Prevents compiler warnings related to truncation when invoking the
dialog. It's also extremely suspect to use a u8 value here instead of a
more general type to begin with.
These parameters don't need to utilize a shared lifecycle directly in
the interface. Instead, the caller should provide a regular reference
for the function to use. This also allows the type system to flag
attempts to pass nullptr and makes it more generic, since it can now be
used in contexts where a shared_ptr isn't being used (in other words, we
don't constrain the usage of the interface to a particular mode of
memory management).
While we're at it, organize the array linearly, since clang formats the
array elements quite wide length-wise with the addition of the missing
'u'.
Technically also fixes patch lookup and icon lookup with Portuguese,
though I doubt anyone has actually run into this issue.
On invalidating the streaming buffer, we need to reupload all vertex buffers.
But we don't need to reconfigure the vertex format.
This was a (silly) misstake in #1723.
Thanks at Rodrigo for discovering the issue.
Fun fact, as configuring the vertex format also invalidate the vertex buffer,
this misstake had no affect on the behavior.
The opposite of the getter functions, this function sets the limit value
for a particular ResourceLimit resource category, with the restriction
that the new limit value must be equal to or greater than the current
resource value. If this is violated, then ERR_INVALID_STATE is returned.
e.g.
Assume:
current[Events] = 10;
limit[Events] = 20;
a call to this service function lowering the limit value to 10 would be
fine, however, attempting to lower it to 9 in this case would cause an
invalid state error.
This kernel service function is essentially the exact same as
svcGetResourceLimitLimitValue(), with the only difference being that it
retrieves the current value for a given resource category using the
provided resource limit handle, rather than retrieving the limiting
value of that resource limit instance.
Given these are exactly the same and only differ on returned values, we
can extract the existing code for svcGetResourceLimitLimitValue() to
handle both values.
This kernel service function retrieves the maximum allowable value for
a provided resource category for a given resource limit instance. Given
we already have the functionality added to the resource limit instance
itself, it's sufficient to just hook it up.
The error scenarios for this are:
1. If an invalid resource category type is provided, then ERR_INVALID_ENUM is returned.
2. If an invalid handle is provided, then ERR_INVALID_HANDLE is returned (bad thing goes in, bad thing goes out, as one would expect).
If neither of the above error cases occur, then the out parameter is
provided with the maximum limit value for the given category and success
is returned.
This function simply creates a ResourceLimit instance and attempts to
create a handle for it within the current process' handle table. If the
kernal fails to either create the ResourceLimit instance or create a
handle for the ResourceLimit instance, it returns a failure code
(OUT_OF_RESOURCE, and HANDLE_TABLE_FULL respectively). Finally, it exits
by providing the output parameter with the handle value for the
ResourceLimit instance and returning that it was successful.
Note: We do not return OUT_OF_RESOURCE because, if yuzu runs out of
available memory, then new will currently throw. We *could* allocate the
kernel instance with std::nothrow, however this would be inconsistent
with how all other kernel objects are currently allocated.
Avoids the need to create a copy of the std::string instance
(potentially allocating).
The only reason RegisterService takes its argument by value is because
it's std::moved internally.
Keeps the CPU-specific behavior from being spread throughout the main
System class. This will also act as the home to contain member functions
that perform operations on all cores. The reason for this being that the
following pattern is sort of prevalent throughout sections of the
codebase:
If clearing the instruction cache for all 4 cores is necessary:
Core::System::GetInstance().ArmInterface(0).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(1).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(2).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(3).ClearInstructionCache();
This is kind of... well, silly to copy around whenever it's needed.
especially when it can be reduced down to a single line.
This change also puts the basics in place to begin "ungrafting" all of the
forwarding member functions from the System class that are used to
access CPU state or invoke CPU-specific behavior. As such, this change
itself makes no changes to the direct external interface of System. This
will be covered by another changeset.
While admirable as a means to ensure immutability, this has the
unfortunate downside of making the class non-movable. std::move cannot
actually perform a move operation if the provided operand has const data
members (std::move acts as an operation to "slide" resources out of an
object instance). Given Barrier contains move-only types such as
std::mutex, this can lead to confusing error messages if an object ever
contained a Barrier instance and said object was attempted to be moved.
This is also unused and superceded by standard functionality. The
standard library provides std::this_thread::sleep_for(), which provides
a much more flexible interface, as different time units can be used with
it.
This is an old function that's no longer necessary. C++11 introduced
proper threading support to the language and a thread ID can be
retrieved via std::this_thread::get_id() if it's ever needed.
This is an analog of BitSet from Dolphin that was introduced to allow
iterating over a set of bits. Given it's currently unused, and given
that std::bitset exists, we can remove this. If it's ever needed in the
future it can be brought back.
Xbyak is currently entirely unused. Rather than carting it along, remove
it and get rid of a dependency. If it's ever needed in the future, then
it can be re-added (and likely be more up to date at that point in
time).
The interface for shared memory was changed, but another commit was
merged that relied on the (previously public) internals of SharedMemory.
This amends that discrepancy.
The decision was made to name them LayeredExeFS instead of just LayeredFS to differentiate from normal RomFS-based mods. The name may be long/unweildy, but conveys the meaning well.
Currently, there's no way to specify if an assertion should
conditionally occur due to unimplemented behavior. This is useful when
something is only partially implemented (e.g. due to ongoing RE work).
In particular, this would be useful within the graphics code.
The rationale behind this is it allows a dev to disable unimplemented
feature assertions (which can occur in an unrelated work area), while
still enabling regular assertions, which act as behavior guards for
conditions or states which must not occur. Previously, the only way a
dev could temporarily disable asserts, was to disable the regular
assertion macros, which has the downside of also disabling, well, the
regular assertions which hold more sanitizing value, as opposed to
unimplemented feature assertions.