bsnes/nall/serializer.hpp

151 lines
4.2 KiB
C++
Raw Normal View History

#ifndef NALL_SERIALIZER_HPP
#define NALL_SERIALIZER_HPP
//serializer: a class designed to save and restore the state of classes.
//
//benefits:
//- data() will be portable in size (it is not necessary to specify type sizes.)
//- data() will be portable in endianness (always stored internally as little-endian.)
//- one serialize function can both save and restore class states.
//
//caveats:
//- only plain-old-data can be stored. complex classes must provide serialize(serializer&);
//- floating-point usage is not portable across different implementations
#include <type_traits>
#include <utility>
#include <nall/stdint.hpp>
#include <nall/utility.hpp>
namespace nall {
struct serializer;
template<typename T>
struct has_serialize {
template<typename C> static char test(decltype(std::declval<C>().serialize(std::declval<serializer&>()))*);
template<typename C> static long test(...);
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
struct serializer {
enum mode_t { Load, Save, Size };
mode_t mode() const {
return _mode;
}
const uint8_t* data() const {
return _data;
}
unsigned size() const {
return _size;
}
unsigned capacity() const {
return _capacity;
}
template<typename T> serializer& floatingpoint(T& value) {
enum { size = sizeof(T) };
//this is rather dangerous, and not cross-platform safe;
//but there is no standardized way to export FP-values
uint8_t* p = (uint8_t*)&value;
if(_mode == Save) {
for(unsigned n = 0; n < size; n++) _data[_size++] = p[n];
} else if(_mode == Load) {
for(unsigned n = 0; n < size; n++) p[n] = _data[_size++];
} else {
_size += size;
}
return *this;
}
template<typename T> serializer& integer(T& value) {
enum { size = std::is_same<bool, T>::value ? 1 : sizeof(T) };
if(_mode == Save) {
for(unsigned n = 0; n < size; n++) _data[_size++] = (uintmax_t)value >> (n << 3);
} else if(_mode == Load) {
value = 0;
for(unsigned n = 0; n < size; n++) value |= (uintmax_t)_data[_size++] << (n << 3);
} else if(_mode == Size) {
_size += size;
}
return *this;
}
template<typename T, int N> serializer& array(T (&array)[N]) {
for(unsigned n = 0; n < N; n++) operator()(array[n]);
return *this;
}
template<typename T> serializer& array(T array, unsigned size) {
for(unsigned n = 0; n < size; n++) operator()(array[n]);
return *this;
}
template<typename T> serializer& operator()(T& value, typename std::enable_if<has_serialize<T>::value>::type* = 0) { value.serialize(*this); return *this; }
template<typename T> serializer& operator()(T& value, typename std::enable_if<std::is_integral<T>::value>::type* = 0) { return integer(value); }
template<typename T> serializer& operator()(T& value, typename std::enable_if<std::is_floating_point<T>::value>::type* = 0) { return floatingpoint(value); }
template<typename T> serializer& operator()(T& value, typename std::enable_if<std::is_array<T>::value>::type* = 0) { return array(value); }
template<typename T> serializer& operator()(T& value, unsigned size, typename std::enable_if<std::is_pointer<T>::value>::type* = 0) { return array(value, size); }
serializer& operator=(const serializer& s) {
if(_data) delete[] _data;
_mode = s._mode;
_data = new uint8_t[s._capacity];
_size = s._size;
_capacity = s._capacity;
memcpy(_data, s._data, s._capacity);
return *this;
}
serializer& operator=(serializer&& s) {
if(_data) delete[] _data;
_mode = s._mode;
_data = s._data;
_size = s._size;
_capacity = s._capacity;
s._data = nullptr;
return *this;
}
serializer() = default;
serializer(const serializer& s) { operator=(s); }
serializer(serializer&& s) { operator=(std::move(s)); }
serializer(unsigned capacity) {
_mode = Save;
_data = new uint8_t[capacity]();
_size = 0;
_capacity = capacity;
}
serializer(const uint8_t* data, unsigned capacity) {
_mode = Load;
_data = new uint8_t[capacity];
_size = 0;
_capacity = capacity;
memcpy(_data, data, capacity);
}
~serializer() {
if(_data) delete[] _data;
}
private:
mode_t _mode = Size;
uint8_t* _data = nullptr;
unsigned _size = 0;
unsigned _capacity = 0;
};
};
#endif