// Nes_Emu 0.5.6. http://www.slack.net/~ant/libs/ #include "Nonlinear_Buffer.h" #include "Nes_Apu.h" /* Library Copyright (C) 2003-2005 Shay Green. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include BLARGG_SOURCE_BEGIN // Nonlinear_Buffer Nonlinear_Buffer::Nonlinear_Buffer() : Multi_Buffer( 1 ) { } Nonlinear_Buffer::~Nonlinear_Buffer() { } void Nonlinear_Buffer::enable_nonlinearity( Nes_Apu& apu, bool b ) { if ( b ) clear(); nonlinearizer.enable( apu, b ); for ( int i = 0; i < apu.osc_count; i++ ) apu.osc_output( i, (i >= 2 ? &tnd : &buf) ); } blargg_err_t Nonlinear_Buffer::sample_rate( long rate, int msec ) { BLARGG_RETURN_ERR( buf.sample_rate( rate, msec ) ); BLARGG_RETURN_ERR( tnd.sample_rate( rate, msec ) ); return Multi_Buffer::sample_rate( buf.sample_rate(), buf.length() ); } void Nonlinear_Buffer::clock_rate( long rate ) { buf.clock_rate( rate ); tnd.clock_rate( rate ); } void Nonlinear_Buffer::bass_freq( int freq ) { buf.bass_freq( freq ); tnd.bass_freq( freq ); } void Nonlinear_Buffer::clear() { nonlinearizer.clear(); buf.clear(); tnd.clear(); } Nonlinear_Buffer::channel_t Nonlinear_Buffer::channel( int i ) { channel_t c; c.center = &buf; if ( 2 <= i && i <= 4 ) c.center = &tnd; // only use for triangle, noise, and dmc c.left = c.center; c.right = c.center; return c; } void Nonlinear_Buffer::end_frame( blip_time_t length, bool ) { buf.end_frame( length ); tnd.end_frame( length ); } long Nonlinear_Buffer::samples_avail() const { return buf.samples_avail(); } #include BLARGG_ENABLE_OPTIMIZER long Nonlinear_Buffer::read_samples( blip_sample_t* out, long count ) { count = nonlinearizer.make_nonlinear( tnd, count ); if ( count ) { Blip_Reader lin; Blip_Reader nonlin; int lin_bass = lin.begin( buf ); int nonlin_bass = nonlin.begin( tnd ); for ( int n = count; n--; ) { int s = lin.read() + nonlin.read(); lin.next( lin_bass ); nonlin.next( nonlin_bass ); *out++ = s; if ( (BOOST::int16_t) s != s ) out [-1] = 0x7FFF - (s >> 24); } lin.end( buf ); nonlin.end( tnd ); buf.remove_samples( count ); tnd.remove_samples( count ); } return count; } // Nes_Nonlinearizer Nes_Nonlinearizer::Nes_Nonlinearizer() { nonlinear = false; double gain = 0x7fff * 1.3; // don't use entire range, so any overflow will stay within table int const range = half * Nes_Apu::nonlinear_tnd_gain(); for ( int i = 0; i < half * 2; i++ ) { int out = i << shift; if ( i > half ) { int j = i - half; if ( j >= range ) j = range - 1; double n = 202.0 / (range - 1) * j; double d = 163.67 / (24329.0 / n + 100); out = int (d * gain) + 0x8000; assert( out < 0x10000 ); } table [i] = out; } clear(); } void Nes_Nonlinearizer::enable( Nes_Apu& apu, bool b ) { nonlinear = b; if ( b ) apu.enable_nonlinear( 1.0 ); else apu.volume( 1.0 ); } long Nes_Nonlinearizer::make_nonlinear( Blip_Buffer& buf, long count ) { long avail = buf.samples_avail(); if ( count > avail ) count = avail; if ( count && nonlinear ) { const int zero_offset = Blip_Buffer::sample_offset_; #define ENTRY( s ) (table [((s) >> shift) & entry_mask]) BOOST::uint16_t* p = buf.buffer_; unsigned prev = ENTRY( accum ); long accum = this->accum; for ( unsigned n = count; n--; ) { accum += (long) *p - zero_offset; check( (accum >> shift) < half * 2 ); unsigned entry = ENTRY( accum ); *p++ = entry - prev + zero_offset; prev = entry; } this->accum = accum; } return count; }