BizHawk/quicknes/nes_emu/Nonlinear_Buffer.cpp

190 lines
4.3 KiB
C++

// Nes_Emu 0.5.6. http://www.slack.net/~ant/libs/
#include "Nonlinear_Buffer.h"
#include "Nes_Apu.h"
/* Library Copyright (C) 2003-2005 Shay Green. This library is free software;
you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include BLARGG_SOURCE_BEGIN
// Nonlinear_Buffer
Nonlinear_Buffer::Nonlinear_Buffer() :
Multi_Buffer( 1 )
{
}
Nonlinear_Buffer::~Nonlinear_Buffer()
{
}
void Nonlinear_Buffer::enable_nonlinearity( Nes_Apu& apu, bool b )
{
if ( b )
clear();
nonlinearizer.enable( apu, b );
for ( int i = 0; i < apu.osc_count; i++ )
apu.osc_output( i, (i >= 2 ? &tnd : &buf) );
}
blargg_err_t Nonlinear_Buffer::sample_rate( long rate, int msec )
{
BLARGG_RETURN_ERR( buf.sample_rate( rate, msec ) );
BLARGG_RETURN_ERR( tnd.sample_rate( rate, msec ) );
return Multi_Buffer::sample_rate( buf.sample_rate(), buf.length() );
}
void Nonlinear_Buffer::clock_rate( long rate )
{
buf.clock_rate( rate );
tnd.clock_rate( rate );
}
void Nonlinear_Buffer::bass_freq( int freq )
{
buf.bass_freq( freq );
tnd.bass_freq( freq );
}
void Nonlinear_Buffer::clear()
{
nonlinearizer.clear();
buf.clear();
tnd.clear();
}
Nonlinear_Buffer::channel_t Nonlinear_Buffer::channel( int i )
{
channel_t c;
c.center = &buf;
if ( 2 <= i && i <= 4 )
c.center = &tnd; // only use for triangle, noise, and dmc
c.left = c.center;
c.right = c.center;
return c;
}
void Nonlinear_Buffer::end_frame( blip_time_t length, bool )
{
buf.end_frame( length );
tnd.end_frame( length );
}
long Nonlinear_Buffer::samples_avail() const
{
return buf.samples_avail();
}
#include BLARGG_ENABLE_OPTIMIZER
long Nonlinear_Buffer::read_samples( blip_sample_t* out, long count )
{
count = nonlinearizer.make_nonlinear( tnd, count );
if ( count )
{
Blip_Reader lin;
Blip_Reader nonlin;
int lin_bass = lin.begin( buf );
int nonlin_bass = nonlin.begin( tnd );
for ( int n = count; n--; )
{
int s = lin.read() + nonlin.read();
lin.next( lin_bass );
nonlin.next( nonlin_bass );
*out++ = s;
if ( (BOOST::int16_t) s != s )
out [-1] = 0x7FFF - (s >> 24);
}
lin.end( buf );
nonlin.end( tnd );
buf.remove_samples( count );
tnd.remove_samples( count );
}
return count;
}
// Nes_Nonlinearizer
Nes_Nonlinearizer::Nes_Nonlinearizer()
{
nonlinear = false;
double gain = 0x7fff * 1.3;
// don't use entire range, so any overflow will stay within table
int const range = half * Nes_Apu::nonlinear_tnd_gain();
for ( int i = 0; i < half * 2; i++ )
{
int out = i << shift;
if ( i > half )
{
int j = i - half;
if ( j >= range )
j = range - 1;
double n = 202.0 / (range - 1) * j;
double d = 163.67 / (24329.0 / n + 100);
out = int (d * gain) + 0x8000;
assert( out < 0x10000 );
}
table [i] = out;
}
clear();
}
void Nes_Nonlinearizer::enable( Nes_Apu& apu, bool b )
{
nonlinear = b;
if ( b )
apu.enable_nonlinear( 1.0 );
else
apu.volume( 1.0 );
}
long Nes_Nonlinearizer::make_nonlinear( Blip_Buffer& buf, long count )
{
long avail = buf.samples_avail();
if ( count > avail )
count = avail;
if ( count && nonlinear )
{
const int zero_offset = Blip_Buffer::sample_offset_;
#define ENTRY( s ) (table [((s) >> shift) & entry_mask])
BOOST::uint16_t* p = buf.buffer_;
unsigned prev = ENTRY( accum );
long accum = this->accum;
for ( unsigned n = count; n--; )
{
accum += (long) *p - zero_offset;
check( (accum >> shift) < half * 2 );
unsigned entry = ENTRY( accum );
*p++ = entry - prev + zero_offset;
prev = entry;
}
this->accum = accum;
}
return count;
}