1459 lines
37 KiB
C#
1459 lines
37 KiB
C#
//TODO - so many integers in the square wave output keep us from exactly unbiasing the waveform. also other waves probably. consider improving the unbiasing.
|
|
//ALSO - consider whether we should even be doing it: the nonlinear-mixing behaviour probably depends on those biases being there.
|
|
//if we have a better high-pass filter somewhere then we might could cope with the weird biases
|
|
//(mix higher integer precision with the non-linear mixer and then highpass filter befoure outputting s16s)
|
|
|
|
//http://wiki.nesdev.com/w/index.php/APU_Mixer_Emulation
|
|
//http://wiki.nesdev.com/w/index.php/APU
|
|
//http://wiki.nesdev.com/w/index.php/APU_Pulse
|
|
//sequencer ref: http://wiki.nesdev.com/w/index.php/APU_Frame_Counter
|
|
|
|
//TODO - refactor length counter to be separate component
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
|
|
using BizHawk.Common;
|
|
using BizHawk.Common.NumberExtensions;
|
|
|
|
namespace BizHawk.Emulation.Cores.Nintendo.NES
|
|
{
|
|
public sealed class APU
|
|
{
|
|
public static bool CFG_DECLICK = true;
|
|
|
|
public int Square1V = 376;
|
|
public int Square2V = 376;
|
|
public int TriangleV = 426;
|
|
public int NoiseV = 247;
|
|
public int DMCV = 167;
|
|
|
|
public int dmc_dma_countdown = -1;
|
|
public bool call_from_write;
|
|
|
|
public bool recalculate = false;
|
|
|
|
NES nes;
|
|
public APU(NES nes, APU old, bool pal)
|
|
{
|
|
this.nes = nes;
|
|
dmc = new DMCUnit(this, pal);
|
|
noise = new NoiseUnit(this, pal);
|
|
triangle = new TriangleUnit(this);
|
|
pulse[0] = new PulseUnit(this, 0);
|
|
pulse[1] = new PulseUnit(this, 1);
|
|
if (old != null)
|
|
{
|
|
Square1V = old.Square1V;
|
|
Square2V = old.Square2V;
|
|
TriangleV = old.TriangleV;
|
|
NoiseV = old.NoiseV;
|
|
DMCV = old.DMCV;
|
|
}
|
|
}
|
|
|
|
static int[] DMC_RATE_NTSC = { 428, 380, 340, 320, 286, 254, 226, 214, 190, 160, 142, 128, 106, 84, 72, 54 };
|
|
static int[] DMC_RATE_PAL = { 398, 354, 316, 298, 276, 236, 210, 198, 176, 148, 132, 118, 98, 78, 66, 50 };
|
|
static int[] LENGTH_TABLE = { 10, 254, 20, 2, 40, 4, 80, 6, 160, 8, 60, 10, 14, 12, 26, 14, 12, 16, 24, 18, 48, 20, 96, 22, 192, 24, 72, 26, 16, 28, 32, 30 };
|
|
static byte[,] PULSE_DUTY = {
|
|
{0,1,0,0,0,0,0,0}, //(12.5%)
|
|
{0,1,1,0,0,0,0,0}, //(25%)
|
|
{0,1,1,1,1,0,0,0}, //(50%)
|
|
{1,0,0,1,1,1,1,1}, //(25% negated (75%))
|
|
};
|
|
static byte[] TRIANGLE_TABLE =
|
|
{
|
|
15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
|
|
};
|
|
static int[] NOISE_TABLE_NTSC =
|
|
{
|
|
4, 8, 16, 32, 64, 96, 128, 160, 202, 254, 380, 508, 762, 1016, 2034, 4068
|
|
};
|
|
static int[] NOISE_TABLE_PAL =
|
|
{
|
|
4, 7, 14, 30, 60, 88, 118, 148, 188, 236, 354, 472, 708, 944, 1890, 3778
|
|
};
|
|
|
|
|
|
public sealed class PulseUnit
|
|
{
|
|
public PulseUnit(APU apu, int unit) { this.unit = unit; this.apu = apu; }
|
|
public int unit;
|
|
APU apu;
|
|
|
|
//reg0
|
|
int duty_cnt, env_loop, env_constant, env_cnt_value;
|
|
public bool len_halt;
|
|
//reg1
|
|
int sweep_en, sweep_divider_cnt, sweep_negate, sweep_shiftcount;
|
|
bool sweep_reload;
|
|
//reg2/3
|
|
int len_cnt;
|
|
public int timer_raw_reload_value, timer_reload_value;
|
|
|
|
//misc..
|
|
int lenctr_en;
|
|
|
|
public void SyncState(Serializer ser)
|
|
{
|
|
ser.BeginSection("Pulse" + unit);
|
|
ser.Sync("duty_cnt", ref duty_cnt);
|
|
ser.Sync("env_loop", ref env_loop);
|
|
ser.Sync("env_constant", ref env_constant);
|
|
ser.Sync("env_cnt_value", ref env_cnt_value);
|
|
ser.Sync("len_halt", ref len_halt);
|
|
|
|
ser.Sync("sweep_en", ref sweep_en);
|
|
ser.Sync("sweep_divider_cnt", ref sweep_divider_cnt);
|
|
ser.Sync("sweep_negate", ref sweep_negate);
|
|
ser.Sync("sweep_shiftcount", ref sweep_shiftcount);
|
|
ser.Sync("sweep_reload", ref sweep_reload);
|
|
|
|
ser.Sync("len_cnt", ref len_cnt);
|
|
ser.Sync("timer_raw_reload_value", ref timer_raw_reload_value);
|
|
ser.Sync("timer_reload_value", ref timer_reload_value);
|
|
|
|
ser.Sync("lenctr_en", ref lenctr_en);
|
|
|
|
ser.Sync("swp_divider_counter", ref swp_divider_counter);
|
|
ser.Sync("swp_silence", ref swp_silence);
|
|
ser.Sync("duty_step", ref duty_step);
|
|
ser.Sync("timer_counter", ref timer_counter);
|
|
ser.Sync("sample", ref sample);
|
|
ser.Sync("duty_value", ref duty_value);
|
|
|
|
ser.Sync("env_start_flag", ref env_start_flag);
|
|
ser.Sync("env_divider", ref env_divider);
|
|
ser.Sync("env_counter", ref env_counter);
|
|
ser.Sync("env_output", ref env_output);
|
|
ser.EndSection();
|
|
}
|
|
|
|
public bool IsLenCntNonZero() { return len_cnt > 0; }
|
|
|
|
public void WriteReg(int addr, byte val)
|
|
{
|
|
//Console.WriteLine("write pulse {0:X} {1:X}", addr, val);
|
|
switch (addr)
|
|
{
|
|
case 0:
|
|
env_cnt_value = val & 0xF;
|
|
env_constant = (val >> 4) & 1;
|
|
env_loop = (val >> 5) & 1;
|
|
duty_cnt = (val >> 6) & 3;
|
|
break;
|
|
case 1:
|
|
sweep_shiftcount = val & 7;
|
|
sweep_negate = (val >> 3) & 1;
|
|
sweep_divider_cnt = (val >> 4) & 7;
|
|
sweep_en = (val >> 7) & 1;
|
|
sweep_reload = true;
|
|
break;
|
|
case 2:
|
|
timer_reload_value = (timer_reload_value & 0x700) | val;
|
|
timer_raw_reload_value = timer_reload_value * 2 + 2;
|
|
//if (unit == 1) Console.WriteLine("{0} timer_reload_value: {1}", unit, timer_reload_value);
|
|
break;
|
|
case 3:
|
|
if (apu.len_clock_active)
|
|
{
|
|
if (len_cnt==0)
|
|
{
|
|
len_cnt = LENGTH_TABLE[(val >> 3) & 0x1F]+1;
|
|
}
|
|
} else
|
|
{
|
|
len_cnt = LENGTH_TABLE[(val >> 3) & 0x1F];
|
|
}
|
|
|
|
timer_reload_value = (timer_reload_value & 0xFF) | ((val & 0x07) << 8);
|
|
timer_raw_reload_value = timer_reload_value * 2 + 2;
|
|
duty_step = 0;
|
|
env_start_flag = 1;
|
|
|
|
//allow the lenctr_en to kill the len_cnt
|
|
set_lenctr_en(lenctr_en);
|
|
|
|
//serves as a useful note-on diagnostic
|
|
//if(unit==1) Console.WriteLine("{0} timer_reload_value: {1}", unit, timer_reload_value);
|
|
break;
|
|
}
|
|
}
|
|
|
|
public void set_lenctr_en(int value)
|
|
{
|
|
lenctr_en = value;
|
|
//if the length counter is not enabled, then we must disable the length system in this way
|
|
if (lenctr_en == 0) len_cnt = 0;
|
|
}
|
|
|
|
//state
|
|
//why was all of this stuff not in the savestate???????
|
|
int swp_divider_counter;
|
|
bool swp_silence;
|
|
int duty_step;
|
|
int timer_counter;
|
|
public int sample;
|
|
bool duty_value;
|
|
|
|
int env_start_flag, env_divider, env_counter;
|
|
public int env_output;
|
|
|
|
public void clock_length_and_sweep()
|
|
{
|
|
//this should be optimized to update only when `timer_reload_value` changes
|
|
int sweep_shifter = timer_reload_value >> sweep_shiftcount;
|
|
if (sweep_negate == 1)
|
|
sweep_shifter = -sweep_shifter + unit;
|
|
sweep_shifter += timer_reload_value;
|
|
|
|
//this sweep logic is always enabled:
|
|
swp_silence = (timer_reload_value < 8 || (sweep_shifter > 0x7FF)); // && sweep_negate == 0));
|
|
|
|
//does enable only block the pitch bend? does the clocking proceed?
|
|
if (sweep_en == 1)
|
|
{
|
|
//clock divider
|
|
if (swp_divider_counter != 0) swp_divider_counter--;
|
|
if (swp_divider_counter == 0)
|
|
{
|
|
swp_divider_counter = sweep_divider_cnt + 1;
|
|
|
|
//divider was clocked: process sweep pitch bend
|
|
if (sweep_shiftcount != 0 && !swp_silence)
|
|
{
|
|
timer_reload_value = sweep_shifter;
|
|
timer_raw_reload_value = (timer_reload_value << 1) + 2;
|
|
}
|
|
//TODO - does this change the user's reload value or the latched reload value?
|
|
}
|
|
|
|
//handle divider reload, after clocking happens
|
|
if (sweep_reload)
|
|
{
|
|
swp_divider_counter = sweep_divider_cnt + 1;
|
|
sweep_reload = false;
|
|
}
|
|
}
|
|
|
|
//env_loopdoubles as "halt length counter"
|
|
if ((env_loop == 0 || len_halt) && len_cnt > 0)
|
|
len_cnt--;
|
|
}
|
|
|
|
public void clock_env()
|
|
{
|
|
if (env_start_flag == 1)
|
|
{
|
|
env_start_flag = 0;
|
|
env_divider = env_cnt_value;
|
|
env_counter = 15;
|
|
}
|
|
else
|
|
{
|
|
if (env_divider != 0)
|
|
{
|
|
env_divider--;
|
|
} else if (env_divider == 0)
|
|
{
|
|
env_divider = env_cnt_value;
|
|
if (env_counter == 0)
|
|
{
|
|
if (env_loop == 1)
|
|
{
|
|
env_counter = 15;
|
|
}
|
|
}
|
|
else env_counter--;
|
|
}
|
|
}
|
|
}
|
|
|
|
public void Run()
|
|
{
|
|
if (env_constant == 1)
|
|
env_output = env_cnt_value;
|
|
else env_output = env_counter;
|
|
|
|
if (timer_counter > 0) timer_counter--;
|
|
if (timer_counter == 0 && timer_raw_reload_value != 0)
|
|
{
|
|
if (duty_step==7)
|
|
{
|
|
duty_step = 0;
|
|
} else
|
|
{
|
|
duty_step++;
|
|
}
|
|
duty_value = PULSE_DUTY[duty_cnt, duty_step] == 1;
|
|
//reload timer
|
|
timer_counter = timer_raw_reload_value;
|
|
}
|
|
|
|
int newsample;
|
|
|
|
if (duty_value) //high state of duty cycle
|
|
{
|
|
newsample = env_output;
|
|
if (swp_silence || len_cnt == 0)
|
|
newsample = 0; // silenced
|
|
}
|
|
else
|
|
newsample = 0; //duty cycle is 0, silenced.
|
|
|
|
//newsample -= env_output >> 1; //unbias
|
|
if (newsample != sample)
|
|
{
|
|
apu.recalculate = true;
|
|
sample = newsample;
|
|
}
|
|
}
|
|
|
|
public bool Debug_IsSilenced
|
|
{
|
|
get
|
|
{
|
|
if (swp_silence || len_cnt == 0)
|
|
return true;
|
|
else return false;
|
|
}
|
|
}
|
|
|
|
public int Debug_DutyType
|
|
{
|
|
get
|
|
{
|
|
return duty_cnt;
|
|
}
|
|
}
|
|
|
|
public int Debug_Volume
|
|
{
|
|
get
|
|
{
|
|
return env_output;
|
|
}
|
|
}
|
|
}
|
|
|
|
public sealed class NoiseUnit
|
|
{
|
|
APU apu;
|
|
|
|
//reg0 (sweep)
|
|
int env_cnt_value, env_loop, env_constant;
|
|
public bool len_halt;
|
|
|
|
//reg2 (mode and period)
|
|
int mode_cnt, period_cnt;
|
|
|
|
//reg3 (length counter and envelop trigger)
|
|
int len_cnt;
|
|
|
|
//set from apu:
|
|
int lenctr_en;
|
|
|
|
//state
|
|
int shift_register = 1;
|
|
int timer_counter;
|
|
public int sample;
|
|
int env_output, env_start_flag, env_divider, env_counter;
|
|
bool noise_bit = true;
|
|
|
|
int[] NOISE_TABLE;
|
|
|
|
public NoiseUnit(APU apu, bool pal)
|
|
{
|
|
this.apu = apu;
|
|
NOISE_TABLE = pal ? NOISE_TABLE_PAL : NOISE_TABLE_NTSC;
|
|
}
|
|
|
|
public bool Debug_IsSilenced
|
|
{
|
|
get
|
|
{
|
|
if (len_cnt == 0) return true;
|
|
else return false;
|
|
}
|
|
}
|
|
|
|
public int Debug_Period
|
|
{
|
|
get
|
|
{
|
|
return period_cnt;
|
|
}
|
|
}
|
|
|
|
public int Debug_Volume
|
|
{
|
|
get
|
|
{
|
|
return env_output;
|
|
}
|
|
}
|
|
|
|
public void SyncState(Serializer ser)
|
|
{
|
|
ser.BeginSection("Noise");
|
|
ser.Sync("env_cnt_value", ref env_cnt_value);
|
|
ser.Sync("env_loop", ref env_loop);
|
|
ser.Sync("env_constant", ref env_constant);
|
|
ser.Sync("mode_cnt", ref mode_cnt);
|
|
ser.Sync("period_cnt", ref period_cnt);
|
|
|
|
ser.Sync("len_halt", ref len_halt);
|
|
|
|
//ser.Sync("mode_cnt", ref mode_cnt);
|
|
//ser.Sync("period_cnt", ref period_cnt);
|
|
|
|
ser.Sync("len_cnt", ref len_cnt);
|
|
|
|
ser.Sync("lenctr_en", ref lenctr_en);
|
|
|
|
ser.Sync("shift_register", ref shift_register);
|
|
ser.Sync("timer_counter", ref timer_counter);
|
|
ser.Sync("sample", ref sample);
|
|
|
|
ser.Sync("env_output", ref env_output);
|
|
ser.Sync("env_start_flag", ref env_start_flag);
|
|
ser.Sync("env_divider", ref env_divider);
|
|
ser.Sync("env_counter", ref env_counter);
|
|
ser.Sync("noise_bit", ref noise_bit);
|
|
ser.EndSection();
|
|
}
|
|
|
|
|
|
public bool IsLenCntNonZero() { return len_cnt > 0; }
|
|
|
|
public void WriteReg(int addr, byte val)
|
|
{
|
|
switch (addr)
|
|
{
|
|
case 0:
|
|
env_cnt_value = val & 0xF;
|
|
env_constant = (val >> 4) & 1;
|
|
//we want to delay a halt until after a length clock if they happen on the same cycle
|
|
if (env_loop==0 && ((val >> 5) & 1)==1)
|
|
{
|
|
len_halt = true;
|
|
}
|
|
env_loop = (val >> 5) & 1;
|
|
break;
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
period_cnt = NOISE_TABLE[val & 0xF];
|
|
mode_cnt = (val >> 7) & 1;
|
|
//Console.WriteLine("noise period: {0}, vol: {1}", (val & 0xF), env_cnt_value);
|
|
break;
|
|
case 3:
|
|
if (apu.len_clock_active)
|
|
{
|
|
if (len_cnt == 0)
|
|
{
|
|
len_cnt = LENGTH_TABLE[(val >> 3) & 0x1F] + 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
len_cnt = LENGTH_TABLE[(val >> 3) & 0x1F];
|
|
}
|
|
|
|
set_lenctr_en(lenctr_en);
|
|
env_start_flag = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
public void set_lenctr_en(int value)
|
|
{
|
|
lenctr_en = value;
|
|
//Console.WriteLine("noise lenctr_en: " + lenctr_en);
|
|
//if the length counter is not enabled, then we must disable the length system in this way
|
|
if (lenctr_en == 0) len_cnt = 0;
|
|
}
|
|
|
|
public void clock_env()
|
|
{
|
|
if (env_start_flag == 1)
|
|
{
|
|
env_start_flag = 0;
|
|
env_divider = (env_cnt_value + 1);
|
|
env_counter = 15;
|
|
}
|
|
else
|
|
{
|
|
if (env_divider != 0) env_divider--;
|
|
if (env_divider == 0)
|
|
{
|
|
env_divider = (env_cnt_value + 1);
|
|
if (env_counter == 0)
|
|
{
|
|
if (env_loop == 1)
|
|
{
|
|
env_counter = 15;
|
|
}
|
|
}
|
|
else env_counter--;
|
|
}
|
|
}
|
|
|
|
}
|
|
public void clock_length_and_sweep()
|
|
{
|
|
|
|
if (len_cnt > 0 && (env_loop == 0 || len_halt))
|
|
len_cnt--;
|
|
}
|
|
|
|
public void Run()
|
|
{
|
|
if (env_constant == 1)
|
|
env_output = env_cnt_value;
|
|
else env_output = env_counter;
|
|
|
|
if (timer_counter > 0) timer_counter--;
|
|
if (timer_counter == 0 && period_cnt != 0)
|
|
{
|
|
//reload timer
|
|
timer_counter = period_cnt;
|
|
int feedback_bit;
|
|
if (mode_cnt == 1) feedback_bit = (shift_register >> 6) & 1;
|
|
else feedback_bit = (shift_register >> 1) & 1;
|
|
int feedback = feedback_bit ^ (shift_register & 1);
|
|
shift_register >>= 1;
|
|
shift_register &= ~(1 << 14);
|
|
shift_register |= (feedback << 14);
|
|
noise_bit = (shift_register & 1) != 0;
|
|
}
|
|
|
|
int newsample;
|
|
if (len_cnt == 0) newsample = 0;
|
|
else if (noise_bit) newsample = env_output; // switched, was 0?
|
|
else newsample = 0;
|
|
if (newsample != sample)
|
|
{
|
|
apu.recalculate = true;
|
|
sample = newsample;
|
|
}
|
|
}
|
|
}
|
|
|
|
public sealed class TriangleUnit
|
|
{
|
|
//reg0
|
|
int linear_counter_reload, control_flag;
|
|
//reg1 (n/a)
|
|
//reg2/3
|
|
int timer_cnt, halt_flag, len_cnt;
|
|
public bool halt_2;
|
|
//misc..
|
|
int lenctr_en;
|
|
int linear_counter, timer, timer_cnt_reload;
|
|
int seq = 15;
|
|
public int sample;
|
|
|
|
APU apu;
|
|
public TriangleUnit(APU apu) { this.apu = apu; }
|
|
|
|
public void SyncState(Serializer ser)
|
|
{
|
|
ser.BeginSection("Triangle");
|
|
ser.Sync("linear_counter_reload", ref linear_counter_reload);
|
|
ser.Sync("control_flag", ref control_flag);
|
|
ser.Sync("timer_cnt", ref timer_cnt);
|
|
ser.Sync("halt_flag", ref halt_flag);
|
|
ser.Sync("len_cnt", ref len_cnt);
|
|
|
|
ser.Sync("lenctr_en", ref lenctr_en);
|
|
ser.Sync("linear_counter", ref linear_counter);
|
|
ser.Sync("timer", ref timer);
|
|
ser.Sync("timer_cnt_reload", ref timer_cnt_reload);
|
|
ser.Sync("seq", ref seq);
|
|
ser.Sync("sample", ref sample);
|
|
ser.EndSection();
|
|
}
|
|
|
|
public bool IsLenCntNonZero() { return len_cnt > 0; }
|
|
|
|
public void set_lenctr_en(int value)
|
|
{
|
|
lenctr_en = value;
|
|
//if the length counter is not enabled, then we must disable the length system in this way
|
|
if (lenctr_en == 0) len_cnt = 0;
|
|
}
|
|
|
|
public void WriteReg(int addr, byte val)
|
|
{
|
|
//Console.WriteLine("tri writes addr={0}, val={1:x2}", addr, val);
|
|
switch (addr)
|
|
{
|
|
case 0:
|
|
linear_counter_reload = (val & 0x7F);
|
|
control_flag = (val >> 7) & 1;
|
|
break;
|
|
case 1: break;
|
|
case 2:
|
|
timer_cnt = (timer_cnt & ~0xFF) | val;
|
|
timer_cnt_reload = timer_cnt + 1;
|
|
break;
|
|
case 3:
|
|
timer_cnt = (timer_cnt & 0xFF) | ((val & 0x7) << 8);
|
|
timer_cnt_reload = timer_cnt + 1;
|
|
if (apu.len_clock_active)
|
|
{
|
|
if (len_cnt == 0)
|
|
{
|
|
len_cnt = LENGTH_TABLE[(val >> 3) & 0x1F] + 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
len_cnt = LENGTH_TABLE[(val >> 3) & 0x1F];
|
|
}
|
|
halt_flag = 1;
|
|
|
|
//allow the lenctr_en to kill the len_cnt
|
|
set_lenctr_en(lenctr_en);
|
|
break;
|
|
}
|
|
//Console.WriteLine("tri timer_reload_value: {0}", timer_cnt_reload);
|
|
}
|
|
|
|
public bool Debug_IsSilenced
|
|
{
|
|
get
|
|
{
|
|
bool en = len_cnt != 0 && linear_counter != 0;
|
|
return !en;
|
|
}
|
|
}
|
|
|
|
public int Debug_PeriodValue
|
|
{
|
|
get
|
|
{
|
|
return timer_cnt;
|
|
}
|
|
}
|
|
|
|
public void Run()
|
|
{
|
|
//when clocked by timer
|
|
//seq steps forward
|
|
//except when linear counter or
|
|
//length counter is 0
|
|
|
|
//dont stop the triangle channel until its level is 0. makes it sound nicer.
|
|
bool need_declick = (seq != 16 && seq != 15);
|
|
bool en = len_cnt != 0 && linear_counter != 0 || need_declick;
|
|
|
|
//length counter and linear counter
|
|
//is clocked in frame counter.
|
|
if (en)
|
|
{
|
|
int newsample;
|
|
if (timer > 0) timer--;
|
|
if (timer == 0)
|
|
{
|
|
seq = (seq + 1) & 0x1F;
|
|
timer = timer_cnt_reload;
|
|
}
|
|
if (CFG_DECLICK) // this looks ugly...
|
|
newsample = TRIANGLE_TABLE[(seq + 8) & 0x1F];
|
|
else
|
|
newsample = TRIANGLE_TABLE[seq];
|
|
|
|
//special hack: frequently, games will use the maximum frequency triangle in order to mute it
|
|
//apparently this results in the DAC for the triangle wave outputting a steady level at about 7.5
|
|
//so we'll emulate it at the digital level
|
|
if (timer_cnt_reload == 1) newsample = 8;
|
|
|
|
//newsample -= 8; //unbias
|
|
if (newsample != sample)
|
|
{
|
|
apu.recalculate = true;
|
|
sample = newsample;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
public void clock_length_and_sweep()
|
|
{
|
|
//env_loopdoubles as "halt length counter"
|
|
if (len_cnt > 0 && halt_flag == 0)
|
|
len_cnt--;
|
|
}
|
|
|
|
public void clock_linear_counter()
|
|
{
|
|
// Console.WriteLine("linear_counter: {0}", linear_counter);
|
|
if (halt_flag == 1)
|
|
{
|
|
linear_counter = linear_counter_reload;
|
|
}
|
|
else if (linear_counter != 0)
|
|
{
|
|
linear_counter--;
|
|
}
|
|
|
|
//declick when the sound begins
|
|
//if (halt_flag == 1 && control_flag == 0)
|
|
//{
|
|
// seq = 16;
|
|
// Console.WriteLine("declicked triangle");
|
|
//}
|
|
|
|
//declick on end of sound
|
|
//bool en = len_cnt != 0 && linear_counter != 0;
|
|
//if (!en)
|
|
// if (sample < 0) sample++; else if (sample > 0) sample--;
|
|
|
|
halt_flag = control_flag;
|
|
}
|
|
} //class TriangleUnit
|
|
|
|
sealed class DMCUnit
|
|
{
|
|
APU apu;
|
|
int[] DMC_RATE;
|
|
public DMCUnit(APU apu, bool pal)
|
|
{
|
|
this.apu = apu;
|
|
out_silence = true;
|
|
DMC_RATE = pal ? DMC_RATE_PAL : DMC_RATE_NTSC;
|
|
timer_reload = DMC_RATE[0];
|
|
timer = timer_reload;
|
|
sample_buffer_filled = false;
|
|
out_deltacounter = 64;
|
|
out_bits_remaining = 0;
|
|
}
|
|
|
|
bool irq_enabled;
|
|
bool loop_flag;
|
|
int timer_reload;
|
|
|
|
//dmc delay per visual 2a03
|
|
int delay;
|
|
|
|
// this timer never stops, ever, so it is convenient to use for even/odd timing used elsewhere
|
|
public int timer;
|
|
int user_address;
|
|
public uint user_length, sample_length;
|
|
int sample_address, sample_buffer;
|
|
bool sample_buffer_filled;
|
|
|
|
int out_shift, out_bits_remaining, out_deltacounter;
|
|
bool out_silence;
|
|
|
|
public int sample { get { return out_deltacounter /* - 64*/; } }
|
|
|
|
public void SyncState(Serializer ser)
|
|
{
|
|
ser.BeginSection("DMC");
|
|
ser.Sync("irq_enabled", ref irq_enabled);
|
|
ser.Sync("loop_flag", ref loop_flag);
|
|
ser.Sync("timer_reload", ref timer_reload);
|
|
|
|
ser.Sync("timer", ref timer);
|
|
ser.Sync("user_address", ref user_address);
|
|
ser.Sync("user_length", ref user_length);
|
|
|
|
ser.Sync("sample_address", ref sample_address);
|
|
ser.Sync("sample_length", ref sample_length);
|
|
ser.Sync("sample_buffer", ref sample_buffer);
|
|
ser.Sync("sample_buffer_filled", ref sample_buffer_filled);
|
|
|
|
ser.Sync("out_shift", ref out_shift);
|
|
ser.Sync("out_bits_remaining", ref out_bits_remaining);
|
|
ser.Sync("out_deltacounter", ref out_deltacounter);
|
|
ser.Sync("out_silence", ref out_silence);
|
|
|
|
ser.Sync("dmc_call_delay", ref delay);
|
|
|
|
//int sample = 0; //junk
|
|
//ser.Sync("sample", ref sample);
|
|
ser.EndSection();
|
|
}
|
|
|
|
public void Run()
|
|
{
|
|
if (timer > 0) timer--;
|
|
if (timer == 0)
|
|
{
|
|
timer = timer_reload;
|
|
Clock();
|
|
}
|
|
|
|
//Any time the sample buffer is in an empty state and bytes remaining is not zero, the following occur:
|
|
// also note that the halt for DMC DMA occurs on APU cycles only (hence the timer check)
|
|
|
|
|
|
|
|
if (!sample_buffer_filled && sample_length > 0 && apu.dmc_dma_countdown == -1 && delay==0)
|
|
{
|
|
// calls from write take one less cycle, but start on a write instead of a read
|
|
if (!apu.call_from_write)
|
|
{
|
|
if (timer%2==1)
|
|
{
|
|
delay = 3;
|
|
} else
|
|
{
|
|
delay = 2;
|
|
}
|
|
} else
|
|
{
|
|
if (timer % 2 == 1)
|
|
{
|
|
delay = 2;
|
|
}
|
|
else
|
|
{
|
|
delay = 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
// I did some tests in Visual 2A03 and there seems to be some delay betwen when a DMC is first needed and when the
|
|
// process to execute the DMA starts. The details are not currently known, but it seems to be a 2 cycle delay
|
|
if (delay != 0)
|
|
{
|
|
delay--;
|
|
if (delay == 0)
|
|
{
|
|
if (!apu.call_from_write)
|
|
{
|
|
apu.dmc_dma_countdown = 4;
|
|
}
|
|
else
|
|
{
|
|
|
|
apu.dmc_dma_countdown = 3;
|
|
apu.call_from_write = false;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
void Clock()
|
|
{
|
|
//If the silence flag is clear, bit 0 of the shift register is applied to the counter as follows:
|
|
//if bit 0 is clear and the delta-counter is greater than 1, the counter is decremented by 2;
|
|
//otherwise, if bit 0 is set and the delta-counter is less than 126, the counter is incremented by 2
|
|
if (!out_silence)
|
|
{
|
|
//apply current sample bit to delta counter
|
|
if (out_shift.Bit(0))
|
|
{
|
|
if (out_deltacounter < 126)
|
|
out_deltacounter += 2;
|
|
}
|
|
else
|
|
{
|
|
if (out_deltacounter > 1)
|
|
out_deltacounter -= 2;
|
|
}
|
|
//apu.nes.LogLine("dmc out sample: {0}", out_deltacounter);
|
|
apu.recalculate = true;
|
|
}
|
|
|
|
//The right shift register is clocked.
|
|
out_shift >>= 1;
|
|
|
|
//The bits-remaining counter is decremented. If it becomes zero, a new cycle is started.
|
|
if (out_bits_remaining == 0)
|
|
{
|
|
//The bits-remaining counter is loaded with 8.
|
|
out_bits_remaining = 7;
|
|
//If the sample buffer is empty then the silence flag is set
|
|
if (!sample_buffer_filled)
|
|
{
|
|
out_silence = true;
|
|
//out_deltacounter = 64; //gonna go out on a limb here and guess this gets reset. could make some things pop, though, if they dont end at 0.
|
|
}
|
|
else
|
|
//otherwise, the silence flag is cleared and the sample buffer is emptied into the shift register.
|
|
{
|
|
out_silence = false;
|
|
out_shift = sample_buffer;
|
|
sample_buffer_filled = false;
|
|
}
|
|
}
|
|
else out_bits_remaining--;
|
|
|
|
|
|
}
|
|
|
|
public void set_lenctr_en(bool en)
|
|
{
|
|
if (!en)
|
|
{
|
|
//If the DMC bit is clear, the DMC bytes remaining will be set to 0
|
|
sample_length = 0;
|
|
//and the DMC will silence when it empties.
|
|
// (what does this mean? does out_deltacounter get reset to 0? maybe just that the out_silence flag gets set, but this is natural)
|
|
}
|
|
else
|
|
{
|
|
//only start playback if playback is stopped
|
|
//Console.Write(sample_length); Console.Write(" "); Console.Write(sample_buffer_filled); Console.Write(" "); Console.Write(apu.dmc_irq); Console.Write("\n");
|
|
if (sample_length == 0)
|
|
{
|
|
sample_address = user_address;
|
|
sample_length = user_length;
|
|
|
|
}
|
|
if (!sample_buffer_filled)
|
|
{
|
|
// apparently the dmc is different if called from a cpu write, let's try
|
|
apu.call_from_write = true;
|
|
}
|
|
}
|
|
|
|
//irq is acknowledged or sure to be clear, in either case
|
|
apu.dmc_irq = false;
|
|
apu.SyncIRQ();
|
|
}
|
|
|
|
public bool IsLenCntNonZero()
|
|
{
|
|
return sample_length != 0;
|
|
}
|
|
|
|
public void WriteReg(int addr, byte val)
|
|
{
|
|
//Console.WriteLine("DMC writes addr={0}, val={1:x2}", addr, val);
|
|
switch (addr)
|
|
{
|
|
case 0:
|
|
irq_enabled = val.Bit(7);
|
|
loop_flag = val.Bit(6);
|
|
timer_reload = DMC_RATE[val & 0xF];
|
|
if (!irq_enabled) apu.dmc_irq = false;
|
|
//apu.dmc_irq = false;
|
|
apu.SyncIRQ();
|
|
break;
|
|
case 1:
|
|
out_deltacounter = val & 0x7F;
|
|
//apu.nes.LogLine("~~ out_deltacounter set to {0}", out_deltacounter);
|
|
apu.recalculate = true;
|
|
break;
|
|
case 2:
|
|
user_address = 0xC000 | (val << 6);
|
|
break;
|
|
case 3:
|
|
user_length = ((uint)val << 4) + 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
public void Fetch()
|
|
{
|
|
if (sample_length != 0)
|
|
{
|
|
sample_buffer = apu.nes.ReadMemory((ushort)sample_address);
|
|
sample_buffer_filled = true;
|
|
sample_address = (ushort)(sample_address + 1);
|
|
//Console.WriteLine(sample_length);
|
|
//Console.WriteLine(user_length);
|
|
sample_length--;
|
|
//apu.pending_length_change = 1;
|
|
}
|
|
if (sample_length == 0)
|
|
{
|
|
if (loop_flag)
|
|
{
|
|
sample_address = user_address;
|
|
sample_length = user_length;
|
|
}
|
|
else if (irq_enabled) apu.dmc_irq = true;
|
|
}
|
|
//Console.WriteLine("fetching dmc byte: {0:X2}", sample_buffer);
|
|
}
|
|
}
|
|
|
|
public void SyncState(Serializer ser)
|
|
{
|
|
ser.Sync("irq_pending", ref irq_pending);
|
|
ser.Sync("dmc_irq", ref dmc_irq);
|
|
ser.Sync("pending_reg", ref pending_reg);
|
|
ser.Sync("pending_val", ref pending_val);
|
|
|
|
ser.Sync("sequencer_counter", ref sequencer_counter);
|
|
ser.Sync("sequencer_step", ref sequencer_step);
|
|
ser.Sync("sequencer_mode", ref sequencer_mode);
|
|
ser.Sync("sequencer_irq_inhibit;", ref sequencer_irq_inhibit);
|
|
ser.Sync("sequencer_irq", ref sequencer_irq);
|
|
ser.Sync("sequence_reset_pending", ref sequence_reset_pending);
|
|
ser.Sync("sequencer_irq_clear_pending", ref sequencer_irq_clear_pending);
|
|
ser.Sync("sequencer_irq_assert", ref sequencer_irq_assert);
|
|
|
|
ser.Sync("dmc_dma_countdown", ref dmc_dma_countdown);
|
|
ser.Sync("sample_length_delay", ref pending_length_change);
|
|
ser.Sync("dmc_called_from_write", ref call_from_write);
|
|
ser.Sync("sequencer_tick_delay", ref seq_tick);
|
|
ser.Sync("seq_val_to_apply", ref seq_val);
|
|
ser.Sync("sequencer_irq_flag", ref sequencer_irq_flag);
|
|
ser.Sync("len_clock_active", ref len_clock_active);
|
|
|
|
|
|
pulse[0].SyncState(ser);
|
|
pulse[1].SyncState(ser);
|
|
triangle.SyncState(ser);
|
|
noise.SyncState(ser);
|
|
dmc.SyncState(ser);
|
|
SyncIRQ();
|
|
}
|
|
|
|
public PulseUnit[] pulse = new PulseUnit[2];
|
|
public TriangleUnit triangle;
|
|
public NoiseUnit noise;
|
|
DMCUnit dmc;
|
|
|
|
bool irq_pending;
|
|
bool dmc_irq;
|
|
int pending_reg = -1;
|
|
byte pending_val = 0;
|
|
public int seq_tick;
|
|
public byte seq_val;
|
|
public bool len_clock_active;
|
|
|
|
int sequencer_counter, sequencer_step, sequencer_mode, sequencer_irq_inhibit, sequencer_irq_assert;
|
|
bool sequencer_irq, sequence_reset_pending, sequencer_irq_clear_pending, sequencer_irq_flag;
|
|
|
|
public void RunDMCFetch()
|
|
{
|
|
dmc.Fetch();
|
|
}
|
|
|
|
void sequencer_reset()
|
|
{
|
|
sequencer_counter = 0;
|
|
|
|
if (sequencer_mode == 1)
|
|
{
|
|
sequencer_step = 0;
|
|
QuarterFrame();
|
|
HalfFrame();
|
|
}
|
|
else
|
|
sequencer_step = 0;
|
|
}
|
|
|
|
//these figures are not valid for PAL. they must be recalculated with nintendulator's values above
|
|
static int[][] sequencer_lut = new int[][]{
|
|
new int[]{7457,14913,22371,29830},
|
|
new int[]{7457,14913,22371,29830,37282}
|
|
};
|
|
|
|
|
|
void sequencer_write_tick(byte val)
|
|
{
|
|
if (seq_tick>0)
|
|
{
|
|
seq_tick--;
|
|
if (seq_tick==0)
|
|
{
|
|
sequencer_mode = (val >> 7) & 1;
|
|
//Console.WriteLine("apu 4017 = {0:X2}", val);
|
|
sequencer_irq_inhibit = (val >> 6) & 1;
|
|
if (sequencer_irq_inhibit == 1)
|
|
{
|
|
sequencer_irq_flag = false;
|
|
}
|
|
sequencer_reset();
|
|
}
|
|
}
|
|
}
|
|
|
|
void sequencer_tick()
|
|
{
|
|
sequencer_counter++;
|
|
if (sequencer_mode==0 && sequencer_counter==29829)
|
|
{
|
|
if (sequencer_irq_inhibit==0)
|
|
{
|
|
sequencer_irq_assert = 2;
|
|
sequencer_irq_flag = true;
|
|
}
|
|
|
|
HalfFrame();
|
|
}
|
|
if (sequencer_mode == 0 && sequencer_counter == 29828 && sequencer_irq_inhibit == 0)
|
|
{
|
|
//sequencer_irq_assert = 2;
|
|
sequencer_irq_flag = true;
|
|
}
|
|
if (sequencer_mode == 1 && sequencer_counter == 37281)
|
|
{
|
|
HalfFrame();
|
|
}
|
|
if (sequencer_lut[sequencer_mode][sequencer_step] != sequencer_counter)
|
|
return;
|
|
sequencer_check();
|
|
}
|
|
|
|
public void SyncIRQ()
|
|
{
|
|
irq_pending = sequencer_irq | dmc_irq;
|
|
}
|
|
|
|
void sequencer_check()
|
|
{
|
|
//Console.WriteLine("sequencer mode {0} step {1}", sequencer_mode, sequencer_step);
|
|
bool quarter, half, reset;
|
|
switch (sequencer_mode)
|
|
{
|
|
case 0: //4-step
|
|
quarter = true;
|
|
half = sequencer_step == 1;
|
|
reset = sequencer_step == 3;
|
|
if (reset && sequencer_irq_inhibit == 0)
|
|
{
|
|
//Console.WriteLine("{0} {1,5} set irq_assert", nes.Frame, sequencer_counter);
|
|
//sequencer_irq_assert = 2;
|
|
sequencer_irq_flag = true;
|
|
}
|
|
break;
|
|
|
|
case 1: //5-step
|
|
quarter = sequencer_step != 3;
|
|
half = sequencer_step == 1;
|
|
reset = sequencer_step == 4;
|
|
break;
|
|
|
|
default:
|
|
throw new InvalidOperationException();
|
|
}
|
|
|
|
if (reset)
|
|
{
|
|
sequencer_counter = 0;
|
|
sequencer_step = 0;
|
|
}
|
|
else sequencer_step++;
|
|
|
|
if (quarter) QuarterFrame();
|
|
if (half) HalfFrame();
|
|
}
|
|
|
|
void HalfFrame()
|
|
{
|
|
pulse[0].clock_length_and_sweep();
|
|
pulse[1].clock_length_and_sweep();
|
|
triangle.clock_length_and_sweep();
|
|
noise.clock_length_and_sweep();
|
|
}
|
|
|
|
void QuarterFrame()
|
|
{
|
|
pulse[0].clock_env();
|
|
pulse[1].clock_env();
|
|
triangle.clock_linear_counter();
|
|
noise.clock_env();
|
|
}
|
|
|
|
public void NESSoftReset()
|
|
{
|
|
//need to study what happens to apu and stuff..
|
|
sequencer_irq = false;
|
|
sequencer_irq_flag = false;
|
|
_WriteReg(0x4015, 0);
|
|
|
|
//for 4017, its as if the last value written gets rewritten
|
|
sequencer_mode = (seq_val >> 7) & 1;
|
|
sequencer_irq_inhibit = (seq_val >> 6) & 1;
|
|
if (sequencer_irq_inhibit == 1)
|
|
{
|
|
sequencer_irq_flag = false;
|
|
}
|
|
sequencer_counter = 0;
|
|
sequencer_step = 0;
|
|
|
|
}
|
|
|
|
public void NESHardReset()
|
|
{
|
|
// "at power on it is as if $00 was written to $4017 9-12 cycles before the reset vector"
|
|
// that translates to a starting value for the counter of 6
|
|
|
|
sequencer_counter = 6;
|
|
|
|
}
|
|
|
|
public void WriteReg(int addr, byte val)
|
|
{
|
|
pending_reg = addr;
|
|
pending_val = val;
|
|
}
|
|
|
|
void _WriteReg(int addr, byte val)
|
|
{
|
|
//Console.WriteLine("{0:X4} = {1:X2}", addr, val);
|
|
int index = addr - 0x4000;
|
|
int reg = index & 3;
|
|
int channel = index >> 2;
|
|
switch (channel)
|
|
{
|
|
case 0:
|
|
pulse[0].WriteReg(reg, val);
|
|
break;
|
|
case 1:
|
|
pulse[1].WriteReg(reg, val);
|
|
break;
|
|
case 2:
|
|
triangle.WriteReg(reg, val);
|
|
break;
|
|
case 3:
|
|
noise.WriteReg(reg, val);
|
|
break;
|
|
case 4:
|
|
dmc.WriteReg(reg, val);
|
|
break;
|
|
case 5:
|
|
if (addr == 0x4015)
|
|
{
|
|
pulse[0].set_lenctr_en(val & 1);
|
|
pulse[1].set_lenctr_en((val >> 1) & 1);
|
|
triangle.set_lenctr_en((val >> 2) & 1);
|
|
noise.set_lenctr_en((val >> 3) & 1);
|
|
dmc.set_lenctr_en(val.Bit(4));
|
|
|
|
}
|
|
else if (addr == 0x4017)
|
|
{
|
|
if (dmc.timer%2==0)
|
|
{
|
|
seq_tick = 3;
|
|
|
|
} else
|
|
{
|
|
seq_tick = 4;
|
|
}
|
|
|
|
seq_val = val;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
public byte PeekReg(int addr)
|
|
{
|
|
switch (addr)
|
|
{
|
|
case 0x4015:
|
|
{
|
|
//notice a missing bit here. should properly emulate with empty / Data bus
|
|
//if an interrupt flag was set at the same moment of the read, it will read back as 1 but it will not be cleared.
|
|
int dmc_nonzero = dmc.IsLenCntNonZero() ? 1 : 0;
|
|
int noise_nonzero = noise.IsLenCntNonZero() ? 1 : 0;
|
|
int tri_nonzero = triangle.IsLenCntNonZero() ? 1 : 0;
|
|
int pulse1_nonzero = pulse[1].IsLenCntNonZero() ? 1 : 0;
|
|
int pulse0_nonzero = pulse[0].IsLenCntNonZero() ? 1 : 0;
|
|
int ret = ((dmc_irq ? 1 : 0) << 7) | ((sequencer_irq_flag ? 1 : 0) << 6) | (dmc_nonzero << 4) | (noise_nonzero << 3) | (tri_nonzero << 2) | (pulse1_nonzero << 1) | (pulse0_nonzero);
|
|
return (byte)ret;
|
|
}
|
|
default:
|
|
//don't return 0xFF here or SMB will break
|
|
return 0x00;
|
|
}
|
|
}
|
|
|
|
public byte ReadReg(int addr)
|
|
{
|
|
switch (addr)
|
|
{
|
|
case 0x4015:
|
|
{
|
|
byte ret = PeekReg(0x4015);
|
|
//Console.WriteLine("{0} {1,5} $4015 clear irq, was at {2}", nes.Frame, sequencer_counter, sequencer_irq);
|
|
sequencer_irq_flag = false;
|
|
SyncIRQ();
|
|
return ret;
|
|
}
|
|
default:
|
|
//don't return 0xFF here or SMB will break
|
|
return 0x00;
|
|
}
|
|
}
|
|
|
|
public Action DebugCallback;
|
|
public int DebugCallbackDivider;
|
|
public int DebugCallbackTimer;
|
|
|
|
int pending_length_change;
|
|
|
|
|
|
public void RunOne(bool read)
|
|
{
|
|
if (read)
|
|
{
|
|
pulse[0].Run();
|
|
pulse[1].Run();
|
|
triangle.Run();
|
|
noise.Run();
|
|
dmc.Run();
|
|
|
|
pulse[0].len_halt = false;
|
|
pulse[1].len_halt = false;
|
|
noise.len_halt = false;
|
|
|
|
}
|
|
else
|
|
{
|
|
if (pending_length_change>0)
|
|
{
|
|
pending_length_change--;
|
|
if (pending_length_change==0)
|
|
{
|
|
dmc.sample_length--;
|
|
}
|
|
}
|
|
|
|
EmitSample();
|
|
|
|
//we need to predict if there will be a length clock here, because the sequencer ticks last, but the
|
|
// timer reload shouldn't happen if length clock and write happen simultaneously
|
|
// I'm not sure if we can avoid this by simply processing the sequencer first
|
|
// but at the moment that would break everything, so this is good enough for now
|
|
if (sequencer_counter==14912 ||
|
|
(sequencer_counter == 29828 && sequencer_mode==0) ||
|
|
(sequencer_counter == 37280 && sequencer_mode == 1))
|
|
{
|
|
len_clock_active = true;
|
|
}
|
|
|
|
//handle writes
|
|
//notes: this set up is a bit convoluded at the moment, mainly because APU behaviour is not entirely understood
|
|
//in partiuclar, there are several clock pulses affecting the APU, and when new written are latched is not known in detail
|
|
//the current code simply matches known behaviour
|
|
if (pending_reg != -1)
|
|
{
|
|
if (pending_reg == 0x4015 || pending_reg == 0x4017 || pending_reg==0x4003 || pending_reg==0x4007)
|
|
{
|
|
_WriteReg(pending_reg, pending_val);
|
|
pending_reg = -1;
|
|
}
|
|
else if (dmc.timer%2==0)
|
|
{
|
|
_WriteReg(pending_reg, pending_val);
|
|
pending_reg = -1;
|
|
}
|
|
}
|
|
|
|
len_clock_active = false;
|
|
|
|
sequencer_tick();
|
|
sequencer_write_tick(seq_val);
|
|
|
|
if (sequencer_irq_assert>0) {
|
|
sequencer_irq_assert--;
|
|
if (sequencer_irq_assert==0)
|
|
{
|
|
sequencer_irq = true;
|
|
}
|
|
}
|
|
|
|
SyncIRQ();
|
|
nes.irq_apu = irq_pending;
|
|
|
|
//since the units run concurrently, the APU frame sequencer is ran last because
|
|
//it can change the ouput values of the pulse/triangle channels
|
|
//we want the changes to affect it on the *next* cycle.
|
|
|
|
if (sequencer_irq_flag == false)
|
|
sequencer_irq = false;
|
|
|
|
if (DebugCallbackDivider != 0)
|
|
{
|
|
if (DebugCallbackTimer == 0)
|
|
{
|
|
if (DebugCallback != null)
|
|
DebugCallback();
|
|
DebugCallbackTimer = DebugCallbackDivider;
|
|
}
|
|
else DebugCallbackTimer--;
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
public struct Delta
|
|
{
|
|
public uint time;
|
|
public int value;
|
|
public Delta(uint time, int value)
|
|
{
|
|
this.time = time;
|
|
this.value = value;
|
|
}
|
|
}
|
|
public List<Delta> dlist = new List<Delta>();
|
|
|
|
/// <summary>only call in board.ClockCPU()</summary>
|
|
/// <param name="value"></param>
|
|
public void ExternalQueue(int value)
|
|
{
|
|
// sampleclock is incremented right before board.ClockCPU()
|
|
dlist.Add(new Delta(sampleclock - 1, value));
|
|
}
|
|
|
|
public uint sampleclock = 0;
|
|
|
|
int oldmix = 0;
|
|
|
|
|
|
void EmitSample()
|
|
{
|
|
if (recalculate)
|
|
{
|
|
recalculate = false;
|
|
|
|
int s_pulse0 = pulse[0].sample;
|
|
int s_pulse1 = pulse[1].sample;
|
|
int s_tri = triangle.sample;
|
|
int s_noise = noise.sample;
|
|
int s_dmc = dmc.sample;
|
|
//int s_ext = 0; //gamepak
|
|
|
|
/*
|
|
if (!EnableSquare1) s_pulse0 = 0;
|
|
if (!EnableSquare2) s_pulse1 = 0;
|
|
if (!EnableTriangle) s_tri = 0;
|
|
if (!EnableNoise) s_noise = 0;
|
|
if (!EnableDMC) s_dmc = 0;
|
|
*/
|
|
|
|
//more properly correct
|
|
float pulse_out, tnd_out;
|
|
if (s_pulse0 == 0 && s_pulse1 == 0)
|
|
pulse_out = 0;
|
|
else pulse_out = 95.88f / ((8128.0f / (s_pulse0 + s_pulse1)) + 100.0f);
|
|
if (s_tri == 0 && s_noise == 0 && s_dmc == 0)
|
|
tnd_out = 0;
|
|
else tnd_out = 159.79f / (1 / ((s_tri / 8227.0f) + (s_noise / 12241.0f /* * NOISEADJUST*/) + (s_dmc / 22638.0f)) + 100);
|
|
float output = pulse_out + tnd_out;
|
|
//output = output * 2 - 1;
|
|
//this needs to leave enough headroom for straying DC bias due to the DMC unit getting stuck outputs. smb3 is bad about that.
|
|
int mix = (int)(20000 * output);
|
|
|
|
|
|
dlist.Add(new Delta(sampleclock, mix - oldmix));
|
|
oldmix = mix;
|
|
}
|
|
|
|
|
|
|
|
sampleclock++;
|
|
}
|
|
}
|
|
} |