mirror of https://github.com/bsnes-emu/bsnes.git
4824 lines
252 KiB
Forth
4824 lines
252 KiB
Forth
|
#version 150
|
||
|
|
||
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||
|
|
||
|
// crt-royale: A full-featured CRT shader, with cheese.
|
||
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||
|
//
|
||
|
// This program is free software; you can redistribute it and/or modify it
|
||
|
// under the terms of the GNU General Public License as published by the Free
|
||
|
// Software Foundation; either version 2 of the License, or any later version.
|
||
|
//
|
||
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
// more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU General Public License along with
|
||
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
|
||
|
uniform sampler2D source[];
|
||
|
uniform vec4 sourceSize[];
|
||
|
uniform vec4 targetSize;
|
||
|
|
||
|
in Vertex {
|
||
|
vec2 vTexCoord;
|
||
|
vec2 tex_uv;
|
||
|
vec2 bloom_dxdy;
|
||
|
float bloom_sigma_runtime;
|
||
|
};
|
||
|
|
||
|
out vec4 FragColor;
|
||
|
|
||
|
// USER SETTINGS BLOCK //
|
||
|
|
||
|
#define crt_gamma 2.500000
|
||
|
#define lcd_gamma 2.200000
|
||
|
#define levels_contrast 1.0
|
||
|
#define halation_weight 0.0
|
||
|
#define diffusion_weight 0.075
|
||
|
#define bloom_underestimate_levels 0.8
|
||
|
#define bloom_excess 0.000000
|
||
|
#define beam_min_sigma 0.020000
|
||
|
#define beam_max_sigma 0.300000
|
||
|
#define beam_spot_power 0.330000
|
||
|
#define beam_min_shape 2.000000
|
||
|
#define beam_max_shape 4.000000
|
||
|
#define beam_shape_power 0.250000
|
||
|
#define beam_horiz_filter 0.000000
|
||
|
#define beam_horiz_sigma 0.35
|
||
|
#define beam_horiz_linear_rgb_weight 1.000000
|
||
|
#define convergence_offset_x_r -0.000000
|
||
|
#define convergence_offset_x_g 0.000000
|
||
|
#define convergence_offset_x_b 0.000000
|
||
|
#define convergence_offset_y_r 0.000000
|
||
|
#define convergence_offset_y_g -0.000000
|
||
|
#define convergence_offset_y_b 0.000000
|
||
|
#define mask_type 1.000000
|
||
|
#define mask_sample_mode_desired 0.000000
|
||
|
#define mask_specify_num_triads 0.000000
|
||
|
#define mask_triad_size_desired 3.000000
|
||
|
#define mask_num_triads_desired 480.000000
|
||
|
#define aa_subpixel_r_offset_x_runtime -0.0
|
||
|
#define aa_subpixel_r_offset_y_runtime 0.000000
|
||
|
#define aa_cubic_c 0.500000
|
||
|
#define aa_gauss_sigma 0.500000
|
||
|
#define geom_mode_runtime 0.000000
|
||
|
#define geom_radius 2.000000
|
||
|
#define geom_view_dist 2.000000
|
||
|
#define geom_tilt_angle_x 0.000000
|
||
|
#define geom_tilt_angle_y 0.000000
|
||
|
#define geom_aspect_ratio_x 432.000000
|
||
|
#define geom_aspect_ratio_y 329.000000
|
||
|
#define geom_overscan_x 1.000000
|
||
|
#define geom_overscan_y 1.000000
|
||
|
#define border_size 0.015
|
||
|
#define border_darkness 2.0
|
||
|
#define border_compress 2.500000
|
||
|
#define interlace_bff 0.000000
|
||
|
#define interlace_1080i 0.000000
|
||
|
|
||
|
// END USER SETTINGS BLOCK //
|
||
|
|
||
|
// compatibility macros for transparently converting HLSLisms into GLSLisms
|
||
|
#define mul(a,b) (b*a)
|
||
|
#define lerp(a,b,c) mix(a,b,c)
|
||
|
#define saturate(c) clamp(c, 0.0, 1.0)
|
||
|
#define frac(x) (fract(x))
|
||
|
#define float2 vec2
|
||
|
#define float3 vec3
|
||
|
#define float4 vec4
|
||
|
#define bool2 bvec2
|
||
|
#define bool3 bvec3
|
||
|
#define bool4 bvec4
|
||
|
#define float2x2 mat2x2
|
||
|
#define float3x3 mat3x3
|
||
|
#define float4x4 mat4x4
|
||
|
#define float4x3 mat4x3
|
||
|
#define float2x4 mat2x4
|
||
|
#define IN params
|
||
|
#define texture_size sourceSize[0].xy
|
||
|
#define video_size sourceSize[0].xy
|
||
|
#define output_size targetSize.xy
|
||
|
#define frame_count phase
|
||
|
#define static
|
||
|
#define inline
|
||
|
#define const
|
||
|
#define fmod(x,y) mod(x,y)
|
||
|
#define ddx(c) dFdx(c)
|
||
|
#define ddy(c) dFdy(c)
|
||
|
#define atan2(x,y) atan(y,x)
|
||
|
#define rsqrt(c) inversesqrt(c)
|
||
|
|
||
|
#define MASKED_SCANLINEStexture source[0]
|
||
|
#define MASKED_SCANLINEStexture_size sourceSize[0].xy
|
||
|
#define MASKED_SCANLINESvideo_size sourceSize[0].xy
|
||
|
#define BLOOM_APPROXtexture source[3]
|
||
|
#define BLOOM_APPROXtexture_size sourceSize[3].xy
|
||
|
#define BLOOM_APPROXvideo_size sourceSize[3].xy
|
||
|
|
||
|
#define input_texture source[0]
|
||
|
|
||
|
#if defined(GL_ES)
|
||
|
#define COMPAT_PRECISION mediump
|
||
|
#else
|
||
|
#define COMPAT_PRECISION
|
||
|
#endif
|
||
|
|
||
|
#if __VERSION__ >= 130
|
||
|
#define COMPAT_TEXTURE texture
|
||
|
#else
|
||
|
#define COMPAT_TEXTURE texture2D
|
||
|
#endif
|
||
|
|
||
|
float bloom_approx_scale_x = targetSize.y / sourceSize[0].y;
|
||
|
const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
|
||
|
const float bloom_diff_thresh_ = 1.0/256.0;
|
||
|
|
||
|
////////////////////////////// FRAGMENT INCLUDES //////////////////////////////
|
||
|
|
||
|
//#include "bloom-functions.h"
|
||
|
|
||
|
//////////////////////////// BEGIN BLOOM-FUNCTIONS ///////////////////////////
|
||
|
|
||
|
#ifndef BLOOM_FUNCTIONS_H
|
||
|
#define BLOOM_FUNCTIONS_H
|
||
|
|
||
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||
|
|
||
|
// crt-royale: A full-featured CRT shader, with cheese.
|
||
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||
|
//
|
||
|
// This program is free software; you can redistribute it and/or modify it
|
||
|
// under the terms of the GNU General Public License as published by the Free
|
||
|
// Software Foundation; either version 2 of the License, or any later version.
|
||
|
//
|
||
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
// more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU General Public License along with
|
||
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
|
||
|
|
||
|
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||
|
|
||
|
// These utility functions and constants help several passes determine the
|
||
|
// size and center texel weight of the phosphor bloom in a uniform manner.
|
||
|
|
||
|
|
||
|
////////////////////////////////// INCLUDES //////////////////////////////////
|
||
|
|
||
|
// We need to calculate the correct blur sigma using some .cgp constants:
|
||
|
//#include "../user-settings.h"
|
||
|
|
||
|
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
|
||
|
|
||
|
#ifndef USER_SETTINGS_H
|
||
|
#define USER_SETTINGS_H
|
||
|
|
||
|
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||
|
|
||
|
// The Cg compiler uses different "profiles" with different capabilities.
|
||
|
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||
|
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||
|
// or driver capabilities, so instead you must comment or uncomment the lines
|
||
|
// below with "//" before "#define." Disable an option if you get compilation
|
||
|
// errors resembling those listed. Generally speaking, all of these options
|
||
|
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||
|
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||
|
|
||
|
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||
|
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||
|
// with curved manually tiled phosphor mask coords. Related errors:
|
||
|
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||
|
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||
|
//#define DRIVERS_ALLOW_DERIVATIVES
|
||
|
|
||
|
// Fine derivatives: Unsupported on older ATI cards.
|
||
|
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||
|
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||
|
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||
|
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||
|
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||
|
#endif
|
||
|
|
||
|
// Dynamic looping: Requires an fp30 or newer profile.
|
||
|
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||
|
// error C5013: profile does not support "for" statements and "for" could not
|
||
|
// be unrolled
|
||
|
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||
|
|
||
|
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||
|
// Using one static loop avoids overhead if the user is right, but if the user
|
||
|
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||
|
// binary search can potentially save some iterations. However, it may fail:
|
||
|
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||
|
// needed to compile program
|
||
|
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||
|
|
||
|
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||
|
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||
|
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||
|
// this profile
|
||
|
//#define DRIVERS_ALLOW_TEX2DLOD
|
||
|
|
||
|
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||
|
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||
|
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||
|
// in this profile
|
||
|
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||
|
|
||
|
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||
|
// impose stricter limitations on register counts and instructions. Enable
|
||
|
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||
|
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||
|
// to compile program.
|
||
|
// Enabling integrated graphics compatibility mode will automatically disable:
|
||
|
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||
|
// (This may be reenabled in a later release.)
|
||
|
// 2.) RUNTIME_GEOMETRY_MODE
|
||
|
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||
|
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||
|
|
||
|
|
||
|
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||
|
|
||
|
// To disable a #define option, turn its line into a comment with "//."
|
||
|
|
||
|
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||
|
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||
|
// many of the options in this file and allow real-time tuning, but many of
|
||
|
// them are slower. Disabling them and using this text file will boost FPS.
|
||
|
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||
|
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||
|
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||
|
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||
|
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||
|
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||
|
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||
|
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||
|
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||
|
// parameters? This will require more math or dynamic branching.
|
||
|
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||
|
// Specify the tilt at runtime? This makes things about 3% slower.
|
||
|
#define RUNTIME_GEOMETRY_TILT
|
||
|
// Specify the geometry mode at runtime?
|
||
|
#define RUNTIME_GEOMETRY_MODE
|
||
|
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||
|
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||
|
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||
|
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||
|
|
||
|
// PHOSPHOR MASK:
|
||
|
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||
|
// removes the option to do so, but it may be faster without dynamic branches.
|
||
|
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||
|
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||
|
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||
|
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||
|
// detect the right blur if the triad size is static or our profile allows
|
||
|
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||
|
// they might need:
|
||
|
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||
|
// Here's a helpful chart:
|
||
|
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||
|
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||
|
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||
|
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||
|
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||
|
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||
|
|
||
|
|
||
|
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||
|
|
||
|
// Note: Many of these static parameters are overridden by runtime shader
|
||
|
// parameters when those are enabled. However, many others are static codepath
|
||
|
// options that were cleaner or more convert to code as static constants.
|
||
|
|
||
|
// GAMMA:
|
||
|
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||
|
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||
|
|
||
|
// LEVELS MANAGEMENT:
|
||
|
// Control the final multiplicative image contrast:
|
||
|
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||
|
// We auto-dim to avoid clipping between passes and restore brightness
|
||
|
// later. Control the dim factor here: Lower values clip less but crush
|
||
|
// blacks more (static only for now).
|
||
|
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
|
||
|
|
||
|
// HALATION/DIFFUSION/BLOOM:
|
||
|
// Halation weight: How much energy should be lost to electrons bounding
|
||
|
// around under the CRT glass and exciting random phosphors?
|
||
|
static const float halation_weight_static = 0.0; // range [0, 1]
|
||
|
// Refractive diffusion weight: How much light should spread/diffuse from
|
||
|
// refracting through the CRT glass?
|
||
|
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||
|
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||
|
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||
|
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||
|
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||
|
// Blur all colors more than necessary for a softer phosphor bloom?
|
||
|
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||
|
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||
|
// blurred resize of the input (convergence offsets are applied as well).
|
||
|
// There are three filter options (static option only for now):
|
||
|
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||
|
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||
|
// and beam_max_sigma is low.
|
||
|
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||
|
// always uses a static sigma regardless of beam_max_sigma or
|
||
|
// mask_num_triads_desired.
|
||
|
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||
|
// These options are more pronounced for the fast, unbloomed shader version.
|
||
|
#ifndef RADEON_FIX
|
||
|
static const float bloom_approx_filter_static = 2.0;
|
||
|
#else
|
||
|
static const float bloom_approx_filter_static = 1.0;
|
||
|
#endif
|
||
|
|
||
|
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||
|
// How many scanlines should contribute light to each pixel? Using more
|
||
|
// scanlines is slower (especially for a generalized Gaussian) but less
|
||
|
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||
|
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||
|
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||
|
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||
|
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||
|
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||
|
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||
|
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||
|
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||
|
// A generalized Gaussian beam varies shape with color too, now just width.
|
||
|
// It's slower but more flexible (static option only for now).
|
||
|
static const bool beam_generalized_gaussian = true;
|
||
|
// What kind of scanline antialiasing do you want?
|
||
|
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||
|
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||
|
// better than 3x antialiasing (static option only for now).
|
||
|
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||
|
// Min/max standard deviations for scanline beams: Higher values widen and
|
||
|
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||
|
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||
|
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||
|
// Beam width varies as a function of color: A power function (0) is more
|
||
|
// configurable, but a spherical function (1) gives the widest beam
|
||
|
// variability without aliasing (static option only for now).
|
||
|
static const float beam_spot_shape_function = 0.0;
|
||
|
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||
|
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||
|
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||
|
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||
|
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||
|
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||
|
// values > ~40.0 cause artifacts with integrals.
|
||
|
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||
|
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||
|
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||
|
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||
|
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||
|
// appear sharper for most colors.
|
||
|
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||
|
// What filter should be used to sample scanlines horizontally?
|
||
|
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||
|
static const float beam_horiz_filter_static = 0.0;
|
||
|
// Standard deviation for horizontal Gaussian resampling:
|
||
|
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||
|
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||
|
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||
|
// limiting circuitry in some CRT's), or a weighted avg.?
|
||
|
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||
|
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||
|
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||
|
// later passes (static option only for now).
|
||
|
static const bool beam_misconvergence = true;
|
||
|
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||
|
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||
|
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||
|
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||
|
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||
|
// Detect interlacing (static option only for now)?
|
||
|
static const bool interlace_detect = true;
|
||
|
// Assume 1080-line sources are interlaced?
|
||
|
static const bool interlace_1080i_static = false;
|
||
|
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||
|
// (Whether this matters depends on the nature of the interlaced input.)
|
||
|
static const bool interlace_bff_static = false;
|
||
|
|
||
|
// ANTIALIASING:
|
||
|
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||
|
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||
|
// (Static option only for now)
|
||
|
static const float aa_level = 12.0; // range [0, 24]
|
||
|
// What antialiasing filter do you want (static option only)? Options:
|
||
|
// 0: Box (separable), 1: Box (cylindrical),
|
||
|
// 2: Tent (separable), 3: Tent (cylindrical),
|
||
|
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||
|
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||
|
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||
|
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||
|
static const float aa_filter = 6.0; // range [0, 9]
|
||
|
// Flip the sample grid on odd/even frames (static option only for now)?
|
||
|
static const bool aa_temporal = false;
|
||
|
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||
|
// the blue offset is the negative r offset; range [0, 0.5]
|
||
|
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||
|
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||
|
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||
|
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||
|
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||
|
// 4.) C = 0.0 is a soft spline filter.
|
||
|
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||
|
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||
|
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||
|
|
||
|
// PHOSPHOR MASK:
|
||
|
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||
|
static const float mask_type_static = 1.0; // range [0, 2]
|
||
|
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||
|
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||
|
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||
|
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||
|
// is halfway decent with LUT mipmapping but atrocious without it.
|
||
|
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||
|
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||
|
// This mode reuses the same masks, so triads will be enormous unless
|
||
|
// you change the mask LUT filenames in your .cgp file.
|
||
|
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||
|
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||
|
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||
|
// will always be used to calculate the full bloom sigma statically.
|
||
|
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||
|
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||
|
// triads) will be rounded to the nearest integer tile size and clamped to
|
||
|
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||
|
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||
|
// To increase the size limit, double the viewport-relative scales for the
|
||
|
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||
|
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||
|
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||
|
// final size will be rounded and constrained as above); default 480.0
|
||
|
static const float mask_num_triads_desired_static = 480.0;
|
||
|
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||
|
// more samples and avoid moire a bit better, but some is unavoidable
|
||
|
// depending on the destination size (static option for now).
|
||
|
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||
|
// The mask is resized using a variable number of taps in each dimension,
|
||
|
// but some Cg profiles always fetch a constant number of taps no matter
|
||
|
// what (no dynamic branching). We can limit the maximum number of taps if
|
||
|
// we statically limit the minimum phosphor triad size. Larger values are
|
||
|
// faster, but the limit IS enforced (static option only, forever);
|
||
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||
|
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||
|
static const float mask_min_allowed_triad_size = 2.0;
|
||
|
|
||
|
// GEOMETRY:
|
||
|
// Geometry mode:
|
||
|
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||
|
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||
|
static const float geom_mode_static = 0.0; // range [0, 3]
|
||
|
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||
|
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||
|
// View dist is the distance from the player to their physical screen, in
|
||
|
// units of the viewport's diagonal size. It controls the field of view.
|
||
|
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||
|
// Tilt angle in radians (clockwise around up and right vectors):
|
||
|
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||
|
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||
|
// to help convert between the phosphor triad size and count, along with
|
||
|
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||
|
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||
|
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||
|
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||
|
static const float geom_aspect_ratio_static = 1.313069909;
|
||
|
// Before getting into overscan, here's some general aspect ratio info:
|
||
|
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||
|
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||
|
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||
|
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||
|
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||
|
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||
|
// a.) Enable Retroarch's "Crop Overscan"
|
||
|
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||
|
// Real consoles use horizontal black padding in the signal, but emulators
|
||
|
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||
|
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||
|
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||
|
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||
|
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||
|
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||
|
// without doing a. or b., but horizontal image borders will be tighter
|
||
|
// than vertical ones, messing up curvature and overscan. Fixing the
|
||
|
// padding first corrects this.
|
||
|
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||
|
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||
|
// above: Values < 1.0 zoom out; range (0, inf)
|
||
|
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||
|
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||
|
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||
|
// with strong curvature (static option only for now).
|
||
|
static const bool geom_force_correct_tangent_matrix = true;
|
||
|
|
||
|
// BORDERS:
|
||
|
// Rounded border size in texture uv coords:
|
||
|
static const float border_size_static = 0.015; // range [0, 0.5]
|
||
|
// Border darkness: Moderate values darken the border smoothly, and high
|
||
|
// values make the image very dark just inside the border:
|
||
|
static const float border_darkness_static = 2.0; // range [0, inf)
|
||
|
// Border compression: High numbers compress border transitions, narrowing
|
||
|
// the dark border area.
|
||
|
static const float border_compress_static = 2.5; // range [1, inf)
|
||
|
|
||
|
|
||
|
#endif // USER_SETTINGS_H
|
||
|
|
||
|
//////////////////////////// END USER-SETTINGS //////////////////////////
|
||
|
|
||
|
//#include "derived-settings-and-constants.h"
|
||
|
|
||
|
//////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
|
||
|
|
||
|
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
|
||
|
#define DERIVED_SETTINGS_AND_CONSTANTS_H
|
||
|
|
||
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||
|
|
||
|
// crt-royale: A full-featured CRT shader, with cheese.
|
||
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||
|
//
|
||
|
// This program is free software; you can redistribute it and/or modify it
|
||
|
// under the terms of the GNU General Public License as published by the Free
|
||
|
// Software Foundation; either version 2 of the License, or any later version.
|
||
|
//
|
||
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
// more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU General Public License along with
|
||
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
|
||
|
|
||
|
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||
|
|
||
|
// These macros and constants can be used across the whole codebase.
|
||
|
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
|
||
|
|
||
|
|
||
|
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
|
||
|
|
||
|
//#include "../user-settings.h"
|
||
|
|
||
|
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
|
||
|
|
||
|
#ifndef USER_SETTINGS_H
|
||
|
#define USER_SETTINGS_H
|
||
|
|
||
|
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||
|
|
||
|
// The Cg compiler uses different "profiles" with different capabilities.
|
||
|
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||
|
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||
|
// or driver capabilities, so instead you must comment or uncomment the lines
|
||
|
// below with "//" before "#define." Disable an option if you get compilation
|
||
|
// errors resembling those listed. Generally speaking, all of these options
|
||
|
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||
|
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||
|
|
||
|
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||
|
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||
|
// with curved manually tiled phosphor mask coords. Related errors:
|
||
|
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||
|
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||
|
//#define DRIVERS_ALLOW_DERIVATIVES
|
||
|
|
||
|
// Fine derivatives: Unsupported on older ATI cards.
|
||
|
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||
|
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||
|
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||
|
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||
|
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||
|
#endif
|
||
|
|
||
|
// Dynamic looping: Requires an fp30 or newer profile.
|
||
|
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||
|
// error C5013: profile does not support "for" statements and "for" could not
|
||
|
// be unrolled
|
||
|
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||
|
|
||
|
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||
|
// Using one static loop avoids overhead if the user is right, but if the user
|
||
|
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||
|
// binary search can potentially save some iterations. However, it may fail:
|
||
|
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||
|
// needed to compile program
|
||
|
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||
|
|
||
|
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||
|
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||
|
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||
|
// this profile
|
||
|
//#define DRIVERS_ALLOW_TEX2DLOD
|
||
|
|
||
|
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||
|
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||
|
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||
|
// in this profile
|
||
|
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||
|
|
||
|
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||
|
// impose stricter limitations on register counts and instructions. Enable
|
||
|
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||
|
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||
|
// to compile program.
|
||
|
// Enabling integrated graphics compatibility mode will automatically disable:
|
||
|
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||
|
// (This may be reenabled in a later release.)
|
||
|
// 2.) RUNTIME_GEOMETRY_MODE
|
||
|
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||
|
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||
|
|
||
|
|
||
|
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||
|
|
||
|
// To disable a #define option, turn its line into a comment with "//."
|
||
|
|
||
|
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||
|
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||
|
// many of the options in this file and allow real-time tuning, but many of
|
||
|
// them are slower. Disabling them and using this text file will boost FPS.
|
||
|
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||
|
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||
|
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||
|
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||
|
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||
|
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||
|
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||
|
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||
|
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||
|
// parameters? This will require more math or dynamic branching.
|
||
|
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||
|
// Specify the tilt at runtime? This makes things about 3% slower.
|
||
|
#define RUNTIME_GEOMETRY_TILT
|
||
|
// Specify the geometry mode at runtime?
|
||
|
#define RUNTIME_GEOMETRY_MODE
|
||
|
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||
|
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||
|
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||
|
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||
|
|
||
|
// PHOSPHOR MASK:
|
||
|
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||
|
// removes the option to do so, but it may be faster without dynamic branches.
|
||
|
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||
|
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||
|
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||
|
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||
|
// detect the right blur if the triad size is static or our profile allows
|
||
|
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||
|
// they might need:
|
||
|
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||
|
// Here's a helpful chart:
|
||
|
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||
|
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||
|
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||
|
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||
|
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||
|
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||
|
|
||
|
|
||
|
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||
|
|
||
|
// Note: Many of these static parameters are overridden by runtime shader
|
||
|
// parameters when those are enabled. However, many others are static codepath
|
||
|
// options that were cleaner or more convert to code as static constants.
|
||
|
|
||
|
// GAMMA:
|
||
|
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||
|
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||
|
|
||
|
// LEVELS MANAGEMENT:
|
||
|
// Control the final multiplicative image contrast:
|
||
|
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||
|
// We auto-dim to avoid clipping between passes and restore brightness
|
||
|
// later. Control the dim factor here: Lower values clip less but crush
|
||
|
// blacks more (static only for now).
|
||
|
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
|
||
|
|
||
|
// HALATION/DIFFUSION/BLOOM:
|
||
|
// Halation weight: How much energy should be lost to electrons bounding
|
||
|
// around under the CRT glass and exciting random phosphors?
|
||
|
static const float halation_weight_static = 0.0; // range [0, 1]
|
||
|
// Refractive diffusion weight: How much light should spread/diffuse from
|
||
|
// refracting through the CRT glass?
|
||
|
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||
|
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||
|
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||
|
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||
|
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||
|
// Blur all colors more than necessary for a softer phosphor bloom?
|
||
|
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||
|
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||
|
// blurred resize of the input (convergence offsets are applied as well).
|
||
|
// There are three filter options (static option only for now):
|
||
|
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||
|
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||
|
// and beam_max_sigma is low.
|
||
|
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||
|
// always uses a static sigma regardless of beam_max_sigma or
|
||
|
// mask_num_triads_desired.
|
||
|
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||
|
// These options are more pronounced for the fast, unbloomed shader version.
|
||
|
#ifndef RADEON_FIX
|
||
|
static const float bloom_approx_filter_static = 2.0;
|
||
|
#else
|
||
|
static const float bloom_approx_filter_static = 1.0;
|
||
|
#endif
|
||
|
|
||
|
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||
|
// How many scanlines should contribute light to each pixel? Using more
|
||
|
// scanlines is slower (especially for a generalized Gaussian) but less
|
||
|
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||
|
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||
|
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||
|
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||
|
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||
|
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||
|
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||
|
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||
|
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||
|
// A generalized Gaussian beam varies shape with color too, now just width.
|
||
|
// It's slower but more flexible (static option only for now).
|
||
|
static const bool beam_generalized_gaussian = true;
|
||
|
// What kind of scanline antialiasing do you want?
|
||
|
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||
|
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||
|
// better than 3x antialiasing (static option only for now).
|
||
|
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||
|
// Min/max standard deviations for scanline beams: Higher values widen and
|
||
|
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||
|
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||
|
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||
|
// Beam width varies as a function of color: A power function (0) is more
|
||
|
// configurable, but a spherical function (1) gives the widest beam
|
||
|
// variability without aliasing (static option only for now).
|
||
|
static const float beam_spot_shape_function = 0.0;
|
||
|
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||
|
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||
|
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||
|
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||
|
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||
|
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||
|
// values > ~40.0 cause artifacts with integrals.
|
||
|
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||
|
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||
|
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||
|
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||
|
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||
|
// appear sharper for most colors.
|
||
|
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||
|
// What filter should be used to sample scanlines horizontally?
|
||
|
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||
|
static const float beam_horiz_filter_static = 0.0;
|
||
|
// Standard deviation for horizontal Gaussian resampling:
|
||
|
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||
|
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||
|
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||
|
// limiting circuitry in some CRT's), or a weighted avg.?
|
||
|
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||
|
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||
|
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||
|
// later passes (static option only for now).
|
||
|
static const bool beam_misconvergence = true;
|
||
|
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||
|
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||
|
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||
|
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||
|
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||
|
// Detect interlacing (static option only for now)?
|
||
|
static const bool interlace_detect = true;
|
||
|
// Assume 1080-line sources are interlaced?
|
||
|
static const bool interlace_1080i_static = false;
|
||
|
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||
|
// (Whether this matters depends on the nature of the interlaced input.)
|
||
|
static const bool interlace_bff_static = false;
|
||
|
|
||
|
// ANTIALIASING:
|
||
|
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||
|
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||
|
// (Static option only for now)
|
||
|
static const float aa_level = 12.0; // range [0, 24]
|
||
|
// What antialiasing filter do you want (static option only)? Options:
|
||
|
// 0: Box (separable), 1: Box (cylindrical),
|
||
|
// 2: Tent (separable), 3: Tent (cylindrical),
|
||
|
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||
|
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||
|
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||
|
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||
|
static const float aa_filter = 6.0; // range [0, 9]
|
||
|
// Flip the sample grid on odd/even frames (static option only for now)?
|
||
|
static const bool aa_temporal = false;
|
||
|
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||
|
// the blue offset is the negative r offset; range [0, 0.5]
|
||
|
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||
|
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||
|
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||
|
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||
|
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||
|
// 4.) C = 0.0 is a soft spline filter.
|
||
|
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||
|
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||
|
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||
|
|
||
|
// PHOSPHOR MASK:
|
||
|
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||
|
static const float mask_type_static = 1.0; // range [0, 2]
|
||
|
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||
|
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||
|
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||
|
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||
|
// is halfway decent with LUT mipmapping but atrocious without it.
|
||
|
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||
|
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||
|
// This mode reuses the same masks, so triads will be enormous unless
|
||
|
// you change the mask LUT filenames in your .cgp file.
|
||
|
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||
|
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||
|
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||
|
// will always be used to calculate the full bloom sigma statically.
|
||
|
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||
|
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||
|
// triads) will be rounded to the nearest integer tile size and clamped to
|
||
|
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||
|
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||
|
// To increase the size limit, double the viewport-relative scales for the
|
||
|
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||
|
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||
|
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||
|
// final size will be rounded and constrained as above); default 480.0
|
||
|
static const float mask_num_triads_desired_static = 480.0;
|
||
|
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||
|
// more samples and avoid moire a bit better, but some is unavoidable
|
||
|
// depending on the destination size (static option for now).
|
||
|
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||
|
// The mask is resized using a variable number of taps in each dimension,
|
||
|
// but some Cg profiles always fetch a constant number of taps no matter
|
||
|
// what (no dynamic branching). We can limit the maximum number of taps if
|
||
|
// we statically limit the minimum phosphor triad size. Larger values are
|
||
|
// faster, but the limit IS enforced (static option only, forever);
|
||
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||
|
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||
|
static const float mask_min_allowed_triad_size = 2.0;
|
||
|
|
||
|
// GEOMETRY:
|
||
|
// Geometry mode:
|
||
|
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||
|
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||
|
static const float geom_mode_static = 0.0; // range [0, 3]
|
||
|
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||
|
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||
|
// View dist is the distance from the player to their physical screen, in
|
||
|
// units of the viewport's diagonal size. It controls the field of view.
|
||
|
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||
|
// Tilt angle in radians (clockwise around up and right vectors):
|
||
|
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||
|
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||
|
// to help convert between the phosphor triad size and count, along with
|
||
|
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||
|
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||
|
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||
|
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||
|
static const float geom_aspect_ratio_static = 1.313069909;
|
||
|
// Before getting into overscan, here's some general aspect ratio info:
|
||
|
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||
|
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||
|
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||
|
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||
|
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||
|
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||
|
// a.) Enable Retroarch's "Crop Overscan"
|
||
|
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||
|
// Real consoles use horizontal black padding in the signal, but emulators
|
||
|
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||
|
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||
|
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||
|
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||
|
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||
|
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||
|
// without doing a. or b., but horizontal image borders will be tighter
|
||
|
// than vertical ones, messing up curvature and overscan. Fixing the
|
||
|
// padding first corrects this.
|
||
|
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||
|
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||
|
// above: Values < 1.0 zoom out; range (0, inf)
|
||
|
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||
|
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||
|
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||
|
// with strong curvature (static option only for now).
|
||
|
static const bool geom_force_correct_tangent_matrix = true;
|
||
|
|
||
|
// BORDERS:
|
||
|
// Rounded border size in texture uv coords:
|
||
|
static const float border_size_static = 0.015; // range [0, 0.5]
|
||
|
// Border darkness: Moderate values darken the border smoothly, and high
|
||
|
// values make the image very dark just inside the border:
|
||
|
static const float border_darkness_static = 2.0; // range [0, inf)
|
||
|
// Border compression: High numbers compress border transitions, narrowing
|
||
|
// the dark border area.
|
||
|
static const float border_compress_static = 2.5; // range [1, inf)
|
||
|
|
||
|
|
||
|
#endif // USER_SETTINGS_H
|
||
|
|
||
|
///////////////////////////// END USER-SETTINGS ////////////////////////////
|
||
|
|
||
|
//#include "user-cgp-constants.h"
|
||
|
|
||
|
///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
|
||
|
|
||
|
#ifndef USER_CGP_CONSTANTS_H
|
||
|
#define USER_CGP_CONSTANTS_H
|
||
|
|
||
|
// IMPORTANT:
|
||
|
// These constants MUST be set appropriately for the settings in crt-royale.cgp
|
||
|
// (or whatever related .cgp file you're using). If they aren't, you're likely
|
||
|
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
|
||
|
// set directly in the .cgp file to make things easier, but...they can't.
|
||
|
|
||
|
// PASS SCALES AND RELATED CONSTANTS:
|
||
|
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
|
||
|
// this shader: One does a viewport-scale bloom, and the other skips it. The
|
||
|
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
|
||
|
static const float bloom_approx_size_x = 320.0;
|
||
|
static const float bloom_approx_size_x_for_fake = 400.0;
|
||
|
// Copy the viewport-relative scales of the phosphor mask resize passes
|
||
|
// (MASK_RESIZE and the pass immediately preceding it):
|
||
|
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
|
||
|
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
|
||
|
static const float geom_max_aspect_ratio = 4.0/3.0;
|
||
|
|
||
|
// PHOSPHOR MASK TEXTURE CONSTANTS:
|
||
|
// Set the following constants to reflect the properties of the phosphor mask
|
||
|
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
|
||
|
// based on user settings, then repeats a single tile until filling the screen.
|
||
|
// The shader must know the input texture size (default 64x64), and to manually
|
||
|
// resize, it must also know the horizontal triads per tile (default 8).
|
||
|
static const float2 mask_texture_small_size = float2(64.0, 64.0);
|
||
|
static const float2 mask_texture_large_size = float2(512.0, 512.0);
|
||
|
static const float mask_triads_per_tile = 8.0;
|
||
|
// We need the average brightness of the phosphor mask to compensate for the
|
||
|
// dimming it causes. The following four values are roughly correct for the
|
||
|
// masks included with the shader. Update the value for any LUT texture you
|
||
|
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
|
||
|
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
|
||
|
//#define PHOSPHOR_MASK_GRILLE14
|
||
|
static const float mask_grille14_avg_color = 50.6666666/255.0;
|
||
|
// TileableLinearApertureGrille14Wide7d33Spacing*.png
|
||
|
// TileableLinearApertureGrille14Wide10And6Spacing*.png
|
||
|
static const float mask_grille15_avg_color = 53.0/255.0;
|
||
|
// TileableLinearApertureGrille15Wide6d33Spacing*.png
|
||
|
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
|
||
|
static const float mask_slot_avg_color = 46.0/255.0;
|
||
|
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
|
||
|
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
|
||
|
static const float mask_shadow_avg_color = 41.0/255.0;
|
||
|
// TileableLinearShadowMask*.png
|
||
|
// TileableLinearShadowMaskEDP*.png
|
||
|
|
||
|
#ifdef PHOSPHOR_MASK_GRILLE14
|
||
|
static const float mask_grille_avg_color = mask_grille14_avg_color;
|
||
|
#else
|
||
|
static const float mask_grille_avg_color = mask_grille15_avg_color;
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#endif // USER_CGP_CONSTANTS_H
|
||
|
|
||
|
////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
|
||
|
|
||
|
//////////////////////////////// END INCLUDES ////////////////////////////////
|
||
|
|
||
|
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
|
||
|
|
||
|
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
|
||
|
#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
|
||
|
|
||
|
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
|
||
|
#ifndef SIMULATE_CRT_ON_LCD
|
||
|
#define SIMULATE_CRT_ON_LCD
|
||
|
#endif
|
||
|
|
||
|
// Manually tiling a manually resized texture creates texture coord derivative
|
||
|
// discontinuities and confuses anisotropic filtering, causing discolored tile
|
||
|
// seams in the phosphor mask. Workarounds:
|
||
|
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
|
||
|
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
|
||
|
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
|
||
|
// b.) "Tile flat twice" requires drawing two full tiles without border padding
|
||
|
// to the resized mask FBO, and it's incompatible with same-pass curvature.
|
||
|
// (Same-pass curvature isn't used but could be in the future...maybe.)
|
||
|
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
|
||
|
// border padding to the resized mask FBO, but it works with same-pass
|
||
|
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
|
||
|
// Precedence: a, then, b, then c (if multiple strategies are #defined).
|
||
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
|
||
|
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
|
||
|
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
|
||
|
// Also, manually resampling the phosphor mask is slightly blurrier with
|
||
|
// anisotropic filtering. (Resampling with mipmapping is even worse: It
|
||
|
// creates artifacts, but only with the fully bloomed shader.) The difference
|
||
|
// is subtle with small triads, but you can fix it for a small cost.
|
||
|
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||
|
|
||
|
|
||
|
////////////////////////////// DERIVED SETTINGS //////////////////////////////
|
||
|
|
||
|
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
|
||
|
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
|
||
|
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
|
||
|
// #defined by either user-settings.h or a wrapper .cg that #includes the
|
||
|
// current .cg pass.)
|
||
|
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||
|
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||
|
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||
|
#endif
|
||
|
#ifdef RUNTIME_GEOMETRY_MODE
|
||
|
#undef RUNTIME_GEOMETRY_MODE
|
||
|
#endif
|
||
|
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
|
||
|
// inferior in most cases, so replace 2.0 with 0.0:
|
||
|
static const float bloom_approx_filter =
|
||
|
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
|
||
|
#else
|
||
|
static const float bloom_approx_filter = bloom_approx_filter_static;
|
||
|
#endif
|
||
|
|
||
|
// Disable slow runtime paths if static parameters are used. Most of these
|
||
|
// won't be a problem anyway once the params are disabled, but some will.
|
||
|
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
|
||
|
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||
|
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||
|
#endif
|
||
|
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
||
|
#undef RUNTIME_ANTIALIAS_WEIGHTS
|
||
|
#endif
|
||
|
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||
|
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||
|
#endif
|
||
|
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||
|
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||
|
#endif
|
||
|
#ifdef RUNTIME_GEOMETRY_TILT
|
||
|
#undef RUNTIME_GEOMETRY_TILT
|
||
|
#endif
|
||
|
#ifdef RUNTIME_GEOMETRY_MODE
|
||
|
#undef RUNTIME_GEOMETRY_MODE
|
||
|
#endif
|
||
|
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||
|
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||
|
#endif
|
||
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||
|
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||
|
#endif
|
||
|
// Rule out unavailable anisotropic compatibility strategies:
|
||
|
#ifndef DRIVERS_ALLOW_DERIVATIVES
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||
|
#endif
|
||
|
#endif
|
||
|
#ifndef DRIVERS_ALLOW_TEX2DLOD
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||
|
#endif
|
||
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||
|
#endif
|
||
|
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
|
||
|
#undef ANTIALIAS_DISABLE_ANISOTROPIC
|
||
|
#endif
|
||
|
#endif
|
||
|
#ifndef DRIVERS_ALLOW_TEX2DBIAS
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||
|
#endif
|
||
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||
|
#endif
|
||
|
#endif
|
||
|
// Prioritize anisotropic tiling compatibility strategies by performance and
|
||
|
// disable unused strategies. This concentrates all the nesting in one place.
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||
|
#endif
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||
|
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||
|
#endif
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||
|
#endif
|
||
|
#else
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||
|
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||
|
#endif
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||
|
#endif
|
||
|
#else
|
||
|
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
|
||
|
// flat texture coords in the same pass, but that's all we use.
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||
|
#endif
|
||
|
#endif
|
||
|
#endif
|
||
|
#endif
|
||
|
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
|
||
|
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
||
|
#endif
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
||
|
#endif
|
||
|
// Prioritize anisotropic resampling compatibility strategies the same way:
|
||
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
|
||
|
|
||
|
// If we can use the large mipmapped LUT without mipmapping artifacts, we
|
||
|
// should: It gives us more options for using fewer samples.
|
||
|
#ifdef DRIVERS_ALLOW_TEX2DLOD
|
||
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||
|
// TODO: Take advantage of this!
|
||
|
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
|
||
|
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
|
||
|
#else
|
||
|
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
||
|
#endif
|
||
|
#else
|
||
|
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
||
|
#endif
|
||
|
|
||
|
|
||
|
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
|
||
|
// main_fragment, or a static alias of one of the above. This makes it hard
|
||
|
// to select the phosphor mask at runtime: We can't even assign to a uniform
|
||
|
// global in the vertex shader or select a sampler2D in the vertex shader and
|
||
|
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
|
||
|
// because it just gives us the input texture or a black screen. However, we
|
||
|
// can get around these limitations by calling tex2D three times with different
|
||
|
// uniform samplers (or resizing the phosphor mask three times altogether).
|
||
|
// With dynamic branches, we can process only one of these branches on top of
|
||
|
// quickly discarding fragments we don't need (cgc seems able to overcome
|
||
|
// limigations around dependent texture fetches inside of branches). Without
|
||
|
// dynamic branches, we have to process every branch for every fragment...which
|
||
|
// is slower. Runtime sampling mode selection is slower without dynamic
|
||
|
// branches as well. Let the user's static #defines decide if it's worth it.
|
||
|
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||
|
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||
|
#else
|
||
|
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||
|
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
// We need to render some minimum number of tiles in the resize passes.
|
||
|
// We need at least 1.0 just to repeat a single tile, and we need extra
|
||
|
// padding beyond that for anisotropic filtering, discontinuitity fixing,
|
||
|
// antialiasing, same-pass curvature (not currently used), etc. First
|
||
|
// determine how many border texels and tiles we need, based on how the result
|
||
|
// will be sampled:
|
||
|
#ifdef GEOMETRY_EARLY
|
||
|
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
|
||
|
// Most antialiasing filters have a base radius of 4.0 pixels:
|
||
|
static const float max_aa_base_pixel_border = 4.0 +
|
||
|
max_subpixel_offset;
|
||
|
#else
|
||
|
static const float max_aa_base_pixel_border = 0.0;
|
||
|
#endif
|
||
|
// Anisotropic filtering adds about 0.5 to the pixel border:
|
||
|
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
||
|
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
|
||
|
#else
|
||
|
static const float max_aniso_pixel_border = max_aa_base_pixel_border;
|
||
|
#endif
|
||
|
// Fixing discontinuities adds 1.0 more to the pixel border:
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||
|
static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
|
||
|
#else
|
||
|
static const float max_tiled_pixel_border = max_aniso_pixel_border;
|
||
|
#endif
|
||
|
// Convert the pixel border to an integer texel border. Assume same-pass
|
||
|
// curvature about triples the texel frequency:
|
||
|
#ifdef GEOMETRY_EARLY
|
||
|
static const float max_mask_texel_border =
|
||
|
ceil(max_tiled_pixel_border * 3.0);
|
||
|
#else
|
||
|
static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
|
||
|
#endif
|
||
|
// Convert the texel border to a tile border using worst-case assumptions:
|
||
|
static const float max_mask_tile_border = max_mask_texel_border/
|
||
|
(mask_min_allowed_triad_size * mask_triads_per_tile);
|
||
|
|
||
|
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
|
||
|
// the starting texel (inside borders) for sampling it.
|
||
|
#ifndef GEOMETRY_EARLY
|
||
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||
|
// Special case: Render two tiles without borders. Anisotropic
|
||
|
// filtering doesn't seem to be a problem here.
|
||
|
static const float mask_resize_num_tiles = 1.0 + 1.0;
|
||
|
static const float mask_start_texels = 0.0;
|
||
|
#else
|
||
|
static const float mask_resize_num_tiles = 1.0 +
|
||
|
2.0 * max_mask_tile_border;
|
||
|
static const float mask_start_texels = max_mask_texel_border;
|
||
|
#endif
|
||
|
#else
|
||
|
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
|
||
|
static const float mask_start_texels = max_mask_texel_border;
|
||
|
#endif
|
||
|
|
||
|
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
|
||
|
// mask_resize_viewport_scale. This limits the maximum final triad size.
|
||
|
// Estimate the minimum number of triads we can split the screen into in each
|
||
|
// dimension (we'll be as correct as mask_resize_viewport_scale is):
|
||
|
static const float mask_resize_num_triads =
|
||
|
mask_resize_num_tiles * mask_triads_per_tile;
|
||
|
static const float2 min_allowed_viewport_triads =
|
||
|
float2(mask_resize_num_triads) / mask_resize_viewport_scale;
|
||
|
|
||
|
|
||
|
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
|
||
|
|
||
|
static const float pi = 3.141592653589;
|
||
|
// We often want to find the location of the previous texel, e.g.:
|
||
|
// const float2 curr_texel = uv * texture_size;
|
||
|
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
|
||
|
// const float2 prev_texel_uv = prev_texel / texture_size;
|
||
|
// However, many GPU drivers round incorrectly around exact texel locations.
|
||
|
// We need to subtract a little less than 0.5 before flooring, and some GPU's
|
||
|
// require this value to be farther from 0.5 than others; define it here.
|
||
|
// const float2 prev_texel =
|
||
|
// floor(curr_texel - float2(under_half)) + float2(0.5);
|
||
|
static const float under_half = 0.4995;
|
||
|
|
||
|
|
||
|
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
|
||
|
|
||
|
///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
|
||
|
|
||
|
//#include "../../../../include/blur-functions.h"
|
||
|
|
||
|
//////////////////////////// BEGIN BLUR-FUNCTIONS ///////////////////////////
|
||
|
|
||
|
#ifndef BLUR_FUNCTIONS_H
|
||
|
#define BLUR_FUNCTIONS_H
|
||
|
|
||
|
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||
|
|
||
|
// Copyright (C) 2014 TroggleMonkey
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
// of this software and associated documentation files (the "Software"), to
|
||
|
// deal in the Software without restriction, including without limitation the
|
||
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||
|
// sell copies of the Software, and to permit persons to whom the Software is
|
||
|
// furnished to do so, subject to the following conditions:
|
||
|
//
|
||
|
// The above copyright notice and this permission notice shall be included in
|
||
|
// all copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
|
// IN THE SOFTWARE.
|
||
|
|
||
|
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||
|
|
||
|
// This file provides reusable one-pass and separable (two-pass) blurs.
|
||
|
// Requires: All blurs share these requirements (dxdy requirement is split):
|
||
|
// 1.) All requirements of gamma-management.h must be satisfied!
|
||
|
// 2.) filter_linearN must == "true" in your .cgp preset unless
|
||
|
// you're using tex2DblurNresize at 1x scale.
|
||
|
// 3.) mipmap_inputN must == "true" in your .cgp preset if
|
||
|
// IN.output_size < IN.video_size.
|
||
|
// 4.) IN.output_size == IN.video_size / pow(2, M), where M is some
|
||
|
// positive integer. tex2Dblur*resize can resize arbitrarily
|
||
|
// (and the blur will be done after resizing), but arbitrary
|
||
|
// resizes "fail" with other blurs due to the way they mix
|
||
|
// static weights with bilinear sample exploitation.
|
||
|
// 5.) In general, dxdy should contain the uv pixel spacing:
|
||
|
// dxdy = (IN.video_size/IN.output_size)/IN.texture_size
|
||
|
// 6.) For separable blurs (tex2DblurNresize and tex2DblurNfast),
|
||
|
// zero out the dxdy component in the unblurred dimension:
|
||
|
// dxdy = float2(dxdy.x, 0.0) or float2(0.0, dxdy.y)
|
||
|
// Many blurs share these requirements:
|
||
|
// 1.) One-pass blurs require scale_xN == scale_yN or scales > 1.0,
|
||
|
// or they will blur more in the lower-scaled dimension.
|
||
|
// 2.) One-pass shared sample blurs require ddx(), ddy(), and
|
||
|
// tex2Dlod() to be supported by the current Cg profile, and
|
||
|
// the drivers must support high-quality derivatives.
|
||
|
// 3.) One-pass shared sample blurs require:
|
||
|
// tex_uv.w == log2(IN.video_size/IN.output_size).y;
|
||
|
// Non-wrapper blurs share this requirement:
|
||
|
// 1.) sigma is the intended standard deviation of the blur
|
||
|
// Wrapper blurs share this requirement, which is automatically
|
||
|
// met (unless OVERRIDE_BLUR_STD_DEVS is #defined; see below):
|
||
|
// 1.) blurN_std_dev must be global static const float values
|
||
|
// specifying standard deviations for Nx blurs in units
|
||
|
// of destination pixels
|
||
|
// Optional: 1.) The including file (or an earlier included file) may
|
||
|
// optionally #define USE_BINOMIAL_BLUR_STD_DEVS to replace
|
||
|
// default standard deviations with those matching a binomial
|
||
|
// distribution. (See below for details/properties.)
|
||
|
// 2.) The including file (or an earlier included file) may
|
||
|
// optionally #define OVERRIDE_BLUR_STD_DEVS and override:
|
||
|
// static const float blur3_std_dev
|
||
|
// static const float blur4_std_dev
|
||
|
// static const float blur5_std_dev
|
||
|
// static const float blur6_std_dev
|
||
|
// static const float blur7_std_dev
|
||
|
// static const float blur8_std_dev
|
||
|
// static const float blur9_std_dev
|
||
|
// static const float blur10_std_dev
|
||
|
// static const float blur11_std_dev
|
||
|
// static const float blur12_std_dev
|
||
|
// static const float blur17_std_dev
|
||
|
// static const float blur25_std_dev
|
||
|
// static const float blur31_std_dev
|
||
|
// static const float blur43_std_dev
|
||
|
// 3.) The including file (or an earlier included file) may
|
||
|
// optionally #define OVERRIDE_ERROR_BLURRING and override:
|
||
|
// static const float error_blurring
|
||
|
// This tuning value helps mitigate weighting errors from one-
|
||
|
// pass shared-sample blurs sharing bilinear samples between
|
||
|
// fragments. Values closer to 0.0 have "correct" blurriness
|
||
|
// but allow more artifacts, and values closer to 1.0 blur away
|
||
|
// artifacts by sampling closer to halfway between texels.
|
||
|
// UPDATE 6/21/14: The above static constants may now be overridden
|
||
|
// by non-static uniform constants. This permits exposing blur
|
||
|
// standard deviations as runtime GUI shader parameters. However,
|
||
|
// using them keeps weights from being statically computed, and the
|
||
|
// speed hit depends on the blur: On my machine, uniforms kill over
|
||
|
// 53% of the framerate with tex2Dblur12x12shared, but they only
|
||
|
// drop the framerate by about 18% with tex2Dblur11fast.
|
||
|
// Quality and Performance Comparisons:
|
||
|
// For the purposes of the following discussion, "no sRGB" means
|
||
|
// GAMMA_ENCODE_EVERY_FBO is #defined, and "sRGB" means it isn't.
|
||
|
// 1.) tex2DblurNfast is always faster than tex2DblurNresize.
|
||
|
// 2.) tex2DblurNresize functions are the only ones that can arbitrarily resize
|
||
|
// well, because they're the only ones that don't exploit bilinear samples.
|
||
|
// This also means they're the only functions which can be truly gamma-
|
||
|
// correct without linear (or sRGB FBO) input, but only at 1x scale.
|
||
|
// 3.) One-pass shared sample blurs only have a speed advantage without sRGB.
|
||
|
// They also have some inaccuracies due to their shared-[bilinear-]sample
|
||
|
// design, which grow increasingly bothersome for smaller blurs and higher-
|
||
|
// frequency source images (relative to their resolution). I had high
|
||
|
// hopes for them, but their most realistic use case is limited to quickly
|
||
|
// reblurring an already blurred input at full resolution. Otherwise:
|
||
|
// a.) If you're blurring a low-resolution source, you want a better blur.
|
||
|
// b.) If you're blurring a lower mipmap, you want a better blur.
|
||
|
// c.) If you're blurring a high-resolution, high-frequency source, you
|
||
|
// want a better blur.
|
||
|
// 4.) The one-pass blurs without shared samples grow slower for larger blurs,
|
||
|
// but they're competitive with separable blurs at 5x5 and smaller, and
|
||
|
// even tex2Dblur7x7 isn't bad if you're wanting to conserve passes.
|
||
|
// Here are some framerates from a GeForce 8800GTS. The first pass resizes to
|
||
|
// viewport size (4x in this test) and linearizes for sRGB codepaths, and the
|
||
|
// remaining passes perform 6 full blurs. Mipmapped tests are performed at the
|
||
|
// same scale, so they just measure the cost of mipmapping each FBO (only every
|
||
|
// other FBO is mipmapped for separable blurs, to mimic realistic usage).
|
||
|
// Mipmap Neither sRGB+Mipmap sRGB Function
|
||
|
// 76.0 92.3 131.3 193.7 tex2Dblur3fast
|
||
|
// 63.2 74.4 122.4 175.5 tex2Dblur3resize
|
||
|
// 93.7 121.2 159.3 263.2 tex2Dblur3x3
|
||
|
// 59.7 68.7 115.4 162.1 tex2Dblur3x3resize
|
||
|
// 63.2 74.4 122.4 175.5 tex2Dblur5fast
|
||
|
// 49.3 54.8 100.0 132.7 tex2Dblur5resize
|
||
|
// 59.7 68.7 115.4 162.1 tex2Dblur5x5
|
||
|
// 64.9 77.2 99.1 137.2 tex2Dblur6x6shared
|
||
|
// 55.8 63.7 110.4 151.8 tex2Dblur7fast
|
||
|
// 39.8 43.9 83.9 105.8 tex2Dblur7resize
|
||
|
// 40.0 44.2 83.2 104.9 tex2Dblur7x7
|
||
|
// 56.4 65.5 71.9 87.9 tex2Dblur8x8shared
|
||
|
// 49.3 55.1 99.9 132.5 tex2Dblur9fast
|
||
|
// 33.3 36.2 72.4 88.0 tex2Dblur9resize
|
||
|
// 27.8 29.7 61.3 72.2 tex2Dblur9x9
|
||
|
// 37.2 41.1 52.6 60.2 tex2Dblur10x10shared
|
||
|
// 44.4 49.5 91.3 117.8 tex2Dblur11fast
|
||
|
// 28.8 30.8 63.6 75.4 tex2Dblur11resize
|
||
|
// 33.6 36.5 40.9 45.5 tex2Dblur12x12shared
|
||
|
// TODO: Fill in benchmarks for new untested blurs.
|
||
|
// tex2Dblur17fast
|
||
|
// tex2Dblur25fast
|
||
|
// tex2Dblur31fast
|
||
|
// tex2Dblur43fast
|
||
|
// tex2Dblur3x3resize
|
||
|
|
||
|
|
||
|
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||
|
|
||
|
// Set static standard deviations, but allow users to override them with their
|
||
|
// own constants (even non-static uniforms if they're okay with the speed hit):
|
||
|
#ifndef OVERRIDE_BLUR_STD_DEVS
|
||
|
// blurN_std_dev values are specified in terms of dxdy strides.
|
||
|
#ifdef USE_BINOMIAL_BLUR_STD_DEVS
|
||
|
// By request, we can define standard deviations corresponding to a
|
||
|
// binomial distribution with p = 0.5 (related to Pascal's triangle).
|
||
|
// This distribution works such that blurring multiple times should
|
||
|
// have the same result as a single larger blur. These values are
|
||
|
// larger than default for blurs up to 6x and smaller thereafter.
|
||
|
static const float blur3_std_dev = 0.84931640625;
|
||
|
static const float blur4_std_dev = 0.84931640625;
|
||
|
static const float blur5_std_dev = 1.0595703125;
|
||
|
static const float blur6_std_dev = 1.06591796875;
|
||
|
static const float blur7_std_dev = 1.17041015625;
|
||
|
static const float blur8_std_dev = 1.1720703125;
|
||
|
static const float blur9_std_dev = 1.2259765625;
|
||
|
static const float blur10_std_dev = 1.21982421875;
|
||
|
static const float blur11_std_dev = 1.25361328125;
|
||
|
static const float blur12_std_dev = 1.2423828125;
|
||
|
static const float blur17_std_dev = 1.27783203125;
|
||
|
static const float blur25_std_dev = 1.2810546875;
|
||
|
static const float blur31_std_dev = 1.28125;
|
||
|
static const float blur43_std_dev = 1.28125;
|
||
|
#else
|
||
|
// The defaults are the largest values that keep the largest unused
|
||
|
// blur term on each side <= 1.0/256.0. (We could get away with more
|
||
|
// or be more conservative, but this compromise is pretty reasonable.)
|
||
|
static const float blur3_std_dev = 0.62666015625;
|
||
|
static const float blur4_std_dev = 0.66171875;
|
||
|
static const float blur5_std_dev = 0.9845703125;
|
||
|
static const float blur6_std_dev = 1.02626953125;
|
||
|
static const float blur7_std_dev = 1.36103515625;
|
||
|
static const float blur8_std_dev = 1.4080078125;
|
||
|
static const float blur9_std_dev = 1.7533203125;
|
||
|
static const float blur10_std_dev = 1.80478515625;
|
||
|
static const float blur11_std_dev = 2.15986328125;
|
||
|
static const float blur12_std_dev = 2.215234375;
|
||
|
static const float blur17_std_dev = 3.45535583496;
|
||
|
static const float blur25_std_dev = 5.3409576416;
|
||
|
static const float blur31_std_dev = 6.86488037109;
|
||
|
static const float blur43_std_dev = 10.1852050781;
|
||
|
#endif // USE_BINOMIAL_BLUR_STD_DEVS
|
||
|
#endif // OVERRIDE_BLUR_STD_DEVS
|
||
|
|
||
|
#ifndef OVERRIDE_ERROR_BLURRING
|
||
|
// error_blurring should be in [0.0, 1.0]. Higher values reduce ringing
|
||
|
// in shared-sample blurs but increase blurring and feature shifting.
|
||
|
static const float error_blurring = 0.5;
|
||
|
#endif
|
||
|
|
||
|
|
||
|
////////////////////////////////// INCLUDES //////////////////////////////////
|
||
|
|
||
|
// gamma-management.h relies on pass-specific settings to guide its behavior:
|
||
|
// FIRST_PASS, LAST_PASS, GAMMA_ENCODE_EVERY_FBO, etc. See it for details.
|
||
|
//#include "gamma-management.h"
|
||
|
|
||
|
//////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
|
||
|
|
||
|
#ifndef GAMMA_MANAGEMENT_H
|
||
|
#define GAMMA_MANAGEMENT_H
|
||
|
|
||
|
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||
|
|
||
|
// Copyright (C) 2014 TroggleMonkey
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
// of this software and associated documentation files (the "Software"), to
|
||
|
// deal in the Software without restriction, including without limitation the
|
||
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||
|
// sell copies of the Software, and to permit persons to whom the Software is
|
||
|
// furnished to do so, subject to the following conditions:
|
||
|
//
|
||
|
// The above copyright notice and this permission notice shall be included in
|
||
|
// all copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
|
// IN THE SOFTWARE.
|
||
|
|
||
|
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||
|
|
||
|
// This file provides gamma-aware tex*D*() and encode_output() functions.
|
||
|
// Requires: Before #include-ing this file, the including file must #define
|
||
|
// the following macros when applicable and follow their rules:
|
||
|
// 1.) #define FIRST_PASS if this is the first pass.
|
||
|
// 2.) #define LAST_PASS if this is the last pass.
|
||
|
// 3.) If sRGB is available, set srgb_framebufferN = "true" for
|
||
|
// every pass except the last in your .cgp preset.
|
||
|
// 4.) If sRGB isn't available but you want gamma-correctness with
|
||
|
// no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
|
||
|
// 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
|
||
|
// 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
|
||
|
// 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
|
||
|
// 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
|
||
|
// If an option in [5, 8] is #defined in the first or last pass, it
|
||
|
// should be #defined for both. It shouldn't make a difference
|
||
|
// whether it's #defined for intermediate passes or not.
|
||
|
// Optional: The including file (or an earlier included file) may optionally
|
||
|
// #define a number of macros indicating it will override certain
|
||
|
// macros and associated constants are as follows:
|
||
|
// static constants with either static or uniform constants. The
|
||
|
// 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
|
||
|
// static const float ntsc_gamma
|
||
|
// static const float pal_gamma
|
||
|
// static const float crt_reference_gamma_high
|
||
|
// static const float crt_reference_gamma_low
|
||
|
// static const float lcd_reference_gamma
|
||
|
// static const float crt_office_gamma
|
||
|
// static const float lcd_office_gamma
|
||
|
// 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
|
||
|
// static const float crt_gamma
|
||
|
// static const float gba_gamma
|
||
|
// static const float lcd_gamma
|
||
|
// 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
|
||
|
// static const float input_gamma
|
||
|
// static const float intermediate_gamma
|
||
|
// static const float output_gamma
|
||
|
// (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
|
||
|
// 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
|
||
|
// static const bool assume_opaque_alpha
|
||
|
// The gamma constant overrides must be used in every pass or none,
|
||
|
// and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
|
||
|
// OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
|
||
|
// Usage: After setting macros appropriately, ignore gamma correction and
|
||
|
// replace all tex*D*() calls with equivalent gamma-aware
|
||
|
// tex*D*_linearize calls, except:
|
||
|
// 1.) When you read an LUT, use regular tex*D or a gamma-specified
|
||
|
// function, depending on its gamma encoding:
|
||
|
// tex*D*_linearize_gamma (takes a runtime gamma parameter)
|
||
|
// 2.) If you must read pass0's original input in a later pass, use
|
||
|
// tex2D_linearize_ntsc_gamma. If you want to read pass0's
|
||
|
// input with gamma-corrected bilinear filtering, consider
|
||
|
// creating a first linearizing pass and reading from the input
|
||
|
// of pass1 later.
|
||
|
// Then, return encode_output(color) from every fragment shader.
|
||
|
// Finally, use the global gamma_aware_bilinear boolean if you want
|
||
|
// to statically branch based on whether bilinear filtering is
|
||
|
// gamma-correct or not (e.g. for placing Gaussian blur samples).
|
||
|
//
|
||
|
// Detailed Policy:
|
||
|
// tex*D*_linearize() functions enforce a consistent gamma-management policy
|
||
|
// based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
|
||
|
// their input texture has the same encoding characteristics as the input for
|
||
|
// the current pass (which doesn't apply to the exceptions listed above).
|
||
|
// Similarly, encode_output() enforces a policy based on the LAST_PASS and
|
||
|
// GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
|
||
|
// following two pipelines.
|
||
|
// Typical pipeline with intermediate sRGB framebuffers:
|
||
|
// linear_color = pow(pass0_encoded_color, input_gamma);
|
||
|
// intermediate_output = linear_color; // Automatic sRGB encoding
|
||
|
// linear_color = intermediate_output; // Automatic sRGB decoding
|
||
|
// final_output = pow(intermediate_output, 1.0/output_gamma);
|
||
|
// Typical pipeline without intermediate sRGB framebuffers:
|
||
|
// linear_color = pow(pass0_encoded_color, input_gamma);
|
||
|
// intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
|
||
|
// linear_color = pow(intermediate_output, intermediate_gamma);
|
||
|
// final_output = pow(intermediate_output, 1.0/output_gamma);
|
||
|
// Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
|
||
|
// easily get gamma-correctness without banding on devices where sRGB isn't
|
||
|
// supported.
|
||
|
//
|
||
|
// Use This Header to Maximize Code Reuse:
|
||
|
// The purpose of this header is to provide a consistent interface for texture
|
||
|
// reads and output gamma-encoding that localizes and abstracts away all the
|
||
|
// annoying details. This greatly reduces the amount of code in each shader
|
||
|
// pass that depends on the pass number in the .cgp preset or whether sRGB
|
||
|
// FBO's are being used: You can trivially change the gamma behavior of your
|
||
|
// whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
|
||
|
// code in your first, Nth, and last passes, you can even put it all in another
|
||
|
// header file and #include it from skeleton .cg files that #define the
|
||
|
// appropriate pass-specific settings.
|
||
|
//
|
||
|
// Rationale for Using Three Macros:
|
||
|
// This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
|
||
|
// SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
|
||
|
// a lower maintenance burden on each pass. At first glance it seems we could
|
||
|
// accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
|
||
|
// This works for simple use cases where input_gamma == output_gamma, but it
|
||
|
// breaks down for more complex scenarios like CRT simulation, where the pass
|
||
|
// number determines the gamma encoding of the input and output.
|
||
|
|
||
|
|
||
|
/////////////////////////////// BASE CONSTANTS ///////////////////////////////
|
||
|
|
||
|
// Set standard gamma constants, but allow users to override them:
|
||
|
#ifndef OVERRIDE_STANDARD_GAMMA
|
||
|
// Standard encoding gammas:
|
||
|
static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
|
||
|
static const float pal_gamma = 2.8; // Never actually 2.8 in practice
|
||
|
// Typical device decoding gammas (only use for emulating devices):
|
||
|
// CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
|
||
|
// gammas: The standards purposely undercorrected for an analog CRT's
|
||
|
// assumed 2.5 reference display gamma to maintain contrast in assumed
|
||
|
// [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
|
||
|
// These unstated assumptions about display gamma and perceptual rendering
|
||
|
// intent caused a lot of confusion, and more modern CRT's seemed to target
|
||
|
// NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
|
||
|
// (they struggle near black with 2.5 gamma anyway), especially PC/laptop
|
||
|
// displays designed to view sRGB in bright environments. (Standards are
|
||
|
// also in flux again with BT.1886, but it's underspecified for displays.)
|
||
|
static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
|
||
|
static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
|
||
|
static const float lcd_reference_gamma = 2.5; // To match CRT
|
||
|
static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
|
||
|
static const float lcd_office_gamma = 2.2; // Approximates sRGB
|
||
|
#endif // OVERRIDE_STANDARD_GAMMA
|
||
|
|
||
|
// Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
|
||
|
// but only if they're aware of it.
|
||
|
#ifndef OVERRIDE_ALPHA_ASSUMPTIONS
|
||
|
static const bool assume_opaque_alpha = false;
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
|
||
|
|
||
|
// gamma-management.h should be compatible with overriding gamma values with
|
||
|
// runtime user parameters, but we can only define other global constants in
|
||
|
// terms of static constants, not uniform user parameters. To get around this
|
||
|
// limitation, we need to define derived constants using functions.
|
||
|
|
||
|
// Set device gamma constants, but allow users to override them:
|
||
|
#ifdef OVERRIDE_DEVICE_GAMMA
|
||
|
// The user promises to globally define the appropriate constants:
|
||
|
inline float get_crt_gamma() { return crt_gamma; }
|
||
|
inline float get_gba_gamma() { return gba_gamma; }
|
||
|
inline float get_lcd_gamma() { return lcd_gamma; }
|
||
|
#else
|
||
|
inline float get_crt_gamma() { return crt_reference_gamma_high; }
|
||
|
inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
|
||
|
inline float get_lcd_gamma() { return lcd_office_gamma; }
|
||
|
#endif // OVERRIDE_DEVICE_GAMMA
|
||
|
|
||
|
// Set decoding/encoding gammas for the first/lass passes, but allow overrides:
|
||
|
#ifdef OVERRIDE_FINAL_GAMMA
|
||
|
// The user promises to globally define the appropriate constants:
|
||
|
inline float get_intermediate_gamma() { return intermediate_gamma; }
|
||
|
inline float get_input_gamma() { return input_gamma; }
|
||
|
inline float get_output_gamma() { return output_gamma; }
|
||
|
#else
|
||
|
// If we gamma-correct every pass, always use ntsc_gamma between passes to
|
||
|
// ensure middle passes don't need to care if anything is being simulated:
|
||
|
inline float get_intermediate_gamma() { return ntsc_gamma; }
|
||
|
#ifdef SIMULATE_CRT_ON_LCD
|
||
|
inline float get_input_gamma() { return get_crt_gamma(); }
|
||
|
inline float get_output_gamma() { return get_lcd_gamma(); }
|
||
|
#else
|
||
|
#ifdef SIMULATE_GBA_ON_LCD
|
||
|
inline float get_input_gamma() { return get_gba_gamma(); }
|
||
|
inline float get_output_gamma() { return get_lcd_gamma(); }
|
||
|
#else
|
||
|
#ifdef SIMULATE_LCD_ON_CRT
|
||
|
inline float get_input_gamma() { return get_lcd_gamma(); }
|
||
|
inline float get_output_gamma() { return get_crt_gamma(); }
|
||
|
#else
|
||
|
#ifdef SIMULATE_GBA_ON_CRT
|
||
|
inline float get_input_gamma() { return get_gba_gamma(); }
|
||
|
inline float get_output_gamma() { return get_crt_gamma(); }
|
||
|
#else // Don't simulate anything:
|
||
|
inline float get_input_gamma() { return ntsc_gamma; }
|
||
|
inline float get_output_gamma() { return ntsc_gamma; }
|
||
|
#endif // SIMULATE_GBA_ON_CRT
|
||
|
#endif // SIMULATE_LCD_ON_CRT
|
||
|
#endif // SIMULATE_GBA_ON_LCD
|
||
|
#endif // SIMULATE_CRT_ON_LCD
|
||
|
#endif // OVERRIDE_FINAL_GAMMA
|
||
|
|
||
|
// Set decoding/encoding gammas for the current pass. Use static constants for
|
||
|
// linearize_input and gamma_encode_output, because they aren't derived, and
|
||
|
// they let the compiler do dead-code elimination.
|
||
|
#ifndef GAMMA_ENCODE_EVERY_FBO
|
||
|
#ifdef FIRST_PASS
|
||
|
static const bool linearize_input = true;
|
||
|
inline float get_pass_input_gamma() { return get_input_gamma(); }
|
||
|
#else
|
||
|
static const bool linearize_input = false;
|
||
|
inline float get_pass_input_gamma() { return 1.0; }
|
||
|
#endif
|
||
|
#ifdef LAST_PASS
|
||
|
static const bool gamma_encode_output = true;
|
||
|
inline float get_pass_output_gamma() { return get_output_gamma(); }
|
||
|
#else
|
||
|
static const bool gamma_encode_output = false;
|
||
|
inline float get_pass_output_gamma() { return 1.0; }
|
||
|
#endif
|
||
|
#else
|
||
|
static const bool linearize_input = true;
|
||
|
static const bool gamma_encode_output = true;
|
||
|
#ifdef FIRST_PASS
|
||
|
inline float get_pass_input_gamma() { return get_input_gamma(); }
|
||
|
#else
|
||
|
inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
|
||
|
#endif
|
||
|
#ifdef LAST_PASS
|
||
|
inline float get_pass_output_gamma() { return get_output_gamma(); }
|
||
|
#else
|
||
|
inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
// Users might want to know if bilinear filtering will be gamma-correct:
|
||
|
static const bool gamma_aware_bilinear = !linearize_input;
|
||
|
|
||
|
|
||
|
////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
|
||
|
|
||
|
inline float4 encode_output(const float4 color)
|
||
|
{
|
||
|
if(gamma_encode_output)
|
||
|
{
|
||
|
if(assume_opaque_alpha)
|
||
|
{
|
||
|
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return color;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline float4 decode_input(const float4 color)
|
||
|
{
|
||
|
if(linearize_input)
|
||
|
{
|
||
|
if(assume_opaque_alpha)
|
||
|
{
|
||
|
return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return color;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline float4 decode_gamma_input(const float4 color, const float3 gamma)
|
||
|
{
|
||
|
if(assume_opaque_alpha)
|
||
|
{
|
||
|
return float4(pow(color.rgb, gamma), 1.0);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return float4(pow(color.rgb, gamma), color.a);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
|
||
|
//#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D)))
|
||
|
// EDIT: it's the 'const' in front of the coords that's doing it
|
||
|
|
||
|
/////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
|
||
|
|
||
|
// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
|
||
|
// Provide a wide array of linearizing texture lookup wrapper functions. The
|
||
|
// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
|
||
|
// lookups are provided for completeness in case that changes someday. Nobody
|
||
|
// is likely to use the *fetch and *proj functions, but they're included just
|
||
|
// in case. The only tex*D texture sampling functions omitted are:
|
||
|
// - tex*Dcmpbias
|
||
|
// - tex*Dcmplod
|
||
|
// - tex*DARRAY*
|
||
|
// - tex*DMS*
|
||
|
// - Variants returning integers
|
||
|
// Standard line length restrictions are ignored below for vertical brevity.
|
||
|
/*
|
||
|
// tex1D:
|
||
|
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
|
||
|
{ return decode_input(tex1D(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
|
||
|
{ return decode_input(tex1D(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
|
||
|
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
|
||
|
|
||
|
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
|
||
|
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
|
||
|
|
||
|
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
|
||
|
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
|
||
|
|
||
|
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
|
||
|
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
|
||
|
|
||
|
// tex1Dbias:
|
||
|
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
|
||
|
{ return decode_input(tex1Dbias(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
// tex1Dfetch:
|
||
|
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
|
||
|
{ return decode_input(tex1Dfetch(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
// tex1Dlod:
|
||
|
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
|
||
|
{ return decode_input(tex1Dlod(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
// tex1Dproj:
|
||
|
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
|
||
|
{ return decode_input(tex1Dproj(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
|
||
|
{ return decode_input(tex1Dproj(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
|
||
|
*/
|
||
|
// tex2D:
|
||
|
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
|
||
|
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
|
||
|
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
|
||
|
|
||
|
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
|
||
|
{ return decode_input(textureLod(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
|
||
|
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
|
||
|
|
||
|
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
|
||
|
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
|
||
|
|
||
|
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
|
||
|
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
|
||
|
|
||
|
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
|
||
|
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
|
||
|
|
||
|
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
|
||
|
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
|
||
|
|
||
|
// tex2Dbias:
|
||
|
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
|
||
|
//{ return decode_input(tex2Dbias(tex, tex_coords)); }
|
||
|
|
||
|
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
|
||
|
//{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
// tex2Dfetch:
|
||
|
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
|
||
|
//{ return decode_input(tex2Dfetch(tex, tex_coords)); }
|
||
|
|
||
|
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
|
||
|
//{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
// tex2Dlod:
|
||
|
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
|
||
|
{ return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
|
||
|
|
||
|
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
|
||
|
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
|
||
|
/*
|
||
|
// tex2Dproj:
|
||
|
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
|
||
|
{ return decode_input(tex2Dproj(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
|
||
|
{ return decode_input(tex2Dproj(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
|
||
|
*/
|
||
|
/*
|
||
|
// tex3D:
|
||
|
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
|
||
|
{ return decode_input(tex3D(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex3D(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
|
||
|
{ return decode_input(tex3D(tex, tex_coords, dx, dy)); }
|
||
|
|
||
|
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
|
||
|
{ return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
|
||
|
|
||
|
// tex3Dbias:
|
||
|
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
|
||
|
{ return decode_input(tex3Dbias(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
// tex3Dfetch:
|
||
|
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
|
||
|
{ return decode_input(tex3Dfetch(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
// tex3Dlod:
|
||
|
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
|
||
|
{ return decode_input(tex3Dlod(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
|
||
|
|
||
|
// tex3Dproj:
|
||
|
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
|
||
|
{ return decode_input(tex3Dproj(tex, tex_coords)); }
|
||
|
|
||
|
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
|
||
|
{ return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
|
||
|
/////////*
|
||
|
|
||
|
// NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
|
||
|
// This narrow selection of nonstandard tex2D* functions can be useful:
|
||
|
|
||
|
// tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
|
||
|
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
|
||
|
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
|
||
|
|
||
|
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
|
||
|
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
|
||
|
|
||
|
|
||
|
// MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
|
||
|
// Provide a narrower selection of tex2D* wrapper functions that decode an
|
||
|
// input sample with a specified gamma value. These are useful for reading
|
||
|
// LUT's and for reading the input of pass0 in a later pass.
|
||
|
|
||
|
// tex2D:
|
||
|
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
|
||
|
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
|
||
|
|
||
|
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
|
||
|
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
|
||
|
|
||
|
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
|
||
|
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
|
||
|
|
||
|
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
|
||
|
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
|
||
|
|
||
|
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
|
||
|
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
|
||
|
|
||
|
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
|
||
|
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
|
||
|
|
||
|
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
|
||
|
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
|
||
|
|
||
|
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
|
||
|
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
|
||
|
/*
|
||
|
// tex2Dbias:
|
||
|
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
|
||
|
{ return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
|
||
|
|
||
|
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
|
||
|
{ return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
|
||
|
|
||
|
// tex2Dfetch:
|
||
|
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
|
||
|
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
|
||
|
|
||
|
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
|
||
|
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
|
||
|
*/
|
||
|
// tex2Dlod:
|
||
|
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
|
||
|
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
|
||
|
|
||
|
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
|
||
|
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
|
||
|
|
||
|
|
||
|
#endif // GAMMA_MANAGEMENT_H
|
||
|
|
||
|
//////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
|
||
|
|
||
|
//#include "quad-pixel-communication.h"
|
||
|
|
||
|
/////////////////////// BEGIN QUAD-PIXEL-COMMUNICATION //////////////////////
|
||
|
|
||
|
#ifndef QUAD_PIXEL_COMMUNICATION_H
|
||
|
#define QUAD_PIXEL_COMMUNICATION_H
|
||
|
|
||
|
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||
|
|
||
|
// Copyright (C) 2014 TroggleMonkey*
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
// of this software and associated documentation files (the "Software"), to
|
||
|
// deal in the Software without restriction, including without limitation the
|
||
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||
|
// sell copies of the Software, and to permit persons to whom the Software is
|
||
|
// furnished to do so, subject to the following conditions:
|
||
|
//
|
||
|
// The above copyright notice and this permission notice shall be included in
|
||
|
// all copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
|
// IN THE SOFTWARE.
|
||
|
|
||
|
///////////////////////////////// DISCLAIMER /////////////////////////////////
|
||
|
|
||
|
// *This code was inspired by "Shader Amortization using Pixel Quad Message
|
||
|
// Passing" by Eric Penner, published in GPU Pro 2, Chapter VI.2. My intent
|
||
|
// is not to plagiarize his fundamentally similar code and assert my own
|
||
|
// copyright, but the algorithmic helper functions require so little code that
|
||
|
// implementations can't vary by much except bugfixes and conventions. I just
|
||
|
// wanted to license my own particular code here to avoid ambiguity and make it
|
||
|
// clear that as far as I'm concerned, people can do as they please with it.
|
||
|
|
||
|
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||
|
|
||
|
// Given screen pixel numbers, derive a "quad vector" describing a fragment's
|
||
|
// position in its 2x2 pixel quad. Given that vector, obtain the values of any
|
||
|
// variable at neighboring fragments.
|
||
|
// Requires: Using this file in general requires:
|
||
|
// 1.) ddx() and ddy() are present in the current Cg profile.
|
||
|
// 2.) The GPU driver is using fine/high-quality derivatives.
|
||
|
// Functions will give incorrect results if this is not true,
|
||
|
// so a test function is included.
|
||
|
|
||
|
|
||
|
///////////////////// QUAD-PIXEL COMMUNICATION PRIMITIVES ////////////////////
|
||
|
|
||
|
float4 get_quad_vector_naive(float4 output_pixel_num_wrt_uvxy)
|
||
|
{
|
||
|
// Requires: Two measures of the current fragment's output pixel number
|
||
|
// in the range ([0, IN.output_size.x), [0, IN.output_size.y)):
|
||
|
// 1.) output_pixel_num_wrt_uvxy.xy increase with uv coords.
|
||
|
// 2.) output_pixel_num_wrt_uvxy.zw increase with screen xy.
|
||
|
// Returns: Two measures of the fragment's position in its 2x2 quad:
|
||
|
// 1.) The .xy components are its 2x2 placement with respect to
|
||
|
// uv direction (the origin (0, 0) is at the top-left):
|
||
|
// top-left = (-1.0, -1.0) top-right = ( 1.0, -1.0)
|
||
|
// bottom-left = (-1.0, 1.0) bottom-right = ( 1.0, 1.0)
|
||
|
// You need this to arrange/weight shared texture samples.
|
||
|
// 2.) The .zw components are its 2x2 placement with respect to
|
||
|
// screen xy direction (IN.position); the origin varies.
|
||
|
// quad_gather needs this measure to work correctly.
|
||
|
// Note: quad_vector.zw = quad_vector.xy * float2(
|
||
|
// ddx(output_pixel_num_wrt_uvxy.x),
|
||
|
// ddy(output_pixel_num_wrt_uvxy.y));
|
||
|
// Caveats: This function assumes the GPU driver always starts 2x2 pixel
|
||
|
// quads at even pixel numbers. This assumption can be wrong
|
||
|
// for odd output resolutions (nondeterministically so).
|
||
|
float4 pixel_odd = frac(output_pixel_num_wrt_uvxy * 0.5) * 2.0;
|
||
|
float4 quad_vector = pixel_odd * 2.0 - float4(1.0);
|
||
|
return quad_vector;
|
||
|
}
|
||
|
|
||
|
float4 get_quad_vector(float4 output_pixel_num_wrt_uvxy)
|
||
|
{
|
||
|
// Requires: Same as get_quad_vector_naive() (see that first).
|
||
|
// Returns: Same as get_quad_vector_naive() (see that first), but it's
|
||
|
// correct even if the 2x2 pixel quad starts at an odd pixel,
|
||
|
// which can occur at odd resolutions.
|
||
|
float4 quad_vector_guess =
|
||
|
get_quad_vector_naive(output_pixel_num_wrt_uvxy);
|
||
|
// If quad_vector_guess.zw doesn't increase with screen xy, we know
|
||
|
// the 2x2 pixel quad starts at an odd pixel:
|
||
|
float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_guess.z),
|
||
|
ddy(quad_vector_guess.w));
|
||
|
return quad_vector_guess * odd_start_mirror.xyxy;
|
||
|
}
|
||
|
|
||
|
float4 get_quad_vector(float2 output_pixel_num_wrt_uv)
|
||
|
{
|
||
|
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
|
||
|
// 2.) output_pixel_num_wrt_uv must increase with uv coords and
|
||
|
// measure the current fragment's output pixel number in:
|
||
|
// ([0, IN.output_size.x), [0, IN.output_size.y))
|
||
|
// Returns: Same as get_quad_vector_naive() (see that first), but it's
|
||
|
// correct even if the 2x2 pixel quad starts at an odd pixel,
|
||
|
// which can occur at odd resolutions.
|
||
|
// Caveats: This function requires less information than the version
|
||
|
// taking a float4, but it's potentially slower.
|
||
|
// Do screen coords increase with or against uv? Get the direction
|
||
|
// with respect to (uv.x, uv.y) for (screen.x, screen.y) in {-1, 1}.
|
||
|
float2 screen_uv_mirror = float2(ddx(output_pixel_num_wrt_uv.x),
|
||
|
ddy(output_pixel_num_wrt_uv.y));
|
||
|
float2 pixel_odd_wrt_uv = frac(output_pixel_num_wrt_uv * 0.5) * 2.0;
|
||
|
float2 quad_vector_uv_guess = (pixel_odd_wrt_uv - float2(0.5)) * 2.0;
|
||
|
float2 quad_vector_screen_guess = quad_vector_uv_guess * screen_uv_mirror;
|
||
|
// If quad_vector_screen_guess doesn't increase with screen xy, we know
|
||
|
// the 2x2 pixel quad starts at an odd pixel:
|
||
|
float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_screen_guess.x),
|
||
|
ddy(quad_vector_screen_guess.y));
|
||
|
float4 quad_vector_guess = float4(
|
||
|
quad_vector_uv_guess, quad_vector_screen_guess);
|
||
|
return quad_vector_guess * odd_start_mirror.xyxy;
|
||
|
}
|
||
|
|
||
|
void quad_gather(float4 quad_vector, float4 curr,
|
||
|
out float4 adjx, out float4 adjy, out float4 diag)
|
||
|
{
|
||
|
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
|
||
|
// 2.) The GPU driver is using fine/high-quality derivatives.
|
||
|
// 3.) quad_vector describes the current fragment's location in
|
||
|
// its 2x2 pixel quad using get_quad_vector()'s conventions.
|
||
|
// 4.) curr is any vector you wish to get neighboring values of.
|
||
|
// Returns: Values of an input vector (curr) at neighboring fragments
|
||
|
// adjacent x, adjacent y, and diagonal (via out parameters).
|
||
|
adjx = curr - ddx(curr) * quad_vector.z;
|
||
|
adjy = curr - ddy(curr) * quad_vector.w;
|
||
|
diag = adjx - ddy(adjx) * quad_vector.w;
|
||
|
}
|
||
|
|
||
|
void quad_gather(float4 quad_vector, float3 curr,
|
||
|
out float3 adjx, out float3 adjy, out float3 diag)
|
||
|
{
|
||
|
// Float3 version
|
||
|
adjx = curr - ddx(curr) * quad_vector.z;
|
||
|
adjy = curr - ddy(curr) * quad_vector.w;
|
||
|
diag = adjx - ddy(adjx) * quad_vector.w;
|
||
|
}
|
||
|
|
||
|
void quad_gather(float4 quad_vector, float2 curr,
|
||
|
out float2 adjx, out float2 adjy, out float2 diag)
|
||
|
{
|
||
|
// Float2 version
|
||
|
adjx = curr - ddx(curr) * quad_vector.z;
|
||
|
adjy = curr - ddy(curr) * quad_vector.w;
|
||
|
diag = adjx - ddy(adjx) * quad_vector.w;
|
||
|
}
|
||
|
|
||
|
float4 quad_gather(float4 quad_vector, float curr)
|
||
|
{
|
||
|
// Float version:
|
||
|
// Returns: return.x == current
|
||
|
// return.y == adjacent x
|
||
|
// return.z == adjacent y
|
||
|
// return.w == diagonal
|
||
|
float4 all = float4(curr);
|
||
|
all.y = all.x - ddx(all.x) * quad_vector.z;
|
||
|
all.zw = all.xy - ddy(all.xy) * quad_vector.w;
|
||
|
return all;
|
||
|
}
|
||
|
|
||
|
float4 quad_gather_sum(float4 quad_vector, float4 curr)
|
||
|
{
|
||
|
// Requires: Same as quad_gather()
|
||
|
// Returns: Sum of an input vector (curr) at all fragments in a quad.
|
||
|
float4 adjx, adjy, diag;
|
||
|
quad_gather(quad_vector, curr, adjx, adjy, diag);
|
||
|
return (curr + adjx + adjy + diag);
|
||
|
}
|
||
|
|
||
|
float3 quad_gather_sum(float4 quad_vector, float3 curr)
|
||
|
{
|
||
|
// Float3 version:
|
||
|
float3 adjx, adjy, diag;
|
||
|
quad_gather(quad_vector, curr, adjx, adjy, diag);
|
||
|
return (curr + adjx + adjy + diag);
|
||
|
}
|
||
|
|
||
|
float2 quad_gather_sum(float4 quad_vector, float2 curr)
|
||
|
{
|
||
|
// Float2 version:
|
||
|
float2 adjx, adjy, diag;
|
||
|
quad_gather(quad_vector, curr, adjx, adjy, diag);
|
||
|
return (curr + adjx + adjy + diag);
|
||
|
}
|
||
|
|
||
|
float quad_gather_sum(float4 quad_vector, float curr)
|
||
|
{
|
||
|
// Float version:
|
||
|
float4 all_values = quad_gather(quad_vector, curr);
|
||
|
return (all_values.x + all_values.y + all_values.z + all_values.w);
|
||
|
}
|
||
|
|
||
|
bool fine_derivatives_working(float4 quad_vector, float4 curr)
|
||
|
{
|
||
|
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
|
||
|
// 2.) quad_vector describes the current fragment's location in
|
||
|
// its 2x2 pixel quad using get_quad_vector()'s conventions.
|
||
|
// 3.) curr must be a test vector with non-constant derivatives
|
||
|
// (its value should change nonlinearly across fragments).
|
||
|
// Returns: true if fine/hybrid/high-quality derivatives are used, or
|
||
|
// false if coarse derivatives are used or inconclusive
|
||
|
// Usage: Test whether quad-pixel communication is working!
|
||
|
// Method: We can confirm fine derivatives are used if the following
|
||
|
// holds (ever, for any value at any fragment):
|
||
|
// (ddy(curr) != ddy(adjx)) or (ddx(curr) != ddx(adjy))
|
||
|
// The more values we test (e.g. test a float4 two ways), the
|
||
|
// easier it is to demonstrate fine derivatives are working.
|
||
|
// TODO: Check for floating point exact comparison issues!
|
||
|
float4 ddx_curr = ddx(curr);
|
||
|
float4 ddy_curr = ddy(curr);
|
||
|
float4 adjx = curr - ddx_curr * quad_vector.z;
|
||
|
float4 adjy = curr - ddy_curr * quad_vector.w;
|
||
|
bool ddy_different = any(bool4(ddy_curr.x != ddy(adjx).x, ddy_curr.y != ddy(adjx).y, ddy_curr.z != ddy(adjx).z, ddy_curr.w != ddy(adjx).w));
|
||
|
bool ddx_different = any(bool4(ddx_curr.x != ddx(adjy).x, ddx_curr.y != ddx(adjy).y, ddx_curr.z != ddx(adjy).z, ddx_curr.w != ddx(adjy).w));
|
||
|
return any(bool2(ddy_different, ddx_different));
|
||
|
}
|
||
|
|
||
|
bool fine_derivatives_working_fast(float4 quad_vector, float curr)
|
||
|
{
|
||
|
// Requires: Same as fine_derivatives_working()
|
||
|
// Returns: Same as fine_derivatives_working()
|
||
|
// Usage: This is faster than fine_derivatives_working() but more
|
||
|
// likely to return false negatives, so it's less useful for
|
||
|
// offline testing/debugging. It's also useless as the basis
|
||
|
// for dynamic runtime branching as of May 2014: Derivatives
|
||
|
// (and quad-pixel communication) are currently disallowed in
|
||
|
// branches. However, future GPU's may allow you to use them
|
||
|
// in dynamic branches if you promise the branch condition
|
||
|
// evaluates the same for every fragment in the quad (and/or if
|
||
|
// the driver enforces that promise by making a single fragment
|
||
|
// control branch decisions). If that ever happens, this
|
||
|
// version may become a more economical choice.
|
||
|
float ddx_curr = ddx(curr);
|
||
|
float ddy_curr = ddy(curr);
|
||
|
float adjx = curr - ddx_curr * quad_vector.z;
|
||
|
return (ddy_curr != ddy(adjx));
|
||
|
}
|
||
|
|
||
|
#endif // QUAD_PIXEL_COMMUNICATION_H
|
||
|
|
||
|
//////////////////////// END QUAD-PIXEL-COMMUNICATION ///////////////////////
|
||
|
|
||
|
//#include "special-functions.h"
|
||
|
|
||
|
/////////////////////////// BEGIN SPECIAL-FUNCTIONS //////////////////////////
|
||
|
|
||
|
#ifndef SPECIAL_FUNCTIONS_H
|
||
|
#define SPECIAL_FUNCTIONS_H
|
||
|
|
||
|
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||
|
|
||
|
// Copyright (C) 2014 TroggleMonkey
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
// of this software and associated documentation files (the "Software"), to
|
||
|
// deal in the Software without restriction, including without limitation the
|
||
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||
|
// sell copies of the Software, and to permit persons to whom the Software is
|
||
|
// furnished to do so, subject to the following conditions:
|
||
|
//
|
||
|
// The above copyright notice and this permission notice shall be included in
|
||
|
// all copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
|
// IN THE SOFTWARE.
|
||
|
|
||
|
|
||
|
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||
|
|
||
|
// This file implements the following mathematical special functions:
|
||
|
// 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
|
||
|
// 2.) gamma(s), a real-numbered extension of the integer factorial function
|
||
|
// It also implements normalized_ligamma(s, z), a normalized lower incomplete
|
||
|
// gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
|
||
|
// be called with an _impl suffix to use an implementation version with a few
|
||
|
// extra precomputed parameters (which may be useful for the caller to reuse).
|
||
|
// See below for details.
|
||
|
//
|
||
|
// Design Rationale:
|
||
|
// Pretty much every line of code in this file is duplicated four times for
|
||
|
// different input types (float4/float3/float2/float). This is unfortunate,
|
||
|
// but Cg doesn't allow function templates. Macros would be far less verbose,
|
||
|
// but they would make the code harder to document and read. I don't expect
|
||
|
// these functions will require a whole lot of maintenance changes unless
|
||
|
// someone ever has need for more robust incomplete gamma functions, so code
|
||
|
// duplication seems to be the lesser evil in this case.
|
||
|
|
||
|
|
||
|
/////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
|
||
|
|
||
|
float4 erf6(float4 x)
|
||
|
{
|
||
|
// Requires: x is the standard parameter to erf().
|
||
|
// Returns: Return an Abramowitz/Stegun approximation of erf(), where:
|
||
|
// erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
|
||
|
// This approximation has a max absolute error of 2.5*10**-5
|
||
|
// with solid numerical robustness and efficiency. See:
|
||
|
// https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
|
||
|
static const float4 one = float4(1.0);
|
||
|
const float4 sign_x = sign(x);
|
||
|
const float4 t = one/(one + 0.47047*abs(x));
|
||
|
const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
|
||
|
exp(-(x*x));
|
||
|
return result * sign_x;
|
||
|
}
|
||
|
|
||
|
float3 erf6(const float3 x)
|
||
|
{
|
||
|
// Float3 version:
|
||
|
static const float3 one = float3(1.0);
|
||
|
const float3 sign_x = sign(x);
|
||
|
const float3 t = one/(one + 0.47047*abs(x));
|
||
|
const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
|
||
|
exp(-(x*x));
|
||
|
return result * sign_x;
|
||
|
}
|
||
|
|
||
|
float2 erf6(const float2 x)
|
||
|
{
|
||
|
// Float2 version:
|
||
|
static const float2 one = float2(1.0);
|
||
|
const float2 sign_x = sign(x);
|
||
|
const float2 t = one/(one + 0.47047*abs(x));
|
||
|
const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
|
||
|
exp(-(x*x));
|
||
|
return result * sign_x;
|
||
|
}
|
||
|
|
||
|
float erf6(const float x)
|
||
|
{
|
||
|
// Float version:
|
||
|
const float sign_x = sign(x);
|
||
|
const float t = 1.0/(1.0 + 0.47047*abs(x));
|
||
|
const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
|
||
|
exp(-(x*x));
|
||
|
return result * sign_x;
|
||
|
}
|
||
|
|
||
|
float4 erft(const float4 x)
|
||
|
{
|
||
|
// Requires: x is the standard parameter to erf().
|
||
|
// Returns: Approximate erf() with the hyperbolic tangent. The error is
|
||
|
// visually noticeable, but it's blazing fast and perceptually
|
||
|
// close...at least on ATI hardware. See:
|
||
|
// http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
|
||
|
// Warning: Only use this if your hardware drivers correctly implement
|
||
|
// tanh(): My nVidia 8800GTS returns garbage output.
|
||
|
return tanh(1.202760580 * x);
|
||
|
}
|
||
|
|
||
|
float3 erft(const float3 x)
|
||
|
{
|
||
|
// Float3 version:
|
||
|
return tanh(1.202760580 * x);
|
||
|
}
|
||
|
|
||
|
float2 erft(const float2 x)
|
||
|
{
|
||
|
// Float2 version:
|
||
|
return tanh(1.202760580 * x);
|
||
|
}
|
||
|
|
||
|
float erft(const float x)
|
||
|
{
|
||
|
// Float version:
|
||
|
return tanh(1.202760580 * x);
|
||
|
}
|
||
|
|
||
|
inline float4 erf(const float4 x)
|
||
|
{
|
||
|
// Requires: x is the standard parameter to erf().
|
||
|
// Returns: Some approximation of erf(x), depending on user settings.
|
||
|
#ifdef ERF_FAST_APPROXIMATION
|
||
|
return erft(x);
|
||
|
#else
|
||
|
return erf6(x);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline float3 erf(const float3 x)
|
||
|
{
|
||
|
// Float3 version:
|
||
|
#ifdef ERF_FAST_APPROXIMATION
|
||
|
return erft(x);
|
||
|
#else
|
||
|
return erf6(x);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline float2 erf(const float2 x)
|
||
|
{
|
||
|
// Float2 version:
|
||
|
#ifdef ERF_FAST_APPROXIMATION
|
||
|
return erft(x);
|
||
|
#else
|
||
|
return erf6(x);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline float erf(const float x)
|
||
|
{
|
||
|
// Float version:
|
||
|
#ifdef ERF_FAST_APPROXIMATION
|
||
|
return erft(x);
|
||
|
#else
|
||
|
return erf6(x);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
/////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
|
||
|
|
||
|
float4 gamma_impl(const float4 s, const float4 s_inv)
|
||
|
{
|
||
|
// Requires: 1.) s is the standard parameter to the gamma function, and
|
||
|
// it should lie in the [0, 36] range.
|
||
|
// 2.) s_inv = 1.0/s. This implementation function requires
|
||
|
// the caller to precompute this value, giving users the
|
||
|
// opportunity to reuse it.
|
||
|
// Returns: Return approximate gamma function (real-numbered factorial)
|
||
|
// output using the Lanczos approximation with two coefficients
|
||
|
// calculated using Paul Godfrey's method here:
|
||
|
// http://my.fit.edu/~gabdo/gamma.txt
|
||
|
// An optimal g value for s in [0, 36] is ~1.12906830989, with
|
||
|
// a maximum relative error of 0.000463 for 2**16 equally
|
||
|
// evals. We could use three coeffs (0.0000346 error) without
|
||
|
// hurting latency, but this allows more parallelism with
|
||
|
// outside instructions.
|
||
|
static const float4 g = float4(1.12906830989);
|
||
|
static const float4 c0 = float4(0.8109119309638332633713423362694399653724431);
|
||
|
static const float4 c1 = float4(0.4808354605142681877121661197951496120000040);
|
||
|
static const float4 e = float4(2.71828182845904523536028747135266249775724709);
|
||
|
const float4 sph = s + float4(0.5);
|
||
|
const float4 lanczos_sum = c0 + c1/(s + float4(1.0));
|
||
|
const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
|
||
|
// gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
|
||
|
// This has less error for small s's than (s -= 1.0) at the beginning.
|
||
|
return (pow(base, sph) * lanczos_sum) * s_inv;
|
||
|
}
|
||
|
|
||
|
float3 gamma_impl(const float3 s, const float3 s_inv)
|
||
|
{
|
||
|
// Float3 version:
|
||
|
static const float3 g = float3(1.12906830989);
|
||
|
static const float3 c0 = float3(0.8109119309638332633713423362694399653724431);
|
||
|
static const float3 c1 = float3(0.4808354605142681877121661197951496120000040);
|
||
|
static const float3 e = float3(2.71828182845904523536028747135266249775724709);
|
||
|
const float3 sph = s + float3(0.5);
|
||
|
const float3 lanczos_sum = c0 + c1/(s + float3(1.0));
|
||
|
const float3 base = (sph + g)/e;
|
||
|
return (pow(base, sph) * lanczos_sum) * s_inv;
|
||
|
}
|
||
|
|
||
|
float2 gamma_impl(const float2 s, const float2 s_inv)
|
||
|
{
|
||
|
// Float2 version:
|
||
|
static const float2 g = float2(1.12906830989);
|
||
|
static const float2 c0 = float2(0.8109119309638332633713423362694399653724431);
|
||
|
static const float2 c1 = float2(0.4808354605142681877121661197951496120000040);
|
||
|
static const float2 e = float2(2.71828182845904523536028747135266249775724709);
|
||
|
const float2 sph = s + float2(0.5);
|
||
|
const float2 lanczos_sum = c0 + c1/(s + float2(1.0));
|
||
|
const float2 base = (sph + g)/e;
|
||
|
return (pow(base, sph) * lanczos_sum) * s_inv;
|
||
|
}
|
||
|
|
||
|
float gamma_impl(const float s, const float s_inv)
|
||
|
{
|
||
|
// Float version:
|
||
|
static const float g = 1.12906830989;
|
||
|
static const float c0 = 0.8109119309638332633713423362694399653724431;
|
||
|
static const float c1 = 0.4808354605142681877121661197951496120000040;
|
||
|
static const float e = 2.71828182845904523536028747135266249775724709;
|
||
|
const float sph = s + 0.5;
|
||
|
const float lanczos_sum = c0 + c1/(s + 1.0);
|
||
|
const float base = (sph + g)/e;
|
||
|
return (pow(base, sph) * lanczos_sum) * s_inv;
|
||
|
}
|
||
|
|
||
|
float4 gamma(const float4 s)
|
||
|
{
|
||
|
// Requires: s is the standard parameter to the gamma function, and it
|
||
|
// should lie in the [0, 36] range.
|
||
|
// Returns: Return approximate gamma function output with a maximum
|
||
|
// relative error of 0.000463. See gamma_impl for details.
|
||
|
return gamma_impl(s, float4(1.0)/s);
|
||
|
}
|
||
|
|
||
|
float3 gamma(const float3 s)
|
||
|
{
|
||
|
// Float3 version:
|
||
|
return gamma_impl(s, float3(1.0)/s);
|
||
|
}
|
||
|
|
||
|
float2 gamma(const float2 s)
|
||
|
{
|
||
|
// Float2 version:
|
||
|
return gamma_impl(s, float2(1.0)/s);
|
||
|
}
|
||
|
|
||
|
float gamma(const float s)
|
||
|
{
|
||
|
// Float version:
|
||
|
return gamma_impl(s, 1.0/s);
|
||
|
}
|
||
|
|
||
|
|
||
|
//////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
|
||
|
|
||
|
// Lower incomplete gamma function for small s and z (implementation):
|
||
|
float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
|
||
|
{
|
||
|
// Requires: 1.) s < ~0.5
|
||
|
// 2.) z <= ~0.775075
|
||
|
// 3.) s_inv = 1.0/s (precomputed for outside reuse)
|
||
|
// Returns: A series representation for the lower incomplete gamma
|
||
|
// function for small s and small z (4 terms).
|
||
|
// The actual "rolled up" summation looks like:
|
||
|
// last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
|
||
|
// sum = last_sign * last_pow / ((s + k) * last_factorial)
|
||
|
// for(int i = 0; i < 4; ++i)
|
||
|
// {
|
||
|
// last_sign *= -1.0; last_pow *= z; last_factorial *= i;
|
||
|
// sum += last_sign * last_pow / ((s + k) * last_factorial);
|
||
|
// }
|
||
|
// Unrolled, constant-unfolded and arranged for madds and parallelism:
|
||
|
const float4 scale = pow(z, s);
|
||
|
float4 sum = s_inv; // Summation iteration 0 result
|
||
|
// Summation iterations 1, 2, and 3:
|
||
|
const float4 z_sq = z*z;
|
||
|
const float4 denom1 = s + float4(1.0);
|
||
|
const float4 denom2 = 2.0*s + float4(4.0);
|
||
|
const float4 denom3 = 6.0*s + float4(18.0);
|
||
|
//float4 denom4 = 24.0*s + float4(96.0);
|
||
|
sum -= z/denom1;
|
||
|
sum += z_sq/denom2;
|
||
|
sum -= z * z_sq/denom3;
|
||
|
//sum += z_sq * z_sq / denom4;
|
||
|
// Scale and return:
|
||
|
return scale * sum;
|
||
|
}
|
||
|
|
||
|
float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
|
||
|
{
|
||
|
// Float3 version:
|
||
|
const float3 scale = pow(z, s);
|
||
|
float3 sum = s_inv;
|
||
|
const float3 z_sq = z*z;
|
||
|
const float3 denom1 = s + float3(1.0);
|
||
|
const float3 denom2 = 2.0*s + float3(4.0);
|
||
|
const float3 denom3 = 6.0*s + float3(18.0);
|
||
|
sum -= z/denom1;
|
||
|
sum += z_sq/denom2;
|
||
|
sum -= z * z_sq/denom3;
|
||
|
return scale * sum;
|
||
|
}
|
||
|
|
||
|
float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
|
||
|
{
|
||
|
// Float2 version:
|
||
|
const float2 scale = pow(z, s);
|
||
|
float2 sum = s_inv;
|
||
|
const float2 z_sq = z*z;
|
||
|
const float2 denom1 = s + float2(1.0);
|
||
|
const float2 denom2 = 2.0*s + float2(4.0);
|
||
|
const float2 denom3 = 6.0*s + float2(18.0);
|
||
|
sum -= z/denom1;
|
||
|
sum += z_sq/denom2;
|
||
|
sum -= z * z_sq/denom3;
|
||
|
return scale * sum;
|
||
|
}
|
||
|
|
||
|
float ligamma_small_z_impl(const float s, const float z, const float s_inv)
|
||
|
{
|
||
|
// Float version:
|
||
|
const float scale = pow(z, s);
|
||
|
float sum = s_inv;
|
||
|
const float z_sq = z*z;
|
||
|
const float denom1 = s + 1.0;
|
||
|
const float denom2 = 2.0*s + 4.0;
|
||
|
const float denom3 = 6.0*s + 18.0;
|
||
|
sum -= z/denom1;
|
||
|
sum += z_sq/denom2;
|
||
|
sum -= z * z_sq/denom3;
|
||
|
return scale * sum;
|
||
|
}
|
||
|
|
||
|
// Upper incomplete gamma function for small s and large z (implementation):
|
||
|
float4 uigamma_large_z_impl(const float4 s, const float4 z)
|
||
|
{
|
||
|
// Requires: 1.) s < ~0.5
|
||
|
// 2.) z > ~0.775075
|
||
|
// Returns: Gauss's continued fraction representation for the upper
|
||
|
// incomplete gamma function (4 terms).
|
||
|
// The "rolled up" continued fraction looks like this. The denominator
|
||
|
// is truncated, and it's calculated "from the bottom up:"
|
||
|
// denom = float4('inf');
|
||
|
// float4 one = float4(1.0);
|
||
|
// for(int i = 4; i > 0; --i)
|
||
|
// {
|
||
|
// denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
|
||
|
// }
|
||
|
// Unrolled and constant-unfolded for madds and parallelism:
|
||
|
const float4 numerator = pow(z, s) * exp(-z);
|
||
|
float4 denom = float4(7.0) + z - s;
|
||
|
denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom;
|
||
|
denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom;
|
||
|
denom = float4(1.0) + z - s + (s - float4(1.0))/denom;
|
||
|
return numerator / denom;
|
||
|
}
|
||
|
|
||
|
float3 uigamma_large_z_impl(const float3 s, const float3 z)
|
||
|
{
|
||
|
// Float3 version:
|
||
|
const float3 numerator = pow(z, s) * exp(-z);
|
||
|
float3 denom = float3(7.0) + z - s;
|
||
|
denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom;
|
||
|
denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom;
|
||
|
denom = float3(1.0) + z - s + (s - float3(1.0))/denom;
|
||
|
return numerator / denom;
|
||
|
}
|
||
|
|
||
|
float2 uigamma_large_z_impl(const float2 s, const float2 z)
|
||
|
{
|
||
|
// Float2 version:
|
||
|
const float2 numerator = pow(z, s) * exp(-z);
|
||
|
float2 denom = float2(7.0) + z - s;
|
||
|
denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom;
|
||
|
denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom;
|
||
|
denom = float2(1.0) + z - s + (s - float2(1.0))/denom;
|
||
|
return numerator / denom;
|
||
|
}
|
||
|
|
||
|
float uigamma_large_z_impl(const float s, const float z)
|
||
|
{
|
||
|
// Float version:
|
||
|
const float numerator = pow(z, s) * exp(-z);
|
||
|
float denom = 7.0 + z - s;
|
||
|
denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
|
||
|
denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
|
||
|
denom = 1.0 + z - s + (s - 1.0)/denom;
|
||
|
return numerator / denom;
|
||
|
}
|
||
|
|
||
|
// Normalized lower incomplete gamma function for small s (implementation):
|
||
|
float4 normalized_ligamma_impl(const float4 s, const float4 z,
|
||
|
const float4 s_inv, const float4 gamma_s_inv)
|
||
|
{
|
||
|
// Requires: 1.) s < ~0.5
|
||
|
// 2.) s_inv = 1/s (precomputed for outside reuse)
|
||
|
// 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
|
||
|
// Returns: Approximate the normalized lower incomplete gamma function
|
||
|
// for s < 0.5. Since we only care about s < 0.5, we only need
|
||
|
// to evaluate two branches (not four) based on z. Each branch
|
||
|
// uses four terms, with a max relative error of ~0.00182. The
|
||
|
// branch threshold and specifics were adapted for fewer terms
|
||
|
// from Gil/Segura/Temme's paper here:
|
||
|
// http://oai.cwi.nl/oai/asset/20433/20433B.pdf
|
||
|
// Evaluate both branches: Real branches test slower even when available.
|
||
|
static const float4 thresh = float4(0.775075);
|
||
|
bool4 z_is_large;
|
||
|
z_is_large.x = z.x > thresh.x;
|
||
|
z_is_large.y = z.y > thresh.y;
|
||
|
z_is_large.z = z.z > thresh.z;
|
||
|
z_is_large.w = z.w > thresh.w;
|
||
|
const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
|
||
|
const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
|
||
|
// Combine the results from both branches:
|
||
|
bool4 inverse_z_is_large = not(z_is_large);
|
||
|
return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
|
||
|
}
|
||
|
|
||
|
float3 normalized_ligamma_impl(const float3 s, const float3 z,
|
||
|
const float3 s_inv, const float3 gamma_s_inv)
|
||
|
{
|
||
|
// Float3 version:
|
||
|
static const float3 thresh = float3(0.775075);
|
||
|
bool3 z_is_large;
|
||
|
z_is_large.x = z.x > thresh.x;
|
||
|
z_is_large.y = z.y > thresh.y;
|
||
|
z_is_large.z = z.z > thresh.z;
|
||
|
const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
|
||
|
const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
|
||
|
bool3 inverse_z_is_large = not(z_is_large);
|
||
|
return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
|
||
|
}
|
||
|
|
||
|
float2 normalized_ligamma_impl(const float2 s, const float2 z,
|
||
|
const float2 s_inv, const float2 gamma_s_inv)
|
||
|
{
|
||
|
// Float2 version:
|
||
|
static const float2 thresh = float2(0.775075);
|
||
|
bool2 z_is_large;
|
||
|
z_is_large.x = z.x > thresh.x;
|
||
|
z_is_large.y = z.y > thresh.y;
|
||
|
const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
|
||
|
const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
|
||
|
bool2 inverse_z_is_large = not(z_is_large);
|
||
|
return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
|
||
|
}
|
||
|
|
||
|
float normalized_ligamma_impl(const float s, const float z,
|
||
|
const float s_inv, const float gamma_s_inv)
|
||
|
{
|
||
|
// Float version:
|
||
|
static const float thresh = 0.775075;
|
||
|
const bool z_is_large = z > thresh;
|
||
|
const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
|
||
|
const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
|
||
|
return large_z * float(z_is_large) + small_z * float(!z_is_large);
|
||
|
}
|
||
|
|
||
|
// Normalized lower incomplete gamma function for small s:
|
||
|
float4 normalized_ligamma(const float4 s, const float4 z)
|
||
|
{
|
||
|
// Requires: s < ~0.5
|
||
|
// Returns: Approximate the normalized lower incomplete gamma function
|
||
|
// for s < 0.5. See normalized_ligamma_impl() for details.
|
||
|
const float4 s_inv = float4(1.0)/s;
|
||
|
const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv);
|
||
|
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
|
||
|
}
|
||
|
|
||
|
float3 normalized_ligamma(const float3 s, const float3 z)
|
||
|
{
|
||
|
// Float3 version:
|
||
|
const float3 s_inv = float3(1.0)/s;
|
||
|
const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv);
|
||
|
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
|
||
|
}
|
||
|
|
||
|
float2 normalized_ligamma(const float2 s, const float2 z)
|
||
|
{
|
||
|
// Float2 version:
|
||
|
const float2 s_inv = float2(1.0)/s;
|
||
|
const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv);
|
||
|
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
|
||
|
}
|
||
|
|
||
|
float normalized_ligamma(const float s, const float z)
|
||
|
{
|
||
|
// Float version:
|
||
|
const float s_inv = 1.0/s;
|
||
|
const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
|
||
|
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
|
||
|
}
|
||
|
|
||
|
#endif // SPECIAL_FUNCTIONS_H
|
||
|
|
||
|
//////////////////////////// END SPECIAL-FUNCTIONS ///////////////////////////
|
||
|
|
||
|
//////////////////////////////// END INCLUDES ////////////////////////////////
|
||
|
|
||
|
/////////////////////////////////// HELPERS //////////////////////////////////
|
||
|
|
||
|
inline float4 uv2_to_uv4(float2 tex_uv)
|
||
|
{
|
||
|
// Make a float2 uv offset safe for adding to float4 tex2Dlod coords:
|
||
|
return float4(tex_uv, 0.0, 0.0);
|
||
|
}
|
||
|
|
||
|
// Make a length squared helper macro (for usage with static constants):
|
||
|
#define LENGTH_SQ(vec) (dot(vec, vec))
|
||
|
|
||
|
inline float get_fast_gaussian_weight_sum_inv(const float sigma)
|
||
|
{
|
||
|
// We can use the Gaussian integral to calculate the asymptotic weight for
|
||
|
// the center pixel. Since the unnormalized center pixel weight is 1.0,
|
||
|
// the normalized weight is the same as the weight sum inverse. Given a
|
||
|
// large enough blur (9+), the asymptotic weight sum is close and faster:
|
||
|
// center_weight = 0.5 *
|
||
|
// (erf(0.5/(sigma*sqrt(2.0))) - erf(-0.5/(sigma*sqrt(2.0))))
|
||
|
// erf(-x) == -erf(x), so we get 0.5 * (2.0 * erf(blah blah)):
|
||
|
// However, we can get even faster results with curve-fitting. These are
|
||
|
// also closer than the asymptotic results, because they were constructed
|
||
|
// from 64 blurs sizes from [3, 131) and 255 equally-spaced sigmas from
|
||
|
// (0, blurN_std_dev), so the results for smaller sigmas are biased toward
|
||
|
// smaller blurs. The max error is 0.0031793913.
|
||
|
// Relative FPS: 134.3 with erf, 135.8 with curve-fitting.
|
||
|
//static const float temp = 0.5/sqrt(2.0);
|
||
|
//return erf(temp/sigma);
|
||
|
return min(exp(exp(0.348348412457428/
|
||
|
(sigma - 0.0860587260734721))), 0.399334576340352/sigma);
|
||
|
}
|
||
|
|
||
|
|
||
|
//////////////////// ARBITRARILY RESIZABLE SEPARABLE BLURS ///////////////////
|
||
|
|
||
|
float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Global requirements must be met (see file description).
|
||
|
// Returns: A 1D 11x Gaussian blurred texture lookup using a 11-tap blur.
|
||
|
// It may be mipmapped depending on settings and dxdy.
|
||
|
// Calculate Gaussian blur kernel weights and a normalization factor for
|
||
|
// distances of 0-4, ignoring constant factors (since we're normalizing).
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float w3 = exp(-9.0 * denom_inv);
|
||
|
const float w4 = exp(-16.0 * denom_inv);
|
||
|
const float w5 = exp(-25.0 * denom_inv);
|
||
|
const float weight_sum_inv = 1.0 /
|
||
|
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
|
||
|
// Statically normalize weights, sum weighted samples, and return. Blurs are
|
||
|
// currently optimized for dynamic weights.
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w5 * tex2D_linearize(tex, tex_uv - 5.0 * dxdy).rgb;
|
||
|
sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
|
||
|
sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
|
||
|
sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
|
||
|
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
|
||
|
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
|
||
|
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
|
||
|
sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
|
||
|
sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
|
||
|
sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
|
||
|
sum += w5 * tex2D_linearize(tex, tex_uv + 5.0 * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Global requirements must be met (see file description).
|
||
|
// Returns: A 1D 9x Gaussian blurred texture lookup using a 9-tap blur.
|
||
|
// It may be mipmapped depending on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float w3 = exp(-9.0 * denom_inv);
|
||
|
const float w4 = exp(-16.0 * denom_inv);
|
||
|
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
|
||
|
// Statically normalize weights, sum weighted samples, and return:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
|
||
|
sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
|
||
|
sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
|
||
|
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
|
||
|
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
|
||
|
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
|
||
|
sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
|
||
|
sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
|
||
|
sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Global requirements must be met (see file description).
|
||
|
// Returns: A 1D 7x Gaussian blurred texture lookup using a 7-tap blur.
|
||
|
// It may be mipmapped depending on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float w3 = exp(-9.0 * denom_inv);
|
||
|
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
|
||
|
// Statically normalize weights, sum weighted samples, and return:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
|
||
|
sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
|
||
|
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
|
||
|
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
|
||
|
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
|
||
|
sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
|
||
|
sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Global requirements must be met (see file description).
|
||
|
// Returns: A 1D 5x Gaussian blurred texture lookup using a 5-tap blur.
|
||
|
// It may be mipmapped depending on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
|
||
|
// Statically normalize weights, sum weighted samples, and return:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
|
||
|
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
|
||
|
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
|
||
|
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
|
||
|
sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Global requirements must be met (see file description).
|
||
|
// Returns: A 1D 3x Gaussian blurred texture lookup using a 3-tap blur.
|
||
|
// It may be mipmapped depending on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
|
||
|
// Statically normalize weights, sum weighted samples, and return:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
|
||
|
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
|
||
|
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
|
||
|
/////////////////////////// FAST SEPARABLE BLURS ///////////////////////////
|
||
|
|
||
|
float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: 1.) Global requirements must be met (see file description).
|
||
|
// 2.) filter_linearN must = "true" in your .cgp file.
|
||
|
// 3.) For gamma-correct bilinear filtering, global
|
||
|
// gamma_aware_bilinear == true (from gamma-management.h)
|
||
|
// Returns: A 1D 11x Gaussian blurred texture lookup using 6 linear
|
||
|
// taps. It may be mipmapped depending on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float w3 = exp(-9.0 * denom_inv);
|
||
|
const float w4 = exp(-16.0 * denom_inv);
|
||
|
const float w5 = exp(-25.0 * denom_inv);
|
||
|
const float weight_sum_inv = 1.0 /
|
||
|
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
|
||
|
// Calculate combined weights and linear sample ratios between texel pairs.
|
||
|
// The center texel (with weight w0) is used twice, so halve its weight.
|
||
|
const float w01 = w0 * 0.5 + w1;
|
||
|
const float w23 = w2 + w3;
|
||
|
const float w45 = w4 + w5;
|
||
|
const float w01_ratio = w1/w01;
|
||
|
const float w23_ratio = w3/w23;
|
||
|
const float w45_ratio = w5/w45;
|
||
|
// Statically normalize weights, sum weighted samples, and return:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w45 * tex2D_linearize(tex, tex_uv - (4.0 + w45_ratio) * dxdy).rgb;
|
||
|
sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
|
||
|
sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
|
||
|
sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
|
||
|
sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
|
||
|
sum += w45 * tex2D_linearize(tex, tex_uv + (4.0 + w45_ratio) * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Same as tex2Dblur11()
|
||
|
// Returns: A 1D 9x Gaussian blurred texture lookup using 1 nearest
|
||
|
// neighbor and 4 linear taps. It may be mipmapped depending
|
||
|
// on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float w3 = exp(-9.0 * denom_inv);
|
||
|
const float w4 = exp(-16.0 * denom_inv);
|
||
|
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
|
||
|
// Calculate combined weights and linear sample ratios between texel pairs.
|
||
|
const float w12 = w1 + w2;
|
||
|
const float w34 = w3 + w4;
|
||
|
const float w12_ratio = w2/w12;
|
||
|
const float w34_ratio = w4/w34;
|
||
|
// Statically normalize weights, sum weighted samples, and return:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w34 * tex2D_linearize(tex, tex_uv - (3.0 + w34_ratio) * dxdy).rgb;
|
||
|
sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
|
||
|
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
|
||
|
sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
|
||
|
sum += w34 * tex2D_linearize(tex, tex_uv + (3.0 + w34_ratio) * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Same as tex2Dblur11()
|
||
|
// Returns: A 1D 7x Gaussian blurred texture lookup using 4 linear
|
||
|
// taps. It may be mipmapped depending on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float w3 = exp(-9.0 * denom_inv);
|
||
|
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
|
||
|
// Calculate combined weights and linear sample ratios between texel pairs.
|
||
|
// The center texel (with weight w0) is used twice, so halve its weight.
|
||
|
const float w01 = w0 * 0.5 + w1;
|
||
|
const float w23 = w2 + w3;
|
||
|
const float w01_ratio = w1/w01;
|
||
|
const float w23_ratio = w3/w23;
|
||
|
// Statically normalize weights, sum weighted samples, and return:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
|
||
|
sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
|
||
|
sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
|
||
|
sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Same as tex2Dblur11()
|
||
|
// Returns: A 1D 5x Gaussian blurred texture lookup using 1 nearest
|
||
|
// neighbor and 2 linear taps. It may be mipmapped depending
|
||
|
// on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
|
||
|
// Calculate combined weights and linear sample ratios between texel pairs.
|
||
|
const float w12 = w1 + w2;
|
||
|
const float w12_ratio = w2/w12;
|
||
|
// Statically normalize weights, sum weighted samples, and return:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
|
||
|
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
|
||
|
sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Same as tex2Dblur11()
|
||
|
// Returns: A 1D 3x Gaussian blurred texture lookup using 2 linear
|
||
|
// taps. It may be mipmapped depending on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
|
||
|
// Calculate combined weights and linear sample ratios between texel pairs.
|
||
|
// The center texel (with weight w0) is used twice, so halve its weight.
|
||
|
const float w01 = w0 * 0.5 + w1;
|
||
|
const float w01_ratio = w1/w01;
|
||
|
// Weights for all samples are the same, so just average them:
|
||
|
return 0.5 * (
|
||
|
tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb +
|
||
|
tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb);
|
||
|
}
|
||
|
|
||
|
|
||
|
//////////////////////////// HUGE SEPARABLE BLURS ////////////////////////////
|
||
|
|
||
|
// Huge separable blurs come only in "fast" versions.
|
||
|
float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Same as tex2Dblur11()
|
||
|
// Returns: A 1D 43x Gaussian blurred texture lookup using 22 linear
|
||
|
// taps. It may be mipmapped depending on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float w3 = exp(-9.0 * denom_inv);
|
||
|
const float w4 = exp(-16.0 * denom_inv);
|
||
|
const float w5 = exp(-25.0 * denom_inv);
|
||
|
const float w6 = exp(-36.0 * denom_inv);
|
||
|
const float w7 = exp(-49.0 * denom_inv);
|
||
|
const float w8 = exp(-64.0 * denom_inv);
|
||
|
const float w9 = exp(-81.0 * denom_inv);
|
||
|
const float w10 = exp(-100.0 * denom_inv);
|
||
|
const float w11 = exp(-121.0 * denom_inv);
|
||
|
const float w12 = exp(-144.0 * denom_inv);
|
||
|
const float w13 = exp(-169.0 * denom_inv);
|
||
|
const float w14 = exp(-196.0 * denom_inv);
|
||
|
const float w15 = exp(-225.0 * denom_inv);
|
||
|
const float w16 = exp(-256.0 * denom_inv);
|
||
|
const float w17 = exp(-289.0 * denom_inv);
|
||
|
const float w18 = exp(-324.0 * denom_inv);
|
||
|
const float w19 = exp(-361.0 * denom_inv);
|
||
|
const float w20 = exp(-400.0 * denom_inv);
|
||
|
const float w21 = exp(-441.0 * denom_inv);
|
||
|
//const float weight_sum_inv = 1.0 /
|
||
|
// (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 +
|
||
|
// w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
|
||
|
const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
|
||
|
// Calculate combined weights and linear sample ratios between texel pairs.
|
||
|
// The center texel (with weight w0) is used twice, so halve its weight.
|
||
|
const float w0_1 = w0 * 0.5 + w1;
|
||
|
const float w2_3 = w2 + w3;
|
||
|
const float w4_5 = w4 + w5;
|
||
|
const float w6_7 = w6 + w7;
|
||
|
const float w8_9 = w8 + w9;
|
||
|
const float w10_11 = w10 + w11;
|
||
|
const float w12_13 = w12 + w13;
|
||
|
const float w14_15 = w14 + w15;
|
||
|
const float w16_17 = w16 + w17;
|
||
|
const float w18_19 = w18 + w19;
|
||
|
const float w20_21 = w20 + w21;
|
||
|
const float w0_1_ratio = w1/w0_1;
|
||
|
const float w2_3_ratio = w3/w2_3;
|
||
|
const float w4_5_ratio = w5/w4_5;
|
||
|
const float w6_7_ratio = w7/w6_7;
|
||
|
const float w8_9_ratio = w9/w8_9;
|
||
|
const float w10_11_ratio = w11/w10_11;
|
||
|
const float w12_13_ratio = w13/w12_13;
|
||
|
const float w14_15_ratio = w15/w14_15;
|
||
|
const float w16_17_ratio = w17/w16_17;
|
||
|
const float w18_19_ratio = w19/w18_19;
|
||
|
const float w20_21_ratio = w21/w20_21;
|
||
|
// Statically normalize weights, sum weighted samples, and return:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w20_21 * tex2D_linearize(tex, tex_uv - (20.0 + w20_21_ratio) * dxdy).rgb;
|
||
|
sum += w18_19 * tex2D_linearize(tex, tex_uv - (18.0 + w18_19_ratio) * dxdy).rgb;
|
||
|
sum += w16_17 * tex2D_linearize(tex, tex_uv - (16.0 + w16_17_ratio) * dxdy).rgb;
|
||
|
sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
|
||
|
sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
|
||
|
sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
|
||
|
sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
|
||
|
sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
|
||
|
sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
|
||
|
sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
|
||
|
sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
|
||
|
sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
|
||
|
sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
|
||
|
sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
|
||
|
sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
|
||
|
sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
|
||
|
sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
|
||
|
sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
|
||
|
sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
|
||
|
sum += w16_17 * tex2D_linearize(tex, tex_uv + (16.0 + w16_17_ratio) * dxdy).rgb;
|
||
|
sum += w18_19 * tex2D_linearize(tex, tex_uv + (18.0 + w18_19_ratio) * dxdy).rgb;
|
||
|
sum += w20_21 * tex2D_linearize(tex, tex_uv + (20.0 + w20_21_ratio) * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Same as tex2Dblur11()
|
||
|
// Returns: A 1D 31x Gaussian blurred texture lookup using 16 linear
|
||
|
// taps. It may be mipmapped depending on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float w3 = exp(-9.0 * denom_inv);
|
||
|
const float w4 = exp(-16.0 * denom_inv);
|
||
|
const float w5 = exp(-25.0 * denom_inv);
|
||
|
const float w6 = exp(-36.0 * denom_inv);
|
||
|
const float w7 = exp(-49.0 * denom_inv);
|
||
|
const float w8 = exp(-64.0 * denom_inv);
|
||
|
const float w9 = exp(-81.0 * denom_inv);
|
||
|
const float w10 = exp(-100.0 * denom_inv);
|
||
|
const float w11 = exp(-121.0 * denom_inv);
|
||
|
const float w12 = exp(-144.0 * denom_inv);
|
||
|
const float w13 = exp(-169.0 * denom_inv);
|
||
|
const float w14 = exp(-196.0 * denom_inv);
|
||
|
const float w15 = exp(-225.0 * denom_inv);
|
||
|
//const float weight_sum_inv = 1.0 /
|
||
|
// (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 +
|
||
|
// w9 + w10 + w11 + w12 + w13 + w14 + w15));
|
||
|
const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
|
||
|
// Calculate combined weights and linear sample ratios between texel pairs.
|
||
|
// The center texel (with weight w0) is used twice, so halve its weight.
|
||
|
const float w0_1 = w0 * 0.5 + w1;
|
||
|
const float w2_3 = w2 + w3;
|
||
|
const float w4_5 = w4 + w5;
|
||
|
const float w6_7 = w6 + w7;
|
||
|
const float w8_9 = w8 + w9;
|
||
|
const float w10_11 = w10 + w11;
|
||
|
const float w12_13 = w12 + w13;
|
||
|
const float w14_15 = w14 + w15;
|
||
|
const float w0_1_ratio = w1/w0_1;
|
||
|
const float w2_3_ratio = w3/w2_3;
|
||
|
const float w4_5_ratio = w5/w4_5;
|
||
|
const float w6_7_ratio = w7/w6_7;
|
||
|
const float w8_9_ratio = w9/w8_9;
|
||
|
const float w10_11_ratio = w11/w10_11;
|
||
|
const float w12_13_ratio = w13/w12_13;
|
||
|
const float w14_15_ratio = w15/w14_15;
|
||
|
// Statically normalize weights, sum weighted samples, and return:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
|
||
|
sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
|
||
|
sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
|
||
|
sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
|
||
|
sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
|
||
|
sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
|
||
|
sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
|
||
|
sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
|
||
|
sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
|
||
|
sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
|
||
|
sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
|
||
|
sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
|
||
|
sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
|
||
|
sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
|
||
|
sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
|
||
|
sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Same as tex2Dblur11()
|
||
|
// Returns: A 1D 25x Gaussian blurred texture lookup using 1 nearest
|
||
|
// neighbor and 12 linear taps. It may be mipmapped depending
|
||
|
// on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float w3 = exp(-9.0 * denom_inv);
|
||
|
const float w4 = exp(-16.0 * denom_inv);
|
||
|
const float w5 = exp(-25.0 * denom_inv);
|
||
|
const float w6 = exp(-36.0 * denom_inv);
|
||
|
const float w7 = exp(-49.0 * denom_inv);
|
||
|
const float w8 = exp(-64.0 * denom_inv);
|
||
|
const float w9 = exp(-81.0 * denom_inv);
|
||
|
const float w10 = exp(-100.0 * denom_inv);
|
||
|
const float w11 = exp(-121.0 * denom_inv);
|
||
|
const float w12 = exp(-144.0 * denom_inv);
|
||
|
//const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
|
||
|
// w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
|
||
|
const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
|
||
|
// Calculate combined weights and linear sample ratios between texel pairs.
|
||
|
const float w1_2 = w1 + w2;
|
||
|
const float w3_4 = w3 + w4;
|
||
|
const float w5_6 = w5 + w6;
|
||
|
const float w7_8 = w7 + w8;
|
||
|
const float w9_10 = w9 + w10;
|
||
|
const float w11_12 = w11 + w12;
|
||
|
const float w1_2_ratio = w2/w1_2;
|
||
|
const float w3_4_ratio = w4/w3_4;
|
||
|
const float w5_6_ratio = w6/w5_6;
|
||
|
const float w7_8_ratio = w8/w7_8;
|
||
|
const float w9_10_ratio = w10/w9_10;
|
||
|
const float w11_12_ratio = w12/w11_12;
|
||
|
// Statically normalize weights, sum weighted samples, and return:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w11_12 * tex2D_linearize(tex, tex_uv - (11.0 + w11_12_ratio) * dxdy).rgb;
|
||
|
sum += w9_10 * tex2D_linearize(tex, tex_uv - (9.0 + w9_10_ratio) * dxdy).rgb;
|
||
|
sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
|
||
|
sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
|
||
|
sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
|
||
|
sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
|
||
|
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
|
||
|
sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
|
||
|
sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
|
||
|
sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
|
||
|
sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
|
||
|
sum += w9_10 * tex2D_linearize(tex, tex_uv + (9.0 + w9_10_ratio) * dxdy).rgb;
|
||
|
sum += w11_12 * tex2D_linearize(tex, tex_uv + (11.0 + w11_12_ratio) * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Same as tex2Dblur11()
|
||
|
// Returns: A 1D 17x Gaussian blurred texture lookup using 1 nearest
|
||
|
// neighbor and 8 linear taps. It may be mipmapped depending
|
||
|
// on settings and dxdy.
|
||
|
// First get the texel weights and normalization factor as above.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float w3 = exp(-9.0 * denom_inv);
|
||
|
const float w4 = exp(-16.0 * denom_inv);
|
||
|
const float w5 = exp(-25.0 * denom_inv);
|
||
|
const float w6 = exp(-36.0 * denom_inv);
|
||
|
const float w7 = exp(-49.0 * denom_inv);
|
||
|
const float w8 = exp(-64.0 * denom_inv);
|
||
|
//const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
|
||
|
// w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
|
||
|
const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
|
||
|
// Calculate combined weights and linear sample ratios between texel pairs.
|
||
|
const float w1_2 = w1 + w2;
|
||
|
const float w3_4 = w3 + w4;
|
||
|
const float w5_6 = w5 + w6;
|
||
|
const float w7_8 = w7 + w8;
|
||
|
const float w1_2_ratio = w2/w1_2;
|
||
|
const float w3_4_ratio = w4/w3_4;
|
||
|
const float w5_6_ratio = w6/w5_6;
|
||
|
const float w7_8_ratio = w8/w7_8;
|
||
|
// Statically normalize weights, sum weighted samples, and return:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
|
||
|
sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
|
||
|
sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
|
||
|
sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
|
||
|
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
|
||
|
sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
|
||
|
sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
|
||
|
sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
|
||
|
sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
|
||
|
//////////////////// ARBITRARILY RESIZABLE ONE-PASS BLURS ////////////////////
|
||
|
|
||
|
float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Requires: Global requirements must be met (see file description).
|
||
|
// Returns: A 3x3 Gaussian blurred mipmapped texture lookup of the
|
||
|
// resized input.
|
||
|
// Description:
|
||
|
// This is the only arbitrarily resizable one-pass blur; tex2Dblur5x5resize
|
||
|
// would perform like tex2Dblur9x9, MUCH slower than tex2Dblur5resize.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
// Load each sample. We need all 3x3 samples. Quad-pixel communication
|
||
|
// won't help either: This should perform like tex2Dblur5x5, but sharing a
|
||
|
// 4x4 sample field would perform more like tex2Dblur8x8shared (worse).
|
||
|
const float2 sample4_uv = tex_uv;
|
||
|
const float2 dx = float2(dxdy.x, 0.0);
|
||
|
const float2 dy = float2(0.0, dxdy.y);
|
||
|
const float2 sample1_uv = sample4_uv - dy;
|
||
|
const float2 sample7_uv = sample4_uv + dy;
|
||
|
const float3 sample0 = tex2D_linearize(tex, sample1_uv - dx).rgb;
|
||
|
const float3 sample1 = tex2D_linearize(tex, sample1_uv).rgb;
|
||
|
const float3 sample2 = tex2D_linearize(tex, sample1_uv + dx).rgb;
|
||
|
const float3 sample3 = tex2D_linearize(tex, sample4_uv - dx).rgb;
|
||
|
const float3 sample4 = tex2D_linearize(tex, sample4_uv).rgb;
|
||
|
const float3 sample5 = tex2D_linearize(tex, sample4_uv + dx).rgb;
|
||
|
const float3 sample6 = tex2D_linearize(tex, sample7_uv - dx).rgb;
|
||
|
const float3 sample7 = tex2D_linearize(tex, sample7_uv).rgb;
|
||
|
const float3 sample8 = tex2D_linearize(tex, sample7_uv + dx).rgb;
|
||
|
// Statically compute Gaussian sample weights:
|
||
|
const float w4 = 1.0;
|
||
|
const float w1_3_5_7 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv);
|
||
|
const float w0_2_6_8 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
|
||
|
const float weight_sum_inv = 1.0/(w4 + 4.0 * (w1_3_5_7 + w0_2_6_8));
|
||
|
// Weight and sum the samples:
|
||
|
const float3 sum = w4 * sample4 +
|
||
|
w1_3_5_7 * (sample1 + sample3 + sample5 + sample7) +
|
||
|
w0_2_6_8 * (sample0 + sample2 + sample6 + sample8);
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
|
||
|
//////////////////////////// FASTER ONE-PASS BLURS ///////////////////////////
|
||
|
|
||
|
float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Perform a 1-pass 9x9 blur with 5x5 bilinear samples.
|
||
|
// Requires: Same as tex2Dblur9()
|
||
|
// Returns: A 9x9 Gaussian blurred mipmapped texture lookup composed of
|
||
|
// 5x5 carefully selected bilinear samples.
|
||
|
// Description:
|
||
|
// Perform a 1-pass 9x9 blur with 5x5 bilinear samples. Adjust the
|
||
|
// bilinear sample location to reflect the true Gaussian weights for each
|
||
|
// underlying texel. The following diagram illustrates the relative
|
||
|
// locations of bilinear samples. Each sample with the same number has the
|
||
|
// same weight (notice the symmetry). The letters a, b, c, d distinguish
|
||
|
// quadrants, and the letters U, D, L, R, C (up, down, left, right, center)
|
||
|
// distinguish 1D directions along the line containing the pixel center:
|
||
|
// 6a 5a 2U 5b 6b
|
||
|
// 4a 3a 1U 3b 4b
|
||
|
// 2L 1L 0C 1R 2R
|
||
|
// 4c 3c 1D 3d 4d
|
||
|
// 6c 5c 2D 5d 6d
|
||
|
// The following diagram illustrates the underlying equally spaced texels,
|
||
|
// named after the sample that accesses them and subnamed by their location
|
||
|
// within their 2x2, 2x1, 1x2, or 1x1 texel block:
|
||
|
// 6a4 6a3 5a4 5a3 2U2 5b3 5b4 6b3 6b4
|
||
|
// 6a2 6a1 5a2 5a1 2U1 5b1 5b2 6b1 6b2
|
||
|
// 4a4 4a3 3a4 3a3 1U2 3b3 3b4 4b3 4b4
|
||
|
// 4a2 4a1 3a2 3a1 1U1 3b1 3b2 4b1 4b2
|
||
|
// 2L2 2L1 1L2 1L1 0C1 1R1 1R2 2R1 2R2
|
||
|
// 4c2 4c1 3c2 3c1 1D1 3d1 3d2 4d1 4d2
|
||
|
// 4c4 4c3 3c4 3c3 1D2 3d3 3d4 4d3 4d4
|
||
|
// 6c2 6c1 5c2 5c1 2D1 5d1 5d2 6d1 6d2
|
||
|
// 6c4 6c3 5c4 5c3 2D2 5d3 5d4 6d3 6d4
|
||
|
// Note there is only one C texel and only two texels for each U, D, L, or
|
||
|
// R sample. The center sample is effectively a nearest neighbor sample,
|
||
|
// and the U/D/L/R samples use 1D linear filtering. All other texels are
|
||
|
// read with bilinear samples somewhere within their 2x2 texel blocks.
|
||
|
|
||
|
// COMPUTE TEXTURE COORDS:
|
||
|
// Statically compute sampling offsets within each 2x2 texel block, based
|
||
|
// on 1D sampling ratios between texels [1, 2] and [3, 4] texels away from
|
||
|
// the center, and reuse them independently for both dimensions. Compute
|
||
|
// these offsets based on the relative 1D Gaussian weights of the texels
|
||
|
// in question. (w1off means "Gaussian weight for the texel 1.0 texels
|
||
|
// away from the pixel center," etc.).
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w1off = exp(-1.0 * denom_inv);
|
||
|
const float w2off = exp(-4.0 * denom_inv);
|
||
|
const float w3off = exp(-9.0 * denom_inv);
|
||
|
const float w4off = exp(-16.0 * denom_inv);
|
||
|
const float texel1to2ratio = w2off/(w1off + w2off);
|
||
|
const float texel3to4ratio = w4off/(w3off + w4off);
|
||
|
// Statically compute texel offsets from the fragment center to each
|
||
|
// bilinear sample in the bottom-right quadrant, including x-axis-aligned:
|
||
|
const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0);
|
||
|
const float2 sample2R_texel_offset = float2(3.0, 0.0) + float2(texel3to4ratio, 0.0);
|
||
|
const float2 sample3d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio);
|
||
|
const float2 sample4d_texel_offset = float2(3.0, 1.0) + float2(texel3to4ratio, texel1to2ratio);
|
||
|
const float2 sample5d_texel_offset = float2(1.0, 3.0) + float2(texel1to2ratio, texel3to4ratio);
|
||
|
const float2 sample6d_texel_offset = float2(3.0, 3.0) + float2(texel3to4ratio, texel3to4ratio);
|
||
|
|
||
|
// CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
|
||
|
// Statically compute Gaussian texel weights for the bottom-right quadrant.
|
||
|
// Read underscores as "and."
|
||
|
const float w1R1 = w1off;
|
||
|
const float w1R2 = w2off;
|
||
|
const float w2R1 = w3off;
|
||
|
const float w2R2 = w4off;
|
||
|
const float w3d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
|
||
|
const float w3d2_3d3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
|
||
|
const float w3d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
|
||
|
const float w4d1_5d1 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv);
|
||
|
const float w4d2_5d3 = exp(-LENGTH_SQ(float2(4.0, 1.0)) * denom_inv);
|
||
|
const float w4d3_5d2 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv);
|
||
|
const float w4d4_5d4 = exp(-LENGTH_SQ(float2(4.0, 2.0)) * denom_inv);
|
||
|
const float w6d1 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv);
|
||
|
const float w6d2_6d3 = exp(-LENGTH_SQ(float2(4.0, 3.0)) * denom_inv);
|
||
|
const float w6d4 = exp(-LENGTH_SQ(float2(4.0, 4.0)) * denom_inv);
|
||
|
// Statically add texel weights in each sample to get sample weights:
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = w1R1 + w1R2;
|
||
|
const float w2 = w2R1 + w2R2;
|
||
|
const float w3 = w3d1 + 2.0 * w3d2_3d3 + w3d4;
|
||
|
const float w4 = w4d1_5d1 + w4d2_5d3 + w4d3_5d2 + w4d4_5d4;
|
||
|
const float w5 = w4;
|
||
|
const float w6 = w6d1 + 2.0 * w6d2_6d3 + w6d4;
|
||
|
// Get the weight sum inverse (normalization factor):
|
||
|
const float weight_sum_inv =
|
||
|
1.0/(w0 + 4.0 * (w1 + w2 + w3 + w4 + w5 + w6));
|
||
|
|
||
|
// LOAD TEXTURE SAMPLES:
|
||
|
// Load all 25 samples (1 nearest, 8 linear, 16 bilinear) using symmetry:
|
||
|
const float2 mirror_x = float2(-1.0, 1.0);
|
||
|
const float2 mirror_y = float2(1.0, -1.0);
|
||
|
const float2 mirror_xy = float2(-1.0, -1.0);
|
||
|
const float2 dxdy_mirror_x = dxdy * mirror_x;
|
||
|
const float2 dxdy_mirror_y = dxdy * mirror_y;
|
||
|
const float2 dxdy_mirror_xy = dxdy * mirror_xy;
|
||
|
// Sampling order doesn't seem to affect performance, so just be clear:
|
||
|
const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
|
||
|
const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
|
||
|
const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
|
||
|
const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
|
||
|
const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
|
||
|
const float3 sample2R = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset).rgb;
|
||
|
const float3 sample2D = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset.yx).rgb;
|
||
|
const float3 sample2L = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset).rgb;
|
||
|
const float3 sample2U = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset.yx).rgb;
|
||
|
const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
|
||
|
const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
|
||
|
const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
|
||
|
const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
|
||
|
const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
|
||
|
const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
|
||
|
const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
|
||
|
const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
|
||
|
const float3 sample5d = tex2D_linearize(tex, tex_uv + dxdy * sample5d_texel_offset).rgb;
|
||
|
const float3 sample5c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample5d_texel_offset).rgb;
|
||
|
const float3 sample5b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample5d_texel_offset).rgb;
|
||
|
const float3 sample5a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample5d_texel_offset).rgb;
|
||
|
const float3 sample6d = tex2D_linearize(tex, tex_uv + dxdy * sample6d_texel_offset).rgb;
|
||
|
const float3 sample6c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample6d_texel_offset).rgb;
|
||
|
const float3 sample6b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample6d_texel_offset).rgb;
|
||
|
const float3 sample6a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample6d_texel_offset).rgb;
|
||
|
|
||
|
// SUM WEIGHTED SAMPLES:
|
||
|
// Statically normalize weights (so total = 1.0), and sum weighted samples.
|
||
|
float3 sum = w0 * sample0C;
|
||
|
sum += w1 * (sample1R + sample1D + sample1L + sample1U);
|
||
|
sum += w2 * (sample2R + sample2D + sample2L + sample2U);
|
||
|
sum += w3 * (sample3d + sample3c + sample3b + sample3a);
|
||
|
sum += w4 * (sample4d + sample4c + sample4b + sample4a);
|
||
|
sum += w5 * (sample5d + sample5c + sample5b + sample5a);
|
||
|
sum += w6 * (sample6d + sample6c + sample6b + sample6a);
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Perform a 1-pass 7x7 blur with 5x5 bilinear samples.
|
||
|
// Requires: Same as tex2Dblur9()
|
||
|
// Returns: A 7x7 Gaussian blurred mipmapped texture lookup composed of
|
||
|
// 4x4 carefully selected bilinear samples.
|
||
|
// Description:
|
||
|
// First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
|
||
|
// blur mixes concepts from both. The sample layout is as follows:
|
||
|
// 4a 3a 3b 4b
|
||
|
// 2a 1a 1b 2b
|
||
|
// 2c 1c 1d 2d
|
||
|
// 4c 3c 3d 4d
|
||
|
// The texel layout is as follows. Note that samples 3a/3b, 1a/1b, 1c/1d,
|
||
|
// and 3c/3d share a vertical column of texels, and samples 2a/2c, 1a/1c,
|
||
|
// 1b/1d, and 2b/2d share a horizontal row of texels (all sample1's share
|
||
|
// the center texel):
|
||
|
// 4a4 4a3 3a4 3ab3 3b4 4b3 4b4
|
||
|
// 4a2 4a1 3a2 3ab1 3b2 4b1 4b2
|
||
|
// 2a4 2a3 1a4 1ab3 1b4 2b3 2b4
|
||
|
// 2ac2 2ac1 1ac2 1* 1bd2 2bd1 2bd2
|
||
|
// 2c4 2c3 1c4 1cd3 1d4 2d3 2d4
|
||
|
// 4c2 4c1 3c2 3cd1 3d2 4d1 4d2
|
||
|
// 4c4 4c3 3c4 3cd3 3d4 4d3 4d4
|
||
|
|
||
|
// COMPUTE TEXTURE COORDS:
|
||
|
// Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0off = 1.0;
|
||
|
const float w1off = exp(-1.0 * denom_inv);
|
||
|
const float w2off = exp(-4.0 * denom_inv);
|
||
|
const float w3off = exp(-9.0 * denom_inv);
|
||
|
const float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
|
||
|
const float texel2to3ratio = w3off/(w2off + w3off);
|
||
|
// Statically compute texel offsets from the fragment center to each
|
||
|
// bilinear sample in the bottom-right quadrant, including axis-aligned:
|
||
|
const float2 sample1d_texel_offset = float2(texel0to1ratio, texel0to1ratio);
|
||
|
const float2 sample2d_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
|
||
|
const float2 sample3d_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
|
||
|
const float2 sample4d_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
|
||
|
|
||
|
// CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
|
||
|
// Statically compute Gaussian texel weights for the bottom-right quadrant.
|
||
|
// Read underscores as "and."
|
||
|
const float w1abcd = 1.0;
|
||
|
const float w1bd2_1cd3 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv);
|
||
|
const float w2bd1_3cd1 = exp(-LENGTH_SQ(float2(2.0, 0.0)) * denom_inv);
|
||
|
const float w2bd2_3cd2 = exp(-LENGTH_SQ(float2(3.0, 0.0)) * denom_inv);
|
||
|
const float w1d4 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
|
||
|
const float w2d3_3d2 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
|
||
|
const float w2d4_3d4 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv);
|
||
|
const float w4d1 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
|
||
|
const float w4d2_4d3 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv);
|
||
|
const float w4d4 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv);
|
||
|
// Statically add texel weights in each sample to get sample weights.
|
||
|
// Split weights for shared texels between samples sharing them:
|
||
|
const float w1 = w1abcd * 0.25 + w1bd2_1cd3 + w1d4;
|
||
|
const float w2_3 = (w2bd1_3cd1 + w2bd2_3cd2) * 0.5 + w2d3_3d2 + w2d4_3d4;
|
||
|
const float w4 = w4d1 + 2.0 * w4d2_4d3 + w4d4;
|
||
|
// Get the weight sum inverse (normalization factor):
|
||
|
const float weight_sum_inv =
|
||
|
1.0/(4.0 * (w1 + 2.0 * w2_3 + w4));
|
||
|
|
||
|
// LOAD TEXTURE SAMPLES:
|
||
|
// Load all 16 samples using symmetry:
|
||
|
const float2 mirror_x = float2(-1.0, 1.0);
|
||
|
const float2 mirror_y = float2(1.0, -1.0);
|
||
|
const float2 mirror_xy = float2(-1.0, -1.0);
|
||
|
const float2 dxdy_mirror_x = dxdy * mirror_x;
|
||
|
const float2 dxdy_mirror_y = dxdy * mirror_y;
|
||
|
const float2 dxdy_mirror_xy = dxdy * mirror_xy;
|
||
|
const float3 sample1a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample1d_texel_offset).rgb;
|
||
|
const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
|
||
|
const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
|
||
|
const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
|
||
|
const float3 sample1b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample1d_texel_offset).rgb;
|
||
|
const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
|
||
|
const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
|
||
|
const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
|
||
|
const float3 sample1c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample1d_texel_offset).rgb;
|
||
|
const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
|
||
|
const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
|
||
|
const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
|
||
|
const float3 sample1d = tex2D_linearize(tex, tex_uv + dxdy * sample1d_texel_offset).rgb;
|
||
|
const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
|
||
|
const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
|
||
|
const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
|
||
|
|
||
|
// SUM WEIGHTED SAMPLES:
|
||
|
// Statically normalize weights (so total = 1.0), and sum weighted samples.
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += w1 * (sample1a + sample1b + sample1c + sample1d);
|
||
|
sum += w2_3 * (sample2a + sample2b + sample2c + sample2d);
|
||
|
sum += w2_3 * (sample3a + sample3b + sample3c + sample3d);
|
||
|
sum += w4 * (sample4a + sample4b + sample4c + sample4d);
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Perform a 1-pass 5x5 blur with 3x3 bilinear samples.
|
||
|
// Requires: Same as tex2Dblur9()
|
||
|
// Returns: A 5x5 Gaussian blurred mipmapped texture lookup composed of
|
||
|
// 3x3 carefully selected bilinear samples.
|
||
|
// Description:
|
||
|
// First see the description for tex2Dblur9x9(). This blur uses the same
|
||
|
// concept and sample/texel locations except on a smaller scale. Samples:
|
||
|
// 2a 1U 2b
|
||
|
// 1L 0C 1R
|
||
|
// 2c 1D 2d
|
||
|
// Texels:
|
||
|
// 2a4 2a3 1U2 2b3 2b4
|
||
|
// 2a2 2a1 1U1 2b1 2b2
|
||
|
// 1L2 1L1 0C1 1R1 1R2
|
||
|
// 2c2 2c1 1D1 2d1 2d2
|
||
|
// 2c4 2c3 1D2 2d3 2d4
|
||
|
|
||
|
// COMPUTE TEXTURE COORDS:
|
||
|
// Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w1off = exp(-1.0 * denom_inv);
|
||
|
const float w2off = exp(-4.0 * denom_inv);
|
||
|
const float texel1to2ratio = w2off/(w1off + w2off);
|
||
|
// Statically compute texel offsets from the fragment center to each
|
||
|
// bilinear sample in the bottom-right quadrant, including x-axis-aligned:
|
||
|
const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0);
|
||
|
const float2 sample2d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio);
|
||
|
|
||
|
// CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
|
||
|
// Statically compute Gaussian texel weights for the bottom-right quadrant.
|
||
|
// Read underscores as "and."
|
||
|
const float w1R1 = w1off;
|
||
|
const float w1R2 = w2off;
|
||
|
const float w2d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
|
||
|
const float w2d2_3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
|
||
|
const float w2d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
|
||
|
// Statically add texel weights in each sample to get sample weights:
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = w1R1 + w1R2;
|
||
|
const float w2 = w2d1 + 2.0 * w2d2_3 + w2d4;
|
||
|
// Get the weight sum inverse (normalization factor):
|
||
|
const float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2));
|
||
|
|
||
|
// LOAD TEXTURE SAMPLES:
|
||
|
// Load all 9 samples (1 nearest, 4 linear, 4 bilinear) using symmetry:
|
||
|
const float2 mirror_x = float2(-1.0, 1.0);
|
||
|
const float2 mirror_y = float2(1.0, -1.0);
|
||
|
const float2 mirror_xy = float2(-1.0, -1.0);
|
||
|
const float2 dxdy_mirror_x = dxdy * mirror_x;
|
||
|
const float2 dxdy_mirror_y = dxdy * mirror_y;
|
||
|
const float2 dxdy_mirror_xy = dxdy * mirror_xy;
|
||
|
const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
|
||
|
const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
|
||
|
const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
|
||
|
const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
|
||
|
const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
|
||
|
const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
|
||
|
const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
|
||
|
const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
|
||
|
const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
|
||
|
|
||
|
// SUM WEIGHTED SAMPLES:
|
||
|
// Statically normalize weights (so total = 1.0), and sum weighted samples.
|
||
|
float3 sum = w0 * sample0C;
|
||
|
sum += w1 * (sample1R + sample1D + sample1L + sample1U);
|
||
|
sum += w2 * (sample2a + sample2b + sample2c + sample2d);
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// Perform a 1-pass 3x3 blur with 5x5 bilinear samples.
|
||
|
// Requires: Same as tex2Dblur9()
|
||
|
// Returns: A 3x3 Gaussian blurred mipmapped texture lookup composed of
|
||
|
// 2x2 carefully selected bilinear samples.
|
||
|
// Description:
|
||
|
// First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
|
||
|
// blur mixes concepts from both. The sample layout is as follows:
|
||
|
// 0a 0b
|
||
|
// 0c 0d
|
||
|
// The texel layout is as follows. Note that samples 0a/0b and 0c/0d share
|
||
|
// a vertical column of texels, and samples 0a/0c and 0b/0d share a
|
||
|
// horizontal row of texels (all samples share the center texel):
|
||
|
// 0a3 0ab2 0b3
|
||
|
// 0ac1 0*0 0bd1
|
||
|
// 0c3 0cd2 0d3
|
||
|
|
||
|
// COMPUTE TEXTURE COORDS:
|
||
|
// Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0off = 1.0;
|
||
|
const float w1off = exp(-1.0 * denom_inv);
|
||
|
const float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
|
||
|
// Statically compute texel offsets from the fragment center to each
|
||
|
// bilinear sample in the bottom-right quadrant, including axis-aligned:
|
||
|
const float2 sample0d_texel_offset = float2(texel0to1ratio, texel0to1ratio);
|
||
|
|
||
|
// LOAD TEXTURE SAMPLES:
|
||
|
// Load all 4 samples using symmetry:
|
||
|
const float2 mirror_x = float2(-1.0, 1.0);
|
||
|
const float2 mirror_y = float2(1.0, -1.0);
|
||
|
const float2 mirror_xy = float2(-1.0, -1.0);
|
||
|
const float2 dxdy_mirror_x = dxdy * mirror_x;
|
||
|
const float2 dxdy_mirror_y = dxdy * mirror_y;
|
||
|
const float2 dxdy_mirror_xy = dxdy * mirror_xy;
|
||
|
const float3 sample0a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample0d_texel_offset).rgb;
|
||
|
const float3 sample0b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample0d_texel_offset).rgb;
|
||
|
const float3 sample0c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample0d_texel_offset).rgb;
|
||
|
const float3 sample0d = tex2D_linearize(tex, tex_uv + dxdy * sample0d_texel_offset).rgb;
|
||
|
|
||
|
// SUM WEIGHTED SAMPLES:
|
||
|
// Weights for all samples are the same, so just average them:
|
||
|
return 0.25 * (sample0a + sample0b + sample0c + sample0d);
|
||
|
}
|
||
|
|
||
|
|
||
|
////////////////// LINEAR ONE-PASS BLURS WITH SHARED SAMPLES /////////////////
|
||
|
|
||
|
float3 tex2Dblur12x12shared(const sampler2D tex,
|
||
|
const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
|
||
|
const float sigma)
|
||
|
{
|
||
|
// Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
|
||
|
// Requires: 1.) Same as tex2Dblur9()
|
||
|
// 2.) ddx() and ddy() are present in the current Cg profile.
|
||
|
// 3.) The GPU driver is using fine/high-quality derivatives.
|
||
|
// 4.) quad_vector *correctly* describes the current fragment's
|
||
|
// location in its pixel quad, by the conventions noted in
|
||
|
// get_quad_vector[_naive].
|
||
|
// 5.) tex_uv.w = log2(IN.video_size/IN.output_size).y
|
||
|
// 6.) tex2Dlod() is present in the current Cg profile.
|
||
|
// Optional: Tune artifacts vs. excessive blurriness with the global
|
||
|
// float error_blurring.
|
||
|
// Returns: A blurred texture lookup using a "virtual" 12x12 Gaussian
|
||
|
// blur (a 6x6 blur of carefully selected bilinear samples)
|
||
|
// of the given mip level. There will be subtle inaccuracies,
|
||
|
// especially for small or high-frequency detailed sources.
|
||
|
// Description:
|
||
|
// Perform a 1-pass blur with shared texture lookups across a pixel quad.
|
||
|
// We'll get neighboring samples with high-quality ddx/ddy derivatives, as
|
||
|
// in GPU Pro 2, Chapter VI.2, "Shader Amortization using Pixel Quad
|
||
|
// Message Passing" by Eric Penner.
|
||
|
//
|
||
|
// Our "virtual" 12x12 blur will be comprised of ((6 - 1)^2)/4 + 3 = 12
|
||
|
// bilinear samples, where bilinear sampling positions are computed from
|
||
|
// the relative Gaussian weights of the 4 surrounding texels. The catch is
|
||
|
// that the appropriate texel weights and sample coords differ for each
|
||
|
// fragment, but we're reusing most of the same samples across a quad of
|
||
|
// destination fragments. (We do use unique coords for the four nearest
|
||
|
// samples at each fragment.) Mixing bilinear filtering and sample-sharing
|
||
|
// therefore introduces some error into the weights, and this can get nasty
|
||
|
// when the source image is small or high-frequency. Computing bilinear
|
||
|
// ratios based on weights at the sample field center results in sharpening
|
||
|
// and ringing artifacts, but we can move samples closer to halfway between
|
||
|
// texels to try blurring away the error (which can move features around by
|
||
|
// a texel or so). Tune this with the global float "error_blurring".
|
||
|
//
|
||
|
// The pixel quad's sample field covers 12x12 texels, accessed through 6x6
|
||
|
// bilinear (2x2 texel) taps. Each fragment depends on a window of 10x10
|
||
|
// texels (5x5 bilinear taps), and each fragment is responsible for loading
|
||
|
// a 6x6 texel quadrant as a 3x3 block of bilinear taps, plus 3 more taps
|
||
|
// to use unique bilinear coords for sample0* for each fragment. This
|
||
|
// diagram illustrates the relative locations of bilinear samples 1-9 for
|
||
|
// each quadrant a, b, c, d (note samples will not be equally spaced):
|
||
|
// 8a 7a 6a 6b 7b 8b
|
||
|
// 5a 4a 3a 3b 4b 5b
|
||
|
// 2a 1a 0a 0b 1b 2b
|
||
|
// 2c 1c 0c 0d 1d 2d
|
||
|
// 5c 4c 3c 3d 4d 5d
|
||
|
// 8c 7c 6c 6d 7d 8d
|
||
|
// The following diagram illustrates the underlying equally spaced texels,
|
||
|
// named after the sample that accesses them and subnamed by their location
|
||
|
// within their 2x2 texel block:
|
||
|
// 8a3 8a2 7a3 7a2 6a3 6a2 6b2 6b3 7b2 7b3 8b2 8b3
|
||
|
// 8a1 8a0 7a1 7a0 6a1 6a0 6b0 6b1 7b0 7b1 8b0 8b1
|
||
|
// 5a3 5a2 4a3 4a2 3a3 3a2 3b2 3b3 4b2 4b3 5b2 5b3
|
||
|
// 5a1 5a0 4a1 4a0 3a1 3a0 3b0 3b1 4b0 4b1 5b0 5b1
|
||
|
// 2a3 2a2 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 2b2 2b3
|
||
|
// 2a1 2a0 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 2b0 2b1
|
||
|
// 2c1 2c0 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 2d0 2d1
|
||
|
// 2c3 2c2 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 2d2 2d3
|
||
|
// 5c1 5c0 4c1 4c0 3c1 3c0 3d0 3d1 4d0 4d1 5d0 5d1
|
||
|
// 5c3 5c2 4c3 4c2 3c3 3c2 3d2 3d3 4d2 4d3 5d2 5d3
|
||
|
// 8c1 8c0 7c1 7c0 6c1 6c0 6d0 6d1 7d0 7d1 8d0 8d1
|
||
|
// 8c3 8c2 7c3 7c2 6c3 6c2 6d2 6d3 7d2 7d3 8d2 8d3
|
||
|
// With this symmetric arrangement, we don't have to know which absolute
|
||
|
// quadrant a sample lies in to assign kernel weights; it's enough to know
|
||
|
// the sample number and the relative quadrant of the sample (relative to
|
||
|
// the current quadrant):
|
||
|
// {current, adjacent x, adjacent y, diagonal}
|
||
|
|
||
|
// COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
|
||
|
// Statically compute sampling offsets within each 2x2 texel block, based
|
||
|
// on appropriate 1D Gaussian sampling ratio between texels [0, 1], [2, 3],
|
||
|
// and [4, 5] away from the fragment, and reuse them independently for both
|
||
|
// dimensions. Use the sample field center as the estimated destination,
|
||
|
// but nudge the result closer to halfway between texels to blur error.
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0off = 1.0;
|
||
|
const float w0_5off = exp(-(0.5*0.5) * denom_inv);
|
||
|
const float w1off = exp(-(1.0*1.0) * denom_inv);
|
||
|
const float w1_5off = exp(-(1.5*1.5) * denom_inv);
|
||
|
const float w2off = exp(-(2.0*2.0) * denom_inv);
|
||
|
const float w2_5off = exp(-(2.5*2.5) * denom_inv);
|
||
|
const float w3_5off = exp(-(3.5*3.5) * denom_inv);
|
||
|
const float w4_5off = exp(-(4.5*4.5) * denom_inv);
|
||
|
const float w5_5off = exp(-(5.5*5.5) * denom_inv);
|
||
|
const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
|
||
|
const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
|
||
|
const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring);
|
||
|
// We don't share sample0*, so use the nearest destination fragment:
|
||
|
const float texel0to1ratio_nearest = w1off/(w0off + w1off);
|
||
|
const float texel1to2ratio_nearest = w2off/(w1off + w2off);
|
||
|
// Statically compute texel offsets from the bottom-right fragment to each
|
||
|
// bilinear sample in the bottom-right quadrant:
|
||
|
const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
|
||
|
const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
|
||
|
const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
|
||
|
const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
|
||
|
const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
|
||
|
const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio);
|
||
|
const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
|
||
|
const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
|
||
|
const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio);
|
||
|
const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio);
|
||
|
const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio);
|
||
|
const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio);
|
||
|
|
||
|
// CALCULATE KERNEL WEIGHTS:
|
||
|
// Statically compute bilinear sample weights at each destination fragment
|
||
|
// based on the sum of their 4 underlying texel weights. Assume a same-
|
||
|
// resolution blur, so each symmetrically named sample weight will compute
|
||
|
// the same at every fragment in the pixel quad: We can therefore compute
|
||
|
// texel weights based only on the bottom-right quadrant (fragment at 0d0).
|
||
|
// Too avoid too much boilerplate code, use a macro to get all 4 texel
|
||
|
// weights for a bilinear sample based on the offset of its top-left texel:
|
||
|
#define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
|
||
|
(exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
|
||
|
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
|
||
|
exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
|
||
|
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
|
||
|
const float w8diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -6.0);
|
||
|
const float w7diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -6.0);
|
||
|
const float w6diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -6.0);
|
||
|
const float w6adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -6.0);
|
||
|
const float w7adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -6.0);
|
||
|
const float w8adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -6.0);
|
||
|
const float w5diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -4.0);
|
||
|
const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
|
||
|
const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
|
||
|
const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
|
||
|
const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
|
||
|
const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0);
|
||
|
const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -2.0);
|
||
|
const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
|
||
|
const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
|
||
|
const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
|
||
|
const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
|
||
|
const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0);
|
||
|
const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 0.0);
|
||
|
const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
|
||
|
const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
|
||
|
const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
|
||
|
const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
|
||
|
const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0);
|
||
|
const float w5adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 2.0);
|
||
|
const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
|
||
|
const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
|
||
|
const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
|
||
|
const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
|
||
|
const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0);
|
||
|
const float w8adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 4.0);
|
||
|
const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0);
|
||
|
const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0);
|
||
|
const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0);
|
||
|
const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0);
|
||
|
const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0);
|
||
|
#undef GET_TEXEL_QUAD_WEIGHTS
|
||
|
// Statically pack weights for runtime:
|
||
|
const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
|
||
|
const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
|
||
|
const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag);
|
||
|
const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
|
||
|
const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag);
|
||
|
const float4 w5 = float4(w5curr, w5adjx, w5adjy, w5diag);
|
||
|
const float4 w6 = float4(w6curr, w6adjx, w6adjy, w6diag);
|
||
|
const float4 w7 = float4(w7curr, w7adjx, w7adjy, w7diag);
|
||
|
const float4 w8 = float4(w8curr, w8adjx, w8adjy, w8diag);
|
||
|
// Get the weight sum inverse (normalization factor):
|
||
|
const float4 weight_sum4 = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8;
|
||
|
const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw;
|
||
|
const float weight_sum = weight_sum2.x + weight_sum2.y;
|
||
|
const float weight_sum_inv = 1.0/(weight_sum);
|
||
|
|
||
|
// LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
|
||
|
// Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
|
||
|
const float2 dxdy_curr = dxdy * quad_vector.xy;
|
||
|
// Load bilinear samples for the current quadrant (for this fragment):
|
||
|
const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
|
||
|
const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
|
||
|
const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
|
||
|
const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
|
||
|
const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
|
||
|
const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
|
||
|
const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
|
||
|
const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb;
|
||
|
const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb;
|
||
|
const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb;
|
||
|
const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb;
|
||
|
const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb;
|
||
|
|
||
|
// GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
|
||
|
// Fetch the samples from other fragments in the 2x2 quad:
|
||
|
float3 sample1adjx, sample1adjy, sample1diag;
|
||
|
float3 sample2adjx, sample2adjy, sample2diag;
|
||
|
float3 sample3adjx, sample3adjy, sample3diag;
|
||
|
float3 sample4adjx, sample4adjy, sample4diag;
|
||
|
float3 sample5adjx, sample5adjy, sample5diag;
|
||
|
float3 sample6adjx, sample6adjy, sample6diag;
|
||
|
float3 sample7adjx, sample7adjy, sample7diag;
|
||
|
float3 sample8adjx, sample8adjy, sample8diag;
|
||
|
quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
|
||
|
quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
|
||
|
quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
|
||
|
quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag);
|
||
|
quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag);
|
||
|
quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag);
|
||
|
quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag);
|
||
|
quad_gather(quad_vector, sample8curr, sample8adjx, sample8adjy, sample8diag);
|
||
|
// Statically normalize weights (so total = 1.0), and sum weighted samples.
|
||
|
// Fill each row of a matrix with an rgb sample and pre-multiply by the
|
||
|
// weights to obtain a weighted result:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
|
||
|
sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
|
||
|
sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag));
|
||
|
sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
|
||
|
sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag));
|
||
|
sum += mul(w5, float4x3(sample5curr, sample5adjx, sample5adjy, sample5diag));
|
||
|
sum += mul(w6, float4x3(sample6curr, sample6adjx, sample6adjy, sample6diag));
|
||
|
sum += mul(w7, float4x3(sample7curr, sample7adjx, sample7adjy, sample7diag));
|
||
|
sum += mul(w8, float4x3(sample8curr, sample8adjx, sample8adjy, sample8diag));
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur10x10shared(const sampler2D tex,
|
||
|
const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
|
||
|
const float sigma)
|
||
|
{
|
||
|
// Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
|
||
|
// Requires: Same as tex2Dblur12x12shared()
|
||
|
// Returns: A blurred texture lookup using a "virtual" 10x10 Gaussian
|
||
|
// blur (a 5x5 blur of carefully selected bilinear samples)
|
||
|
// of the given mip level. There will be subtle inaccuracies,
|
||
|
// especially for small or high-frequency detailed sources.
|
||
|
// Description:
|
||
|
// First see the description for tex2Dblur12x12shared(). This
|
||
|
// function shares the same concept and sample placement, but each fragment
|
||
|
// only uses 25 of the 36 samples taken across the pixel quad (to cover a
|
||
|
// 5x5 sample area, or 10x10 texel area), and it uses a lower standard
|
||
|
// deviation to compensate. Thanks to symmetry, the 11 omitted samples
|
||
|
// are always the "same:"
|
||
|
// 8adjx, 2adjx, 5adjx,
|
||
|
// 6adjy, 7adjy, 8adjy,
|
||
|
// 2diag, 5diag, 6diag, 7diag, 8diag
|
||
|
|
||
|
// COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
|
||
|
// Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0off = 1.0;
|
||
|
const float w0_5off = exp(-(0.5*0.5) * denom_inv);
|
||
|
const float w1off = exp(-(1.0*1.0) * denom_inv);
|
||
|
const float w1_5off = exp(-(1.5*1.5) * denom_inv);
|
||
|
const float w2off = exp(-(2.0*2.0) * denom_inv);
|
||
|
const float w2_5off = exp(-(2.5*2.5) * denom_inv);
|
||
|
const float w3_5off = exp(-(3.5*3.5) * denom_inv);
|
||
|
const float w4_5off = exp(-(4.5*4.5) * denom_inv);
|
||
|
const float w5_5off = exp(-(5.5*5.5) * denom_inv);
|
||
|
const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
|
||
|
const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
|
||
|
const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring);
|
||
|
// We don't share sample0*, so use the nearest destination fragment:
|
||
|
const float texel0to1ratio_nearest = w1off/(w0off + w1off);
|
||
|
const float texel1to2ratio_nearest = w2off/(w1off + w2off);
|
||
|
// Statically compute texel offsets from the bottom-right fragment to each
|
||
|
// bilinear sample in the bottom-right quadrant:
|
||
|
const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
|
||
|
const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
|
||
|
const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
|
||
|
const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
|
||
|
const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
|
||
|
const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio);
|
||
|
const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
|
||
|
const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
|
||
|
const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio);
|
||
|
const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio);
|
||
|
const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio);
|
||
|
const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio);
|
||
|
|
||
|
// CALCULATE KERNEL WEIGHTS:
|
||
|
// Statically compute bilinear sample weights at each destination fragment
|
||
|
// from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
|
||
|
#define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
|
||
|
(exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
|
||
|
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
|
||
|
exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
|
||
|
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
|
||
|
// We only need 25 of the 36 sample weights. Skip the following weights:
|
||
|
// 8adjx, 2adjx, 5adjx,
|
||
|
// 6adjy, 7adjy, 8adjy,
|
||
|
// 2diag, 5diag, 6diag, 7diag, 8diag
|
||
|
const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
|
||
|
const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
|
||
|
const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
|
||
|
const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
|
||
|
const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0);
|
||
|
const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
|
||
|
const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
|
||
|
const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
|
||
|
const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
|
||
|
const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0);
|
||
|
const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
|
||
|
const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
|
||
|
const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
|
||
|
const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
|
||
|
const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0);
|
||
|
const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
|
||
|
const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
|
||
|
const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
|
||
|
const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
|
||
|
const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0);
|
||
|
const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0);
|
||
|
const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0);
|
||
|
const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0);
|
||
|
const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0);
|
||
|
const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0);
|
||
|
#undef GET_TEXEL_QUAD_WEIGHTS
|
||
|
// Get the weight sum inverse (normalization factor):
|
||
|
const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr +
|
||
|
w4curr + w5curr + w6curr + w7curr + w8curr +
|
||
|
w0adjx + w1adjx + w3adjx + w4adjx + w6adjx + w7adjx +
|
||
|
w0adjy + w1adjy + w2adjy + w3adjy + w4adjy + w5adjy +
|
||
|
w0diag + w1diag + w3diag + w4diag);
|
||
|
// Statically pack most weights for runtime. Note the mixed packing:
|
||
|
const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
|
||
|
const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
|
||
|
const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
|
||
|
const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag);
|
||
|
const float4 w2and5 = float4(w2curr, w2adjy, w5curr, w5adjy);
|
||
|
const float4 w6and7 = float4(w6curr, w6adjx, w7curr, w7adjx);
|
||
|
|
||
|
// LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
|
||
|
// Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
|
||
|
const float2 dxdy_curr = dxdy * quad_vector.xy;
|
||
|
// Load bilinear samples for the current quadrant (for this fragment):
|
||
|
const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
|
||
|
const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
|
||
|
const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
|
||
|
const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
|
||
|
const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
|
||
|
const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
|
||
|
const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
|
||
|
const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb;
|
||
|
const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb;
|
||
|
const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb;
|
||
|
const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb;
|
||
|
const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb;
|
||
|
|
||
|
// GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
|
||
|
// Fetch the samples from other fragments in the 2x2 quad in order of need:
|
||
|
float3 sample1adjx, sample1adjy, sample1diag;
|
||
|
float3 sample2adjx, sample2adjy, sample2diag;
|
||
|
float3 sample3adjx, sample3adjy, sample3diag;
|
||
|
float3 sample4adjx, sample4adjy, sample4diag;
|
||
|
float3 sample5adjx, sample5adjy, sample5diag;
|
||
|
float3 sample6adjx, sample6adjy, sample6diag;
|
||
|
float3 sample7adjx, sample7adjy, sample7diag;
|
||
|
quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
|
||
|
quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
|
||
|
quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
|
||
|
quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag);
|
||
|
quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag);
|
||
|
quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag);
|
||
|
quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag);
|
||
|
// Statically normalize weights (so total = 1.0), and sum weighted samples.
|
||
|
// Fill each row of a matrix with an rgb sample and pre-multiply by the
|
||
|
// weights to obtain a weighted result. First do the simple ones:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
|
||
|
sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
|
||
|
sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
|
||
|
sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag));
|
||
|
// Now do the mixed-sample ones:
|
||
|
sum += mul(w2and5, float4x3(sample2curr, sample2adjy, sample5curr, sample5adjy));
|
||
|
sum += mul(w6and7, float4x3(sample6curr, sample6adjx, sample7curr, sample7adjx));
|
||
|
sum += w8curr * sample8curr;
|
||
|
// Normalize the sum (so the weights add to 1.0) and return:
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur8x8shared(const sampler2D tex,
|
||
|
const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
|
||
|
const float sigma)
|
||
|
{
|
||
|
// Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
|
||
|
// Requires: Same as tex2Dblur12x12shared()
|
||
|
// Returns: A blurred texture lookup using a "virtual" 8x8 Gaussian
|
||
|
// blur (a 4x4 blur of carefully selected bilinear samples)
|
||
|
// of the given mip level. There will be subtle inaccuracies,
|
||
|
// especially for small or high-frequency detailed sources.
|
||
|
// Description:
|
||
|
// First see the description for tex2Dblur12x12shared(). This function
|
||
|
// shares the same concept and a similar sample placement, except each
|
||
|
// quadrant contains 4x4 texels and 2x2 samples instead of 6x6 and 3x3
|
||
|
// respectively. There could be a total of 16 samples, 4 of which each
|
||
|
// fragment is responsible for, but each fragment loads 0a/0b/0c/0d with
|
||
|
// its own offset to reduce shared sample artifacts, bringing the sample
|
||
|
// count for each fragment to 7. Sample placement:
|
||
|
// 3a 2a 2b 3b
|
||
|
// 1a 0a 0b 1b
|
||
|
// 1c 0c 0d 1d
|
||
|
// 3c 2c 2d 3d
|
||
|
// Texel placement:
|
||
|
// 3a3 3a2 2a3 2a2 2b2 2b3 3b2 3b3
|
||
|
// 3a1 3a0 2a1 2a0 2b0 2b1 3b0 3b1
|
||
|
// 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3
|
||
|
// 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1
|
||
|
// 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1
|
||
|
// 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3
|
||
|
// 3c1 3c0 2c1 2c0 2d0 2d1 3d0 4d1
|
||
|
// 3c3 3c2 2c3 2c2 2d2 2d3 3d2 4d3
|
||
|
|
||
|
// COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
|
||
|
// Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0off = 1.0;
|
||
|
const float w0_5off = exp(-(0.5*0.5) * denom_inv);
|
||
|
const float w1off = exp(-(1.0*1.0) * denom_inv);
|
||
|
const float w1_5off = exp(-(1.5*1.5) * denom_inv);
|
||
|
const float w2off = exp(-(2.0*2.0) * denom_inv);
|
||
|
const float w2_5off = exp(-(2.5*2.5) * denom_inv);
|
||
|
const float w3_5off = exp(-(3.5*3.5) * denom_inv);
|
||
|
const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
|
||
|
const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
|
||
|
// We don't share sample0*, so use the nearest destination fragment:
|
||
|
const float texel0to1ratio_nearest = w1off/(w0off + w1off);
|
||
|
const float texel1to2ratio_nearest = w2off/(w1off + w2off);
|
||
|
// Statically compute texel offsets from the bottom-right fragment to each
|
||
|
// bilinear sample in the bottom-right quadrant:
|
||
|
const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
|
||
|
const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
|
||
|
const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
|
||
|
const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
|
||
|
const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
|
||
|
const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
|
||
|
const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
|
||
|
|
||
|
// CALCULATE KERNEL WEIGHTS:
|
||
|
// Statically compute bilinear sample weights at each destination fragment
|
||
|
// from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
|
||
|
#define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
|
||
|
(exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
|
||
|
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
|
||
|
exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
|
||
|
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
|
||
|
const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
|
||
|
const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
|
||
|
const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
|
||
|
const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
|
||
|
const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
|
||
|
const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
|
||
|
const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
|
||
|
const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
|
||
|
const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
|
||
|
const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
|
||
|
const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
|
||
|
const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
|
||
|
const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
|
||
|
const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
|
||
|
const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
|
||
|
const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
|
||
|
#undef GET_TEXEL_QUAD_WEIGHTS
|
||
|
// Statically pack weights for runtime:
|
||
|
const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
|
||
|
const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
|
||
|
const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag);
|
||
|
const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
|
||
|
// Get the weight sum inverse (normalization factor):
|
||
|
const float4 weight_sum4 = w0 + w1 + w2 + w3;
|
||
|
const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw;
|
||
|
const float weight_sum = weight_sum2.x + weight_sum2.y;
|
||
|
const float weight_sum_inv = 1.0/(weight_sum);
|
||
|
|
||
|
// LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
|
||
|
// Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
|
||
|
const float2 dxdy_curr = dxdy * quad_vector.xy;
|
||
|
// Load bilinear samples for the current quadrant (for this fragment):
|
||
|
const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
|
||
|
const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
|
||
|
const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
|
||
|
const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
|
||
|
const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
|
||
|
const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
|
||
|
const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
|
||
|
|
||
|
// GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
|
||
|
// Fetch the samples from other fragments in the 2x2 quad:
|
||
|
float3 sample1adjx, sample1adjy, sample1diag;
|
||
|
float3 sample2adjx, sample2adjy, sample2diag;
|
||
|
float3 sample3adjx, sample3adjy, sample3diag;
|
||
|
quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
|
||
|
quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
|
||
|
quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
|
||
|
// Statically normalize weights (so total = 1.0), and sum weighted samples.
|
||
|
// Fill each row of a matrix with an rgb sample and pre-multiply by the
|
||
|
// weights to obtain a weighted result:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
|
||
|
sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
|
||
|
sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag));
|
||
|
sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
float3 tex2Dblur6x6shared(const sampler2D tex,
|
||
|
const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
|
||
|
const float sigma)
|
||
|
{
|
||
|
// Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
|
||
|
// Requires: Same as tex2Dblur12x12shared()
|
||
|
// Returns: A blurred texture lookup using a "virtual" 6x6 Gaussian
|
||
|
// blur (a 3x3 blur of carefully selected bilinear samples)
|
||
|
// of the given mip level. There will be some inaccuracies,subtle inaccuracies,
|
||
|
// especially for small or high-frequency detailed sources.
|
||
|
// Description:
|
||
|
// First see the description for tex2Dblur8x8shared(). This
|
||
|
// function shares the same concept and sample placement, but each fragment
|
||
|
// only uses 9 of the 16 samples taken across the pixel quad (to cover a
|
||
|
// 3x3 sample area, or 6x6 texel area), and it uses a lower standard
|
||
|
// deviation to compensate. Thanks to symmetry, the 7 omitted samples
|
||
|
// are always the "same:"
|
||
|
// 1adjx, 3adjx
|
||
|
// 2adjy, 3adjy
|
||
|
// 1diag, 2diag, 3diag
|
||
|
|
||
|
// COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
|
||
|
// Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0off = 1.0;
|
||
|
const float w0_5off = exp(-(0.5*0.5) * denom_inv);
|
||
|
const float w1off = exp(-(1.0*1.0) * denom_inv);
|
||
|
const float w1_5off = exp(-(1.5*1.5) * denom_inv);
|
||
|
const float w2off = exp(-(2.0*2.0) * denom_inv);
|
||
|
const float w2_5off = exp(-(2.5*2.5) * denom_inv);
|
||
|
const float w3_5off = exp(-(3.5*3.5) * denom_inv);
|
||
|
const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
|
||
|
const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
|
||
|
// We don't share sample0*, so use the nearest destination fragment:
|
||
|
const float texel0to1ratio_nearest = w1off/(w0off + w1off);
|
||
|
const float texel1to2ratio_nearest = w2off/(w1off + w2off);
|
||
|
// Statically compute texel offsets from the bottom-right fragment to each
|
||
|
// bilinear sample in the bottom-right quadrant:
|
||
|
const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
|
||
|
const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
|
||
|
const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
|
||
|
const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
|
||
|
const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
|
||
|
const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
|
||
|
const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
|
||
|
|
||
|
// CALCULATE KERNEL WEIGHTS:
|
||
|
// Statically compute bilinear sample weights at each destination fragment
|
||
|
// from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
|
||
|
#define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
|
||
|
(exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
|
||
|
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
|
||
|
exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
|
||
|
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
|
||
|
// We only need 9 of the 16 sample weights. Skip the following weights:
|
||
|
// 1adjx, 3adjx
|
||
|
// 2adjy, 3adjy
|
||
|
// 1diag, 2diag, 3diag
|
||
|
const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
|
||
|
const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
|
||
|
const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
|
||
|
const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
|
||
|
const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
|
||
|
const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
|
||
|
const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
|
||
|
const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
|
||
|
const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
|
||
|
#undef GET_TEXEL_QUAD_WEIGHTS
|
||
|
// Get the weight sum inverse (normalization factor):
|
||
|
const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr +
|
||
|
w0adjx + w2adjx + w0adjy + w1adjy + w0diag);
|
||
|
// Statically pack some weights for runtime:
|
||
|
const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
|
||
|
|
||
|
// LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
|
||
|
// Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
|
||
|
const float2 dxdy_curr = dxdy * quad_vector.xy;
|
||
|
// Load bilinear samples for the current quadrant (for this fragment):
|
||
|
const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
|
||
|
const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
|
||
|
const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
|
||
|
const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
|
||
|
const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
|
||
|
const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
|
||
|
const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
|
||
|
|
||
|
// GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
|
||
|
// Fetch the samples from other fragments in the 2x2 quad:
|
||
|
float3 sample1adjx, sample1adjy, sample1diag;
|
||
|
float3 sample2adjx, sample2adjy, sample2diag;
|
||
|
quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
|
||
|
quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
|
||
|
// Statically normalize weights (so total = 1.0), and sum weighted samples.
|
||
|
// Fill each row of a matrix with an rgb sample and pre-multiply by the
|
||
|
// weights to obtain a weighted result for sample1*, and handle the rest
|
||
|
// of the weights more directly/verbosely:
|
||
|
float3 sum = float3(0.0,0.0,0.0);
|
||
|
sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
|
||
|
sum += w1curr * sample1curr + w1adjy * sample1adjy + w2curr * sample2curr +
|
||
|
w2adjx * sample2adjx + w3curr * sample3curr;
|
||
|
return sum * weight_sum_inv;
|
||
|
}
|
||
|
|
||
|
|
||
|
/////////////////////// MAX OPTIMAL SIGMA BLUR WRAPPERS //////////////////////
|
||
|
|
||
|
// The following blurs are static wrappers around the dynamic blurs above.
|
||
|
// HOPEFULLY, the compiler will be smart enough to do constant-folding.
|
||
|
|
||
|
// Resizable separable blurs:
|
||
|
inline float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur11resize(tex, tex_uv, dxdy, blur11_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur9resize(tex, tex_uv, dxdy, blur9_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur7resize(tex, tex_uv, dxdy, blur7_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur5resize(tex, tex_uv, dxdy, blur5_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur3resize(tex, tex_uv, dxdy, blur3_std_dev);
|
||
|
}
|
||
|
// Fast separable blurs:
|
||
|
inline float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur11fast(tex, tex_uv, dxdy, blur11_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur9fast(tex, tex_uv, dxdy, blur9_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur7fast(tex, tex_uv, dxdy, blur7_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur5fast(tex, tex_uv, dxdy, blur5_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur3fast(tex, tex_uv, dxdy, blur3_std_dev);
|
||
|
}
|
||
|
// Huge, "fast" separable blurs:
|
||
|
inline float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur43fast(tex, tex_uv, dxdy, blur43_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur31fast(tex, tex_uv, dxdy, blur31_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur25fast(tex, tex_uv, dxdy, blur25_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur17fast(tex, tex_uv, dxdy, blur17_std_dev);
|
||
|
}
|
||
|
// Resizable one-pass blurs:
|
||
|
inline float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur3x3resize(tex, tex_uv, dxdy, blur3_std_dev);
|
||
|
}
|
||
|
// "Fast" one-pass blurs:
|
||
|
inline float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur9x9(tex, tex_uv, dxdy, blur9_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur7x7(tex, tex_uv, dxdy, blur7_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur5x5(tex, tex_uv, dxdy, blur5_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv,
|
||
|
const float2 dxdy)
|
||
|
{
|
||
|
return tex2Dblur3x3(tex, tex_uv, dxdy, blur3_std_dev);
|
||
|
}
|
||
|
// "Fast" shared-sample one-pass blurs:
|
||
|
inline float3 tex2Dblur12x12shared(const sampler2D tex,
|
||
|
const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
|
||
|
{
|
||
|
return tex2Dblur12x12shared(tex, tex_uv, dxdy, quad_vector, blur12_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur10x10shared(const sampler2D tex,
|
||
|
const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
|
||
|
{
|
||
|
return tex2Dblur10x10shared(tex, tex_uv, dxdy, quad_vector, blur10_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur8x8shared(const sampler2D tex,
|
||
|
const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
|
||
|
{
|
||
|
return tex2Dblur8x8shared(tex, tex_uv, dxdy, quad_vector, blur8_std_dev);
|
||
|
}
|
||
|
inline float3 tex2Dblur6x6shared(const sampler2D tex,
|
||
|
const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
|
||
|
{
|
||
|
return tex2Dblur6x6shared(tex, tex_uv, dxdy, quad_vector, blur6_std_dev);
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif // BLUR_FUNCTIONS_H
|
||
|
|
||
|
//////////////////////////// END BLUR-FUNCTIONS ///////////////////////////
|
||
|
|
||
|
/////////////////////////////// BLOOM CONSTANTS //////////////////////////////
|
||
|
|
||
|
// Compute constants with manual inlines of the functions below:
|
||
|
static const float bloom_diff_thresh = 1.0/256.0;
|
||
|
|
||
|
|
||
|
|
||
|
/////////////////////////////////// HELPERS //////////////////////////////////
|
||
|
|
||
|
inline float get_min_sigma_to_blur_triad(const float triad_size,
|
||
|
const float thresh)
|
||
|
{
|
||
|
// Requires: 1.) triad_size is the final phosphor triad size in pixels
|
||
|
// 2.) thresh is the max desired pixel difference in the
|
||
|
// blurred triad (e.g. 1.0/256.0).
|
||
|
// Returns: Return the minimum sigma that will fully blur a phosphor
|
||
|
// triad on the screen to an even color, within thresh.
|
||
|
// This closed-form function was found by curve-fitting data.
|
||
|
// Estimate: max error = ~0.086036, mean sq. error = ~0.0013387:
|
||
|
return -0.05168 + 0.6113*triad_size -
|
||
|
1.122*triad_size*sqrt(0.000416 + thresh);
|
||
|
// Estimate: max error = ~0.16486, mean sq. error = ~0.0041041:
|
||
|
//return 0.5985*triad_size - triad_size*sqrt(thresh)
|
||
|
}
|
||
|
|
||
|
inline float get_absolute_scale_blur_sigma(const float thresh)
|
||
|
{
|
||
|
// Requires: 1.) min_expected_triads must be a global float. The number
|
||
|
// of horizontal phosphor triads in the final image must be
|
||
|
// >= min_allowed_viewport_triads.x for realistic results.
|
||
|
// 2.) bloom_approx_scale_x must be a global float equal to the
|
||
|
// absolute horizontal scale of BLOOM_APPROX.
|
||
|
// 3.) bloom_approx_scale_x/min_allowed_viewport_triads.x
|
||
|
// should be <= 1.1658025090 to keep the final result <
|
||
|
// 0.62666015625 (the largest sigma ensuring the largest
|
||
|
// unused texel weight stays < 1.0/256.0 for a 3x3 blur).
|
||
|
// 4.) thresh is the max desired pixel difference in the
|
||
|
// blurred triad (e.g. 1.0/256.0).
|
||
|
// Returns: Return the minimum Gaussian sigma that will blur the pass
|
||
|
// output as much as it would have taken to blur away
|
||
|
// bloom_approx_scale_x horizontal phosphor triads.
|
||
|
// Description:
|
||
|
// BLOOM_APPROX should look like a downscaled phosphor blur. Ideally, we'd
|
||
|
// use the same blur sigma as the actual phosphor bloom and scale it down
|
||
|
// to the current resolution with (bloom_approx_scale_x/viewport_size_x), but
|
||
|
// we don't know the viewport size in this pass. Instead, we'll blur as
|
||
|
// much as it would take to blur away min_allowed_viewport_triads.x. This
|
||
|
// will blur "more than necessary" if the user actually uses more triads,
|
||
|
// but that's not terrible either, because blurring a constant fraction of
|
||
|
// the viewport may better resemble a true optical bloom anyway (since the
|
||
|
// viewport will generally be about the same fraction of each player's
|
||
|
// field of view, regardless of screen size and resolution).
|
||
|
// Assume an extremely large viewport size for asymptotic results.
|
||
|
return bloom_approx_scale_x/max_viewport_size_x *
|
||
|
get_min_sigma_to_blur_triad(
|
||
|
max_viewport_size_x/min_allowed_viewport_triads.x, thresh);
|
||
|
}
|
||
|
|
||
|
inline float get_center_weight(const float sigma)
|
||
|
{
|
||
|
// Given a Gaussian blur sigma, get the blur weight for the center texel.
|
||
|
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||
|
return get_fast_gaussian_weight_sum_inv(sigma);
|
||
|
#else
|
||
|
const float denom_inv = 0.5/(sigma*sigma);
|
||
|
const float w0 = 1.0;
|
||
|
const float w1 = exp(-1.0 * denom_inv);
|
||
|
const float w2 = exp(-4.0 * denom_inv);
|
||
|
const float w3 = exp(-9.0 * denom_inv);
|
||
|
const float w4 = exp(-16.0 * denom_inv);
|
||
|
const float w5 = exp(-25.0 * denom_inv);
|
||
|
const float w6 = exp(-36.0 * denom_inv);
|
||
|
const float w7 = exp(-49.0 * denom_inv);
|
||
|
const float w8 = exp(-64.0 * denom_inv);
|
||
|
const float w9 = exp(-81.0 * denom_inv);
|
||
|
const float w10 = exp(-100.0 * denom_inv);
|
||
|
const float w11 = exp(-121.0 * denom_inv);
|
||
|
const float w12 = exp(-144.0 * denom_inv);
|
||
|
const float w13 = exp(-169.0 * denom_inv);
|
||
|
const float w14 = exp(-196.0 * denom_inv);
|
||
|
const float w15 = exp(-225.0 * denom_inv);
|
||
|
const float w16 = exp(-256.0 * denom_inv);
|
||
|
const float w17 = exp(-289.0 * denom_inv);
|
||
|
const float w18 = exp(-324.0 * denom_inv);
|
||
|
const float w19 = exp(-361.0 * denom_inv);
|
||
|
const float w20 = exp(-400.0 * denom_inv);
|
||
|
const float w21 = exp(-441.0 * denom_inv);
|
||
|
// Note: If the implementation uses a smaller blur than the max allowed,
|
||
|
// the worst case scenario is that the center weight will be overestimated,
|
||
|
// so we'll put a bit more energy into the brightpass...no huge deal.
|
||
|
// Then again, if the implementation uses a larger blur than the max
|
||
|
// "allowed" because of dynamic branching, the center weight could be
|
||
|
// underestimated, which is more of a problem...consider always using
|
||
|
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||
|
// 43x blur:
|
||
|
const float weight_sum_inv = 1.0 /
|
||
|
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 +
|
||
|
w11 + w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
|
||
|
#else
|
||
|
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||
|
// 31x blur:
|
||
|
const float weight_sum_inv = 1.0 /
|
||
|
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 +
|
||
|
w8 + w9 + w10 + w11 + w12 + w13 + w14 + w15));
|
||
|
#else
|
||
|
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||
|
// 25x blur:
|
||
|
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
|
||
|
w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
|
||
|
#else
|
||
|
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||
|
// 17x blur:
|
||
|
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
|
||
|
w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
|
||
|
#else
|
||
|
// 9x blur:
|
||
|
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
|
||
|
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||
|
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||
|
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||
|
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||
|
const float center_weight = weight_sum_inv * weight_sum_inv;
|
||
|
return center_weight;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline float3 tex2DblurNfast(const sampler2D texture, const float2 tex_uv,
|
||
|
const float2 dxdy, const float sigma)
|
||
|
{
|
||
|
// If sigma is static, we can safely branch and use the smallest blur
|
||
|
// that's big enough. Ignore #define hints, because we'll only use a
|
||
|
// large blur if we actually need it, and the branches cost nothing.
|
||
|
#ifndef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||
|
#define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
|
||
|
#else
|
||
|
// It's still worth branching if the profile supports dynamic branches:
|
||
|
// It's much faster than using a hugely excessive blur, but each branch
|
||
|
// eats ~1% FPS.
|
||
|
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||
|
#define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
|
||
|
#endif
|
||
|
#endif
|
||
|
// Failed optimization notes:
|
||
|
// I originally created a same-size mipmapped 5-tap separable blur10 that
|
||
|
// could handle any sigma by reaching into lower mip levels. It was
|
||
|
// as fast as blur25fast for runtime sigmas and a tad faster than
|
||
|
// blur31fast for static sigmas, but mipmapping two viewport-size passes
|
||
|
// ate 10% of FPS across all codepaths, so it wasn't worth it.
|
||
|
#ifdef PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
|
||
|
if(sigma <= blur9_std_dev)
|
||
|
{
|
||
|
return tex2Dblur9fast(texture, tex_uv, dxdy, sigma);
|
||
|
}
|
||
|
else if(sigma <= blur17_std_dev)
|
||
|
{
|
||
|
return tex2Dblur17fast(texture, tex_uv, dxdy, sigma);
|
||
|
}
|
||
|
else if(sigma <= blur25_std_dev)
|
||
|
{
|
||
|
return tex2Dblur25fast(texture, tex_uv, dxdy, sigma);
|
||
|
}
|
||
|
else if(sigma <= blur31_std_dev)
|
||
|
{
|
||
|
return tex2Dblur31fast(texture, tex_uv, dxdy, sigma);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return tex2Dblur43fast(texture, tex_uv, dxdy, sigma);
|
||
|
}
|
||
|
#else
|
||
|
// If we can't afford to branch, we can only guess at what blur
|
||
|
// size we need. Therefore, use the largest blur allowed.
|
||
|
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||
|
return tex2Dblur43fast(texture, tex_uv, dxdy, sigma);
|
||
|
#else
|
||
|
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||
|
return tex2Dblur31fast(texture, tex_uv, dxdy, sigma);
|
||
|
#else
|
||
|
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||
|
return tex2Dblur25fast(texture, tex_uv, dxdy, sigma);
|
||
|
#else
|
||
|
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||
|
return tex2Dblur17fast(texture, tex_uv, dxdy, sigma);
|
||
|
#else
|
||
|
return tex2Dblur9fast(texture, tex_uv, dxdy, sigma);
|
||
|
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||
|
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||
|
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||
|
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||
|
#endif // PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
|
||
|
}
|
||
|
|
||
|
inline float get_bloom_approx_sigma(const float output_size_x_runtime,
|
||
|
const float estimated_viewport_size_x)
|
||
|
{
|
||
|
// Requires: 1.) output_size_x_runtime == BLOOM_APPROX.output_size.x.
|
||
|
// This is included for dynamic codepaths just in case the
|
||
|
// following two globals are incorrect:
|
||
|
// 2.) bloom_approx_size_x_for_skip should == the same
|
||
|
// if PHOSPHOR_BLOOM_FAKE is #defined
|
||
|
// 3.) bloom_approx_size_x should == the same otherwise
|
||
|
// Returns: For gaussian4x4, return a dynamic small bloom sigma that's
|
||
|
// as close to optimal as possible given available information.
|
||
|
// For blur3x3, return the a static small bloom sigma that
|
||
|
// works well for typical cases. Otherwise, we're using simple
|
||
|
// bilinear filtering, so use static calculations.
|
||
|
// Assume the default static value. This is a compromise that ensures
|
||
|
// typical triads are blurred, even if unusually large ones aren't.
|
||
|
static const float mask_num_triads_static =
|
||
|
max(min_allowed_viewport_triads.x, mask_num_triads_desired_static);
|
||
|
const float mask_num_triads_from_size =
|
||
|
estimated_viewport_size_x/mask_triad_size_desired;
|
||
|
const float mask_num_triads_runtime = max(min_allowed_viewport_triads.x,
|
||
|
lerp(mask_num_triads_from_size, mask_num_triads_desired,
|
||
|
mask_specify_num_triads));
|
||
|
// Assume an extremely large viewport size for asymptotic results:
|
||
|
static const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
|
||
|
if(bloom_approx_filter > 1.5) // 4x4 true Gaussian resize
|
||
|
{
|
||
|
// Use the runtime num triads and output size:
|
||
|
const float asymptotic_triad_size =
|
||
|
max_viewport_size_x/mask_num_triads_runtime;
|
||
|
const float asymptotic_sigma = get_min_sigma_to_blur_triad(
|
||
|
asymptotic_triad_size, bloom_diff_thresh);
|
||
|
const float bloom_approx_sigma =
|
||
|
asymptotic_sigma * output_size_x_runtime/max_viewport_size_x;
|
||
|
// The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but
|
||
|
// account for the Gaussian scanline sigma from the last pass too.
|
||
|
// The bloom will be too wide horizontally but tall enough vertically.
|
||
|
return length(float2(bloom_approx_sigma, beam_max_sigma));
|
||
|
}
|
||
|
else // 3x3 blur resize (the bilinear resize doesn't need a sigma)
|
||
|
{
|
||
|
// We're either using blur3x3 or bilinear filtering. The biggest
|
||
|
// reason to choose blur3x3 is to avoid dynamic weights, so use a
|
||
|
// static calculation.
|
||
|
#ifdef PHOSPHOR_BLOOM_FAKE
|
||
|
static const float output_size_x_static =
|
||
|
bloom_approx_size_x_for_fake;
|
||
|
#else
|
||
|
static const float output_size_x_static = bloom_approx_size_x;
|
||
|
#endif
|
||
|
static const float asymptotic_triad_size =
|
||
|
max_viewport_size_x/mask_num_triads_static;
|
||
|
const float asymptotic_sigma = get_min_sigma_to_blur_triad(
|
||
|
asymptotic_triad_size, bloom_diff_thresh);
|
||
|
const float bloom_approx_sigma =
|
||
|
asymptotic_sigma * output_size_x_static/max_viewport_size_x;
|
||
|
// The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but
|
||
|
// try accounting for the Gaussian scanline sigma from the last pass
|
||
|
// too; use the static default value:
|
||
|
return length(float2(bloom_approx_sigma, beam_max_sigma_static));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline float get_final_bloom_sigma(const float bloom_sigma_runtime)
|
||
|
{
|
||
|
// Requires: 1.) bloom_sigma_runtime is a precalculated sigma that's
|
||
|
// optimal for the [known] triad size.
|
||
|
// 2.) Call this from a fragment shader (not a vertex shader),
|
||
|
// or blurring with static sigmas won't be constant-folded.
|
||
|
// Returns: Return the optimistic static sigma if the triad size is
|
||
|
// known at compile time. Otherwise return the optimal runtime
|
||
|
// sigma (10% slower) or an implementation-specific compromise
|
||
|
// between an optimistic or pessimistic static sigma.
|
||
|
// Notes: Call this from the fragment shader, NOT the vertex shader,
|
||
|
// so static sigmas can be constant-folded!
|
||
|
const float bloom_sigma_optimistic = get_min_sigma_to_blur_triad(
|
||
|
mask_triad_size_desired_static, bloom_diff_thresh);
|
||
|
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||
|
return bloom_sigma_runtime;
|
||
|
#else
|
||
|
// Overblurring looks as bad as underblurring, so assume average-size
|
||
|
// triads, not worst-case huge triads:
|
||
|
return bloom_sigma_optimistic;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif // BLOOM_FUNCTIONS_H
|
||
|
|
||
|
//////////////////////////// END BLOOM-FUNCTIONS ///////////////////////////
|
||
|
|
||
|
/////////////////////////// END FRAGMENT-INCLUDES //////////////////////////
|
||
|
|
||
|
void main() {
|
||
|
// Blur the brightpass horizontally with a 9/17/25/43x blur:
|
||
|
const float bloom_sigma = get_final_bloom_sigma(bloom_sigma_runtime);
|
||
|
const float3 color = tex2DblurNfast(input_texture, tex_uv,
|
||
|
bloom_dxdy, bloom_sigma);
|
||
|
// Encode and output the blurred image:
|
||
|
FragColor = encode_output(float4(color, 1.0));
|
||
|
}
|