forked from ShuriZma/suyu
1
0
Fork 0
Zuma/src/core/mem_map_funcs.cpp

214 lines
8.3 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "common/common.h"
#include "core/mem_map.h"
#include "core/hw/hw.h"
#include "hle/hle.h"
namespace Memory {
template <typename T>
inline void _Read(T &var, const u32 addr) {
// TODO: Figure out the fastest order of tests for both read and write (they are probably different).
// TODO: Make sure this represents the mirrors in a correct way.
// Could just do a base-relative read, too.... TODO
// Memory allocated for HLE use that can be addressed from the emulated application
// The primary use of this is sharing a commandbuffer between the HLE OS (syscore) and the LLE
// core running the user application (appcore)
if (addr >= HLE::CMD_BUFFER_ADDR && addr < HLE::CMD_BUFFER_ADDR_END) {
HLE::Read<T>(var, addr);
// Hardware I/O register reads
// 0x10XXXXXX- is physical address space, 0x1EXXXXXX is virtual address space
} else if ((addr & 0xFF000000) == 0x10000000 || (addr & 0xFF000000) == 0x1E000000) {
HW::Read<T>(var, addr);
// FCRAM virtual address reads
} else if ((addr & 0x3E000000) == 0x08000000) {
var = *((const T*)&g_fcram[addr & MEM_FCRAM_MASK]);
// Scratchpad memory
} else if (addr > MEM_SCRATCHPAD_VADDR && addr <= (MEM_SCRATCHPAD_VADDR + MEM_SCRATCHPAD_SIZE)) {
var = *((const T*)&g_scratchpad[addr & MEM_SCRATCHPAD_MASK]);
/*else if ((addr & 0x3F800000) == 0x04000000) {
var = *((const T*)&m_pVRAM[addr & VRAM_MASK]);
}*/
// HACK(bunnei): There is no layer yet to translate virtual addresses to physical addresses.
// Until we progress far enough along, we'll accept all physical address reads here. I think
// that this is typically a corner-case from usermode software unless they are trying to do
// bare-metal things (e.g. early 3DS homebrew writes directly to the FB @ 0x20184E60, etc.
} else if (((addr & 0xF0000000) == MEM_FCRAM_PADDR) && (addr < (MEM_FCRAM_PADDR_END))) {
var = *((const T*)&g_fcram[addr & MEM_FCRAM_MASK]);
} else {
_assert_msg_(MEMMAP, false, "unknown Read%d @ 0x%08X", sizeof(var) * 8, addr);
}
}
template <typename T>
inline void _Write(u32 addr, const T data) {
// Memory allocated for HLE use that can be addressed from the emulated application
// The primary use of this is sharing a commandbuffer between the HLE OS (syscore) and the LLE
// core running the user application (appcore)
if (addr >= HLE::CMD_BUFFER_ADDR && addr < HLE::CMD_BUFFER_ADDR_END) {
HLE::Write<T>(addr, data);
// Hardware I/O register writes
// 0x10XXXXXX- is physical address space, 0x1EXXXXXX is virtual address space
} else if ((addr & 0xFF000000) == 0x10000000 || (addr & 0xFF000000) == 0x1E000000) {
HW::Write<T>(addr, data);
// ExeFS:/.code is loaded here:
} else if ((addr & 0xFFF00000) == 0x00100000) {
// TODO(ShizZy): This is dumb... handle correctly. From 3DBrew:
// http://3dbrew.org/wiki/Memory_layout#ARM11_User-land_memory_regions
// The ExeFS:/.code is loaded here, executables must be loaded to the 0x00100000 region when
// the exheader "special memory" flag is clear. The 0x03F00000-byte size restriction only
// applies when this flag is clear. Executables are usually loaded to 0x14000000 when the
// exheader "special memory" flag is set, however this address can be arbitrary.
*(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data;
// Scratchpad memory
} else if (addr > MEM_SCRATCHPAD_VADDR && addr <= (MEM_SCRATCHPAD_VADDR + MEM_SCRATCHPAD_SIZE)) {
*(T*)&g_scratchpad[addr & MEM_SCRATCHPAD_MASK] = data;
// Heap mapped by ControlMemory:
} else if ((addr & 0x3E000000) == 0x08000000) {
// TODO(ShizZy): Writes to this virtual address should be put in physical memory at FCRAM + GSP
// heap size... the following is writing to FCRAM + 0, which is actually supposed to be the
// application's GSP heap
*(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data;
} else if ((addr & 0xFF000000) == 0x14000000) {
_assert_msg_(MEMMAP, false, "umimplemented write to GSP heap");
} else if ((addr & 0xFFF00000) == 0x1EC00000) {
_assert_msg_(MEMMAP, false, "umimplemented write to IO registers");
} else if ((addr & 0xFF000000) == 0x1F000000) {
_assert_msg_(MEMMAP, false, "umimplemented write to VRAM");
} else if ((addr & 0xFFF00000) == 0x1FF00000) {
_assert_msg_(MEMMAP, false, "umimplemented write to DSP memory");
} else if ((addr & 0xFFFF0000) == 0x1FF80000) {
_assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory");
} else if ((addr & 0xFFFFF000) == 0x1FF81000) {
_assert_msg_(MEMMAP, false, "umimplemented write to shared page");
// HACK(bunnei): There is no layer yet to translate virtual addresses to physical addresses.
// Until we progress far enough along, we'll accept all physical address writes here. I think
// that this is typically a corner-case from usermode software unless they are trying to do
// bare-metal things (e.g. early 3DS homebrew writes directly to the FB @ 0x20184E60, etc.
} else if (((addr & 0xF0000000) == MEM_FCRAM_PADDR) && (addr < (MEM_FCRAM_PADDR_END))) {
*(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data;
// Error out...
} else {
_assert_msg_(MEMMAP, false, "unknown Write%d 0x%08X @ 0x%08X", sizeof(data) * 8,
data, addr);
}
}
bool IsValidAddress(const u32 addr) {
if ((addr & 0x3E000000) == 0x08000000) {
return true;
} else if ((addr & 0x3F800000) == 0x04000000) {
return true;
} else if ((addr & 0xBFFF0000) == 0x00010000) {
return true;
} else if ((addr & 0x3F000000) >= 0x08000000 && (addr & 0x3F000000) < 0x08000000 + MEM_FCRAM_MASK) {
return true;
} else {
return false;
}
}
u8 *GetPointer(const u32 addr) {
// TODO(bunnei): Just a stub for now... ImplementMe!
if ((addr & 0x3E000000) == 0x08000000) {
return g_fcram + (addr & MEM_FCRAM_MASK);
// HACK(bunnei): There is no layer yet to translate virtual addresses to physical addresses.
// Until we progress far enough along, we'll accept all physical address reads here. I think
// that this is typically a corner-case from usermode software unless they are trying to do
// bare-metal things (e.g. early 3DS homebrew writes directly to the FB @ 0x20184E60, etc.
} else if (((addr & 0xF0000000) == MEM_FCRAM_PADDR) && (addr < (MEM_FCRAM_PADDR_END))) {
return g_fcram + (addr & MEM_FCRAM_MASK);
//else if ((addr & 0x3F800000) == 0x04000000) {
// return g_vram + (addr & MEM_VRAM_MASK);
//}
//else if ((addr & 0x3F000000) >= 0x08000000 && (addr & 0x3F000000) < 0x08000000 + g_MemorySize) {
// return m_pRAM + (addr & g_MemoryMask);
//}
} else {
//ERROR_LOG(MEMMAP, "Unknown GetPointer %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
ERROR_LOG(MEMMAP, "Unknown GetPointer %08x", addr);
static bool reported = false;
//if (!reported) {
// Reporting::ReportMessage("Unknown GetPointer %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
// reported = true;
//}
//if (!g_Config.bIgnoreBadMemAccess) {
// Core_EnableStepping(true);
// host->SetDebugMode(true);
//}
return 0;
}
}
u8 Read8(const u32 addr) {
u8 _var = 0;
_Read<u8>(_var, addr);
return (u8)_var;
}
u16 Read16(const u32 addr) {
u16_le _var = 0;
_Read<u16_le>(_var, addr);
return (u16)_var;
}
u32 Read32(const u32 addr) {
u32_le _var = 0;
_Read<u32_le>(_var, addr);
return _var;
}
u64 Read64(const u32 addr) {
u64_le _var = 0;
_Read<u64_le>(_var, addr);
return _var;
}
u32 Read8_ZX(const u32 addr) {
return (u32)Read8(addr);
}
u32 Read16_ZX(const u32 addr) {
return (u32)Read16(addr);
}
void Write8(const u32 addr, const u8 data) {
_Write<u8>(addr, data);
}
void Write16(const u32 addr, const u16 data) {
_Write<u16_le>(addr, data);
}
void Write32(const u32 addr, const u32 data) {
_Write<u32_le>(addr, data);
}
void Write64(const u32 addr, const u64 data) {
_Write<u64_le>(addr, data);
}
} // namespace