput devices
//from all other devices. this is necessary, as DirectInput does not provide
//a way to retrieve the necessary RIDI_DEVICENAME string.
struct Gamepad : Device {
bool isXInputDevice;
uint16_t vendorId;
uint16_t productId;
};
vector<Keyboard> lkeyboard;
vector<Mouse> lmouse;
vector<Gamepad> lgamepad;
LRESULT window_proc(HWND hwnd, UINT msg, WPARAM wparam, LPARAM lparam) {
if(msg == WM_INPUT) {
unsigned size = 0;
GetRawInputData((HRAWINPUT)lparam, RID_INPUT, NULL, &size, sizeof(RAWINPUTHEADER));
RAWINPUT *input = new RAWINPUT[size];
GetRawInputData((HRAWINPUT)lparam, RID_INPUT, input, &size, sizeof(RAWINPUTHEADER));
WaitForSingleObject(mutex, INFINITE);
if(input->header.dwType == RIM_TYPEKEYBOARD) {
for(unsigned i = 0; i < lkeyboard.size(); i++) {
if(input->header.hDevice == lkeyboard(i).handle) {
lkeyboard(i).update(input);
break;
}
}
} else if(input->header.dwType == RIM_TYPEMOUSE) {
for(unsigned i = 0; i < lmouse.size(); i++) {
if(input->header.hDevice == lmouse(i).handle) {
lmouse(i).update(input);
break;
}
}
}
ReleaseMutex(mutex);
//allow propogation of WM_INPUT message
LRESULT result = DefRawInputProc(&input, size, sizeof(RAWINPUTHEADER));
delete[] input;
return result;
}
return DefWindowProc(hwnd, msg, wparam, lparam);
}
//this is used to sort device IDs
struct DevicePool {
HANDLE handle;
wchar_t name[4096];
bool operator<(const DevicePool &pool) const { return wcscmp(name, pool.name) < 0; }
};
int main() {
//create an invisible window to act as a sink, capturing all WM_INPUT messages
WNDCLASS wc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hbrBackground = (HBRUSH)COLOR_WINDOW;
wc.hCursor = LoadCursor(0, IDC_ARROW);
wc.hIcon = LoadIcon(0, IDI_APPLICATION);
wc.hInstance = GetModuleHandle(0);
wc.lpfnWndProc = RawInputWindowProc;
wc.lpszClassName = L"RawInputClass";
wc.lpszMenuName = 0;
wc.style = CS_VREDRAW | CS_HREDRAW;
RegisterClass(&wc);
hwnd = CreateWindow(L"RawInputClass", L"RawInputClass", WS_POPUP,
0, 0, 64, 64, 0, 0, GetModuleHandle(0), 0);
//enumerate all HID devices
unsigned devices = 0;
GetRawInputDeviceList(NULL, &devices, sizeof(RAWINPUTDEVICELIST));
RAWINPUTDEVICELIST *list = new RAWINPUTDEVICELIST[devices];
GetRawInputDeviceList(list, &devices, sizeof(RAWINPUTDEVICELIST));
//sort all devices by name. this has two important properties:
//1) it consistently orders peripherals, so mapped IDs remain constant
//2) it sorts the virtual keyboard and mouse to the bottom of the list
// (real devices start with \\?\HID#, virtual with \\?\Root#)
DevicePool pool[devices];
for(unsigned i = 0; i < devices; i++) {
pool[i].handle = list[i].hDevice;
unsigned size = sizeof(pool[i].name) - 1;
GetRawInputDeviceInfo(list[i].hDevice, RIDI_DEVICENAME, &pool[i].name, &size);
}
nall::sort(pool, devices);
delete[] list;
for(unsigned i = 0; i < devices; i++) {
RID_DEVICE_INFO info;
info.cbSize = sizeof(RID_DEVICE_INFO);
unsigned size = info.cbSize;
GetRawInputDeviceInfo(pool[i].handle, RIDI_DEVICEINFO, &info, &size);
if(info.dwType == RIM_TYPEKEYBOARD) {
unsigned n = lkeyboard.size();
lkeyboard(n).handle = pool[i].handle;
} else if(info.dwType == RIM_TYPEMOUSE) {
unsigned n = lmouse.size();
lmouse(n).handle = pool[i].handle;
} else if(info.dwType == RIM_TYPEHID) {
//if this is a gamepad or joystick device ...
if(info.hid.usUsagePage == 1 && (info.hid.usUsage == 4 || info.hid.usUsage == 5)) {
//... then cache device information for later use
unsigned n = lgamepad.size();
lgamepad(n).handle = pool[i].handle;
lgamepad(n).vendorId = (uint16_t)info.hid.dwVendorId;
lgamepad(n).productId = (uint16_t)info.hid.dwProductId;
//per MSDN: XInput devices have "IG_" in their device strings,
//which is how they should be identified.
string p = (const char*)utf8_t(pool[i].name);
if(auto position = strpos(p, "IG_")) {
lgamepad(n).isXInputDevice = true;
} else {
lgamepad(n).isXInputDevice = false;
}
}
}
}
RAWINPUTDEVICE device[2];
//capture all keyboard input
device[0].usUsagePage = 1;
device[0].usUsage = 6;
device[0].dwFlags = RIDEV_INPUTSINK;
device[0].hwndTarget = hwnd;
//capture all mouse input
device[1].usUsagePage = 1;
device[1].usUsage = 2;
device[1].dwFlags = RIDEV_INPUTSINK;
device[1].hwndTarget = hwnd;
RegisterRawInputDevices(device, 2, sizeof(RAWINPUTDEVICE));
WaitForSingleObject(mutex, INFINITE);
ready = true;
ReleaseMutex(mutex);
while(true) {
MSG msg;
GetMessage(&msg, hwnd, 0, 0);
TranslateMessage(&msg);
DispatchMessage(&msg);
}
return 0;
}
RawInput() : initialized(false), ready(false) {
}
};
static RawInput rawinput;
DWORD WINAPI RawInputThreadProc(void*) {
return rawinput.main();
}
LRESULT CALLBACK RawInputWindowProc(HWND hwnd, UINT msg, WPARAM wparam, LPARAM lparam) {
return rawinput.window_proc(hwnd, msg, wparam, lparam);
}
class XInput {
public:
HMODULE libxinput;
DWORD WINAPI (*pXInputGetState)(DWORD, XINPUT_STATE*);
struct Gamepad {
unsigned id;
int16_t hat;
int16_t axis[6];
bool button[10];
void poll(XINPUT_STATE &state) {
hat = Joypad::HatCenter;
if(state.Gamepad.wButtons & XINPUT_GAMEPAD_DPAD_UP ) hat |= Joypad::HatUp;
if(state.Gamepad.wButtons & XINPUT_GAMEPAD_DPAD_RIGHT) hat |= Joypad::HatRight;
if(state.Gamepad.wButtons & XINPUT_GAMEPAD_DPAD_DOWN ) hat |= Joypad::HatDown;
if(state.Gamepad.wButtons & XINPUT_GAMEPAD_DPAD_LEFT ) hat |= Joypad::HatLeft;
axis[0] = (int16_t)state.Gamepad.sThumbLX;
axis[1] = (int16_t)state.Gamepad.sThumbLY;
axis[2] = (int16_t)state.Gamepad.sThumbRX;
axis[3] = (int16_t)state.Gamepad.sThumbRY;
//transform left and right trigger ranges:
//from: 0 (low, eg released) to 255 (high, eg pressed all the way down)
//to: +32767 (low) to -32768 (high)
uint16_t triggerX = state.Gamepad.bLeftTrigger;
uint16_t triggerY = state.Gamepad.bRightTrigger;
triggerX = (triggerX << 8) | triggerX;
triggerY = (triggerY << 8) | triggerY;
axis[4] = (~triggerX) - 32768;
axis[5] = (~triggerY) - 32768;
button[0] = (bool)(state.Gamepad.wButtons & XINPUT_GAMEPAD_A);
button[1] = (bool)(state.Gamepad.wButtons & XINPUT_GAMEPAD_B);
button[2] = (bool)(state.Gamepad.wButtons & XINPUT_GAMEPAD_X);
button[3] = (bool)(state.Gamepad.wButtons & XINPUT_GAMEPAD_Y);
button[4] = (bool)(state.Gamepad.wButtons & XINPUT_GAMEPAD_BACK);
button[5] = (bool)(state.Gamepad.wButtons & XINPUT_GAMEPAD_START);
button[6] = (bool)(state.Gamepad.wButtons & XINPUT_GAMEPAD_LEFT_SHOULDER);
button[7] = (bool)(state.Gamepad.wButtons & XINPUT_GAMEPAD_RIGHT_SHOULDER);
button[8] = (bool)(state.Gamepad.wButtons & XINPUT_GAMEPAD_LEFT_THUMB);
button[9] = (bool)(state.Gamepad.wButtons & XINPUT_GAMEPAD_RIGHT_THUMB);
}
Gamepad() {
hat = Joypad::HatCenter;
for(unsigned n = 0; n < 6; n++) axis[n] = 0;
for(unsigned n = 0; n < 10; n++) button[n] = false;
}
};
vector<Gamepad> lgamepad;
void poll() {
if(!pXInputGetState) return;
for(unsigned i = 0; i < lgamepad.size(); i++) {
XINPUT_STATE state;
DWORD result = pXInputGetState(lgamepad(i).id, &state);
if(result == ERROR_SUCCESS) lgamepad(i).poll(state);
}
}
void init() {
if(!pXInputGetState) return;
//XInput only supports up to four controllers
for(unsigned i = 0; i <= 3; i++) {
XINPUT_STATE state;
DWORD result = pXInputGetState(i, &state);
if(result == ERROR_SUCCESS) {
//valid controller detected, add to gamepad list
unsigned n = lgamepad.size();
lgamepad(n).id = i;
}
}
}
XInput() : pXInputGetState(0) {
//bind xinput1 dynamically, as it does not ship with Windows Vista or below
libxinput = LoadLibraryA("xinput1_3.dll");
if(!libxinput) libxinput = LoadLibraryA("xinput1_2.dll");
if(!libxinput) libxinput = LoadLibraryA("xinput1_1.dll");
if(!libxinput) return;
pXInputGetState = (DWORD WINAPI (*)(DWORD, XINPUT_STATE*))GetProcAddress(libxinput, "XInputGetState");
}
~XInput() {
if(libxinput) FreeLibrary(libxinput);
}
};
static BOOL CALLBACK DirectInput_EnumJoypadsCallback(const DIDEVICEINSTANCE*, void*);
static BOOL CALLBACK DirectInput_EnumJoypadAxesCallback(const DIDEVICEOBJECTINSTANCE*, void*);
class DirectInput {
public:
HWND handle;
LPDIRECTINPUT8 context;
struct Gamepad {
LPDIRECTINPUTDEVICE8 handle;
int16_t hat[4];
int16_t axis[6];
bool button[128];
void poll(DIJOYSTATE2 &state) {
//POV hats
for(unsigned n = 0; n < 4; n++) {
hat[n] = Joypad::HatCenter;
//POV value is in clockwise-hundredth degree units
unsigned pov = state.rgdwPOV[n];
//some drivers report a centered POV hat as -1U, others as 65535U.
//>= 36000 will match both, as well as invalid ranges.
if(pov >= 36000) continue;
if(pov >= 31500 || pov <= 4500) hat[n] |= Joypad::HatUp;
if(pov >= 4500 && pov <= 13500) hat[n] |= Joypad::HatRight;
if(pov >= 13500 && pov <= 22500) hat[n] |= Joypad::HatDown;
if(pov >= 22500 && pov <= 31500) hat[n] |= Joypad::HatLeft;
}
//axes
axis[0] = state.lX;
axis[1] = state.lY;
axis[2] = state.lZ;
axis[3] = state.lRx;
axis[4] = state.lRy;
axis[5] = state.lRz;
//buttons
for(unsigned n = 0; n < 128; n++) {
button[n] = (bool)state.rgbButtons[n];
}
}
Gamepad() {
handle = 0;
for(unsigned n = 0; n < 4; n++) hat[n] = Joypad::HatCenter;
for(unsigned n = 0; n < 6; n++) axis[n] = 0;
for(unsigned n = 0; n < 128; n++) button[n] = false;
}
};
vector<Gamepad> lgamepad;
void poll() {
for(unsigned i = 0; i < lgamepad.size(); i++) {
if(FAILED(lgamepad(i).handle->Poll())) {
lgamepad(i).handle->Acquire();
continue;
}
DIJOYSTATE2 state;
lgamepad(i).handle->GetDeviceState(sizeof(DIJOYSTATE2), &state);
lgamepad(i).poll(state);
}
}
bool init_joypad(const DIDEVICEINSTANCE *instance) {
//if this is an XInput device, do not acquire it via DirectInput ...
//the XInput driver above will handle said device.
for(unsigned i = 0; i < rawinput.lgamepad.size(); i++) {
uint32_t guid = MAKELONG(rawinput.lgamepad(i).vendorId, rawinput.lgamepad(i).productId);
if(guid == instance->guidProduct.Data1) {
if(rawinput.lgamepad(i).isXInputDevice == true) {
return DIENUM_CONTINUE;
}
}
}
if(FAILED(context->CreateDevice(instance->guidInstance, &device, 0))) {
return DIENUM_CONTINUE;
}
device->SetDataFormat(&c_dfDIJoystick2);
device->SetCooperativeLevel(handle, DISCL_NONEXCLUSIVE | DISCL_BACKGROUND);
device->EnumObjects(DirectInput_EnumJoypadAxesCallback, (void*)this, DIDFT_ABSAXIS);
unsigned n = lgamepad.size();
lgamepad(n).handle = device;
return DIENUM_CONTINUE;
}
bool init_axis(const DIDEVICEOBJECTINSTANCE *instance) {
DIPROPRANGE range;
range.diph.dwSize = sizeof(DIPROPRANGE);
range.diph.dwHeaderSize = sizeof(DIPROPHEADER);
range.diph.dwHow = DIPH_BYID;
range.diph.dwObj = instance->dwType;
range.lMin = -32768;
range.lMax = +32767;
device->SetProperty(DIPROP_RANGE, &range.diph);
return DIENUM_CONTINUE;
}
void init(HWND handle_) {
handle = handle_;
DirectInput8Create(GetModuleHandle(0), DIRECTINPUT_VERSION, IID_IDirectInput8, (void**)&context, 0);
context->EnumDevices(DI8DEVCLASS_GAMECTRL, DirectInput_EnumJoypadsCallback, (void*)this, DIEDFL_ATTACHEDONLY);
}
void term() {
for(unsigned i = 0; i < lgamepad.size(); i++) {
lgamepad(i).handle->Unacquire();
lgamepad(i).handle->Release();
}
lgamepad.reset();
if(context) {
context->Release();
context = 0;
}
}
private:
LPDIRECTINPUTDEVICE8 device;
};
BOOL CALLBACK DirectInput_EnumJoypadsCallback(const DIDEVICEINSTANCE *instance, void *p) {
return ((DirectInput*)p)->init_joypad(instance);
}
BOOL CALLBACK DirectInput_EnumJoypadAxesCallback(const DIDEVICEOBJECTINSTANCE *instance, void *p) {
return ((DirectInput*)p)->init_axis(instance);
}
class pInputRaw {
public:
XInput xinput;
DirectInput dinput;
bool acquire_mouse;
bool cursor_visible;
struct {
HWND handle;
} settings;
bool cap(const string& name) {
if(name == Input::Handle) return true;
if(name == Input::KeyboardSupport) return true;
if(name == Input::MouseSupport) return true;
if(name == Input::JoypadSupport) return true;
return false;
}
any get(const string& name) {
if(name == Input::Handle) return (uintptr_t)settings.handle;
return false;
}
bool set(const string& name, const any& value) {
if(name == Input::Handle) {
settings.handle = (HWND)any_cast<uintptr_t>(value);
return true;
}
return false;
}
bool acquire() {
acquire_mouse = true;
if(cursor_visible == true) {
ShowCursor(cursor_visible = false);
}
return acquired();
}
bool unacquire() {
acquire_mouse = false;
ReleaseCapture();
ClipCursor(NULL);
if(cursor_visible == false) {
ShowCursor(cursor_visible = true);
}
return true;
}
bool acquired() {
if(acquire_mouse == true) {
SetFocus(settings.handle);
SetCapture(settings.handle);
RECT rc;
GetWindowRect(settings.handle, &rc);
ClipCursor(&rc);
}
return GetCapture() == settings.handle;
}
bool poll(int16_t *table) {
memset(table, 0, Scancode::Limit * sizeof(int16_t));
WaitForSingleObject(rawinput.mutex, INFINITE);
//=========
//Keyboards
//=========
for(unsigned i = 0; i < min(rawinput.lkeyboard.size(), (unsigned)Keyboard::Count); i++) {
for(unsigned n = 0; n < nall::Keyboard::Size; n++) {
//using keyboard(0)|= instead of keyboard(i)= merges all keyboards to KB0
//this is done to favor ease of mapping over flexibility (eg share laptop+USB keyboard mapping)
table[keyboard(0).key(n)] |= rawinput.lkeyboard(i).state[n];
}
}
//====
//Mice
//====
for(unsigned i = 0; i < min(rawinput.lmouse.size(), (unsigned)Mouse::Count); i++) {
table[mouse(i).axis(0)] = rawinput.lmouse(i).xDistance;
table[mouse(i).axis(1)] = rawinput.lmouse(i).yDistance;
table[mouse(i).axis(2)] = rawinput.lmouse(i).zDistance;
for(unsigned n = 0; n < min(5U, (unsigned)Mouse::Buttons); n++) {
table[mouse(i).button(n)] = (bool)(rawinput.lmouse(i).buttonState & (1 << n));
}
rawinput.lmouse(i).sync();
}
ReleaseMutex(rawinput.mutex);
unsigned joy = 0;
//==================
//XInput controllers
//==================
xinput.poll();
for(unsigned i = 0; i < xinput.lgamepad.size(); i++) {
if(joy >= Joypad::Count) break;
table[joypad(joy).hat(0)] = xinput.lgamepad(i).hat;
for(unsigned axis = 0; axis < min(6U, (unsigned)Joypad::Axes); axis++) {
table[joypad(joy).axis(axis)] = xinput.lgamepad(i).axis[axis];
}
for(unsigned button = 0; button < min(10U, (unsigned)Joypad::Buttons); button++) {
table[joypad(joy).button(button)] = xinput.lgamepad(i).button[button];
}
joy++;
}
//=======================
//DirectInput controllers
//=======================
dinput.poll();
for(unsigned i = 0; i < dinput.lgamepad.size(); i++) {
if(joy >= Joypad::Count) break;
for(unsigned hat = 0; hat < min(4U, (unsigned)Joypad::Hats); hat++) {
table[joypad(joy).hat(hat)] = dinput.lgamepad(i).hat[hat];
}
for(unsigned axis = 0; axis < min(6U, (unsigned)Joypad::Axes); axis++) {
table[joypad(joy).axis(axis)] = dinput.lgamepad(i).axis[axis];
}
for(unsigned button = 0; button < min(128U, (unsigned)Joypad::Buttons); button++) {
table[joypad(joy).button(button)] = dinput.lgamepad(i).button[button];
}
joy++;
}
return true;
}
bool init() {
//only spawn RawInput processing thread one time
if(rawinput.initialized == false) {
rawinput.initialized = true;
rawinput.mutex = CreateMutex(NULL, FALSE, NULL);
CreateThread(NULL, 0, RawInputThreadProc, 0, 0, NULL);
//RawInput device calibration needs to finish before initializing DirectInput;
//as it needs device GUIDs to distinguish XInput devices from ordinary joypads.
bool ready = false;
do {
Sleep(10);
WaitForSingleObject(rawinput.mutex, INFINITE);
ready = rawinput.ready;
ReleaseMutex(rawinput.mutex);
} while(ready == false);
}
xinput.init();
dinput.init(settings.handle);
acquire_mouse = false;
cursor_visible = true;
return true;
}
void term() {
unacquire();
dinput.term();
}
pInputRaw() {
}
};
DeclareInput(Raw)
};