forked from ShuriZma/suyu
1
0
Fork 0

Merge pull request #4528 from lioncash/discard

common: Make use of [[nodiscard]] where applicable
This commit is contained in:
bunnei 2020-08-16 01:47:54 -04:00 committed by GitHub
commit db96034ea4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
37 changed files with 383 additions and 391 deletions

View File

@ -15,7 +15,8 @@
namespace Common {
template <class ForwardIt, class T, class Compare = std::less<>>
ForwardIt BinaryFind(ForwardIt first, ForwardIt last, const T& value, Compare comp = {}) {
[[nodiscard]] ForwardIt BinaryFind(ForwardIt first, ForwardIt last, const T& value,
Compare comp = {}) {
// Note: BOTH type T and the type after ForwardIt is dereferenced
// must be implicitly convertible to BOTH Type1 and Type2, used in Compare.
// This is stricter than lower_bound requirement (see above)

View File

@ -9,7 +9,7 @@
namespace Common {
template <typename T>
constexpr T AlignUp(T value, std::size_t size) {
[[nodiscard]] constexpr T AlignUp(T value, std::size_t size) {
static_assert(std::is_unsigned_v<T>, "T must be an unsigned value.");
auto mod{static_cast<T>(value % size)};
value -= mod;
@ -17,31 +17,31 @@ constexpr T AlignUp(T value, std::size_t size) {
}
template <typename T>
constexpr T AlignDown(T value, std::size_t size) {
[[nodiscard]] constexpr T AlignDown(T value, std::size_t size) {
static_assert(std::is_unsigned_v<T>, "T must be an unsigned value.");
return static_cast<T>(value - value % size);
}
template <typename T>
constexpr T AlignBits(T value, std::size_t align) {
[[nodiscard]] constexpr T AlignBits(T value, std::size_t align) {
static_assert(std::is_unsigned_v<T>, "T must be an unsigned value.");
return static_cast<T>((value + ((1ULL << align) - 1)) >> align << align);
}
template <typename T>
constexpr bool Is4KBAligned(T value) {
[[nodiscard]] constexpr bool Is4KBAligned(T value) {
static_assert(std::is_unsigned_v<T>, "T must be an unsigned value.");
return (value & 0xFFF) == 0;
}
template <typename T>
constexpr bool IsWordAligned(T value) {
[[nodiscard]] constexpr bool IsWordAligned(T value) {
static_assert(std::is_unsigned_v<T>, "T must be an unsigned value.");
return (value & 0b11) == 0;
}
template <typename T>
constexpr bool IsAligned(T value, std::size_t alignment) {
[[nodiscard]] constexpr bool IsAligned(T value, std::size_t alignment) {
using U = typename std::make_unsigned<T>::type;
const U mask = static_cast<U>(alignment - 1);
return (value & mask) == 0;
@ -64,7 +64,7 @@ public:
template <typename T2>
constexpr AlignmentAllocator(const AlignmentAllocator<T2, Align>&) noexcept {}
T* allocate(size_type n) {
[[nodiscard]] T* allocate(size_type n) {
return static_cast<T*>(::operator new (n * sizeof(T), std::align_val_t{Align}));
}

View File

@ -8,10 +8,10 @@
namespace Common {
bool AtomicCompareAndSwap(volatile u8* pointer, u8 value, u8 expected);
bool AtomicCompareAndSwap(volatile u16* pointer, u16 value, u16 expected);
bool AtomicCompareAndSwap(volatile u32* pointer, u32 value, u32 expected);
bool AtomicCompareAndSwap(volatile u64* pointer, u64 value, u64 expected);
bool AtomicCompareAndSwap(volatile u64* pointer, u128 value, u128 expected);
[[nodiscard]] bool AtomicCompareAndSwap(volatile u8* pointer, u8 value, u8 expected);
[[nodiscard]] bool AtomicCompareAndSwap(volatile u16* pointer, u16 value, u16 expected);
[[nodiscard]] bool AtomicCompareAndSwap(volatile u32* pointer, u32 value, u32 expected);
[[nodiscard]] bool AtomicCompareAndSwap(volatile u64* pointer, u64 value, u64 expected);
[[nodiscard]] bool AtomicCompareAndSwap(volatile u64* pointer, u128 value, u128 expected);
} // namespace Common

View File

@ -36,13 +36,6 @@
#include "common/common_funcs.h"
#include "common/swap.h"
// Inlining
#ifdef _WIN32
#define FORCE_INLINE __forceinline
#else
#define FORCE_INLINE inline __attribute__((always_inline))
#endif
/*
* Abstract bitfield class
*
@ -142,8 +135,8 @@ public:
* containing several bitfields can be assembled by formatting each of their values and ORing
* the results together.
*/
static constexpr FORCE_INLINE StorageType FormatValue(const T& value) {
return ((StorageType)value << position) & mask;
[[nodiscard]] static constexpr StorageType FormatValue(const T& value) {
return (static_cast<StorageType>(value) << position) & mask;
}
/**
@ -151,7 +144,7 @@ public:
* (such as Value() or operator T), but this can be used to extract a value from a bitfield
* union in a constexpr context.
*/
static constexpr FORCE_INLINE T ExtractValue(const StorageType& storage) {
[[nodiscard]] static constexpr T ExtractValue(const StorageType& storage) {
if constexpr (std::numeric_limits<UnderlyingType>::is_signed) {
std::size_t shift = 8 * sizeof(T) - bits;
return static_cast<T>(static_cast<UnderlyingType>(storage << (shift - position)) >>
@ -175,7 +168,7 @@ public:
constexpr BitField(BitField&&) noexcept = default;
constexpr BitField& operator=(BitField&&) noexcept = default;
constexpr operator T() const {
[[nodiscard]] constexpr operator T() const {
return Value();
}
@ -183,11 +176,11 @@ public:
storage = static_cast<StorageType>((storage & ~mask) | FormatValue(value));
}
constexpr T Value() const {
[[nodiscard]] constexpr T Value() const {
return ExtractValue(storage);
}
constexpr explicit operator bool() const {
[[nodiscard]] constexpr explicit operator bool() const {
return Value() != 0;
}

View File

@ -17,12 +17,12 @@ namespace Common {
/// Gets the size of a specified type T in bits.
template <typename T>
constexpr std::size_t BitSize() {
[[nodiscard]] constexpr std::size_t BitSize() {
return sizeof(T) * CHAR_BIT;
}
#ifdef _MSC_VER
inline u32 CountLeadingZeroes32(u32 value) {
[[nodiscard]] inline u32 CountLeadingZeroes32(u32 value) {
unsigned long leading_zero = 0;
if (_BitScanReverse(&leading_zero, value) != 0) {
@ -32,7 +32,7 @@ inline u32 CountLeadingZeroes32(u32 value) {
return 32;
}
inline u32 CountLeadingZeroes64(u64 value) {
[[nodiscard]] inline u32 CountLeadingZeroes64(u64 value) {
unsigned long leading_zero = 0;
if (_BitScanReverse64(&leading_zero, value) != 0) {
@ -42,7 +42,7 @@ inline u32 CountLeadingZeroes64(u64 value) {
return 64;
}
#else
inline u32 CountLeadingZeroes32(u32 value) {
[[nodiscard]] inline u32 CountLeadingZeroes32(u32 value) {
if (value == 0) {
return 32;
}
@ -50,7 +50,7 @@ inline u32 CountLeadingZeroes32(u32 value) {
return static_cast<u32>(__builtin_clz(value));
}
inline u32 CountLeadingZeroes64(u64 value) {
[[nodiscard]] inline u32 CountLeadingZeroes64(u64 value) {
if (value == 0) {
return 64;
}
@ -60,7 +60,7 @@ inline u32 CountLeadingZeroes64(u64 value) {
#endif
#ifdef _MSC_VER
inline u32 CountTrailingZeroes32(u32 value) {
[[nodiscard]] inline u32 CountTrailingZeroes32(u32 value) {
unsigned long trailing_zero = 0;
if (_BitScanForward(&trailing_zero, value) != 0) {
@ -70,7 +70,7 @@ inline u32 CountTrailingZeroes32(u32 value) {
return 32;
}
inline u32 CountTrailingZeroes64(u64 value) {
[[nodiscard]] inline u32 CountTrailingZeroes64(u64 value) {
unsigned long trailing_zero = 0;
if (_BitScanForward64(&trailing_zero, value) != 0) {
@ -80,7 +80,7 @@ inline u32 CountTrailingZeroes64(u64 value) {
return 64;
}
#else
inline u32 CountTrailingZeroes32(u32 value) {
[[nodiscard]] inline u32 CountTrailingZeroes32(u32 value) {
if (value == 0) {
return 32;
}
@ -88,7 +88,7 @@ inline u32 CountTrailingZeroes32(u32 value) {
return static_cast<u32>(__builtin_ctz(value));
}
inline u32 CountTrailingZeroes64(u64 value) {
[[nodiscard]] inline u32 CountTrailingZeroes64(u64 value) {
if (value == 0) {
return 64;
}
@ -99,13 +99,13 @@ inline u32 CountTrailingZeroes64(u64 value) {
#ifdef _MSC_VER
inline u32 MostSignificantBit32(const u32 value) {
[[nodiscard]] inline u32 MostSignificantBit32(const u32 value) {
unsigned long result;
_BitScanReverse(&result, value);
return static_cast<u32>(result);
}
inline u32 MostSignificantBit64(const u64 value) {
[[nodiscard]] inline u32 MostSignificantBit64(const u64 value) {
unsigned long result;
_BitScanReverse64(&result, value);
return static_cast<u32>(result);
@ -113,30 +113,30 @@ inline u32 MostSignificantBit64(const u64 value) {
#else
inline u32 MostSignificantBit32(const u32 value) {
[[nodiscard]] inline u32 MostSignificantBit32(const u32 value) {
return 31U - static_cast<u32>(__builtin_clz(value));
}
inline u32 MostSignificantBit64(const u64 value) {
[[nodiscard]] inline u32 MostSignificantBit64(const u64 value) {
return 63U - static_cast<u32>(__builtin_clzll(value));
}
#endif
inline u32 Log2Floor32(const u32 value) {
[[nodiscard]] inline u32 Log2Floor32(const u32 value) {
return MostSignificantBit32(value);
}
inline u32 Log2Ceil32(const u32 value) {
[[nodiscard]] inline u32 Log2Ceil32(const u32 value) {
const u32 log2_f = Log2Floor32(value);
return log2_f + ((value ^ (1U << log2_f)) != 0U);
}
inline u32 Log2Floor64(const u64 value) {
[[nodiscard]] inline u32 Log2Floor64(const u64 value) {
return MostSignificantBit64(value);
}
inline u32 Log2Ceil64(const u64 value) {
[[nodiscard]] inline u32 Log2Ceil64(const u64 value) {
const u64 log2_f = static_cast<u64>(Log2Floor64(value));
return static_cast<u32>(log2_f + ((value ^ (1ULL << log2_f)) != 0ULL));
}

View File

@ -61,42 +61,43 @@
#pragma once
#include <cstddef>
#include <cstdint>
#include <utility>
#include <stdint.h>
#include <stdlib.h> // for std::size_t.
namespace Common {
typedef std::pair<uint64_t, uint64_t> uint128;
using uint128 = std::pair<uint64_t, uint64_t>;
inline uint64_t Uint128Low64(const uint128& x) {
[[nodiscard]] inline uint64_t Uint128Low64(const uint128& x) {
return x.first;
}
inline uint64_t Uint128High64(const uint128& x) {
[[nodiscard]] inline uint64_t Uint128High64(const uint128& x) {
return x.second;
}
// Hash function for a byte array.
uint64_t CityHash64(const char* buf, std::size_t len);
[[nodiscard]] uint64_t CityHash64(const char* buf, std::size_t len);
// Hash function for a byte array. For convenience, a 64-bit seed is also
// hashed into the result.
uint64_t CityHash64WithSeed(const char* buf, std::size_t len, uint64_t seed);
[[nodiscard]] uint64_t CityHash64WithSeed(const char* buf, std::size_t len, uint64_t seed);
// Hash function for a byte array. For convenience, two seeds are also
// hashed into the result.
uint64_t CityHash64WithSeeds(const char* buf, std::size_t len, uint64_t seed0, uint64_t seed1);
[[nodiscard]] uint64_t CityHash64WithSeeds(const char* buf, std::size_t len, uint64_t seed0,
uint64_t seed1);
// Hash function for a byte array.
uint128 CityHash128(const char* s, std::size_t len);
[[nodiscard]] uint128 CityHash128(const char* s, std::size_t len);
// Hash function for a byte array. For convenience, a 128-bit seed is also
// hashed into the result.
uint128 CityHash128WithSeed(const char* s, std::size_t len, uint128 seed);
[[nodiscard]] uint128 CityHash128WithSeed(const char* s, std::size_t len, uint128 seed);
// Hash 128 input bits down to 64 bits of output.
// This is intended to be a reasonably good hash function.
inline uint64_t Hash128to64(const uint128& x) {
[[nodiscard]] inline uint64_t Hash128to64(const uint128& x) {
// Murmur-inspired hashing.
const uint64_t kMul = 0x9ddfea08eb382d69ULL;
uint64_t a = (Uint128Low64(x) ^ Uint128High64(x)) * kMul;

View File

@ -13,42 +13,42 @@
namespace Color {
/// Convert a 1-bit color component to 8 bit
constexpr u8 Convert1To8(u8 value) {
[[nodiscard]] constexpr u8 Convert1To8(u8 value) {
return value * 255;
}
/// Convert a 4-bit color component to 8 bit
constexpr u8 Convert4To8(u8 value) {
[[nodiscard]] constexpr u8 Convert4To8(u8 value) {
return (value << 4) | value;
}
/// Convert a 5-bit color component to 8 bit
constexpr u8 Convert5To8(u8 value) {
[[nodiscard]] constexpr u8 Convert5To8(u8 value) {
return (value << 3) | (value >> 2);
}
/// Convert a 6-bit color component to 8 bit
constexpr u8 Convert6To8(u8 value) {
[[nodiscard]] constexpr u8 Convert6To8(u8 value) {
return (value << 2) | (value >> 4);
}
/// Convert a 8-bit color component to 1 bit
constexpr u8 Convert8To1(u8 value) {
[[nodiscard]] constexpr u8 Convert8To1(u8 value) {
return value >> 7;
}
/// Convert a 8-bit color component to 4 bit
constexpr u8 Convert8To4(u8 value) {
[[nodiscard]] constexpr u8 Convert8To4(u8 value) {
return value >> 4;
}
/// Convert a 8-bit color component to 5 bit
constexpr u8 Convert8To5(u8 value) {
[[nodiscard]] constexpr u8 Convert8To5(u8 value) {
return value >> 3;
}
/// Convert a 8-bit color component to 6 bit
constexpr u8 Convert8To6(u8 value) {
[[nodiscard]] constexpr u8 Convert8To6(u8 value) {
return value >> 2;
}
@ -57,7 +57,7 @@ constexpr u8 Convert8To6(u8 value) {
* @param bytes Pointer to encoded source color
* @return Result color decoded as Common::Vec4<u8>
*/
inline Common::Vec4<u8> DecodeRGBA8(const u8* bytes) {
[[nodiscard]] inline Common::Vec4<u8> DecodeRGBA8(const u8* bytes) {
return {bytes[3], bytes[2], bytes[1], bytes[0]};
}
@ -66,7 +66,7 @@ inline Common::Vec4<u8> DecodeRGBA8(const u8* bytes) {
* @param bytes Pointer to encoded source color
* @return Result color decoded as Common::Vec4<u8>
*/
inline Common::Vec4<u8> DecodeRGB8(const u8* bytes) {
[[nodiscard]] inline Common::Vec4<u8> DecodeRGB8(const u8* bytes) {
return {bytes[2], bytes[1], bytes[0], 255};
}
@ -75,7 +75,7 @@ inline Common::Vec4<u8> DecodeRGB8(const u8* bytes) {
* @param bytes Pointer to encoded source color
* @return Result color decoded as Common::Vec4<u8>
*/
inline Common::Vec4<u8> DecodeRG8(const u8* bytes) {
[[nodiscard]] inline Common::Vec4<u8> DecodeRG8(const u8* bytes) {
return {bytes[1], bytes[0], 0, 255};
}
@ -84,7 +84,7 @@ inline Common::Vec4<u8> DecodeRG8(const u8* bytes) {
* @param bytes Pointer to encoded source color
* @return Result color decoded as Common::Vec4<u8>
*/
inline Common::Vec4<u8> DecodeRGB565(const u8* bytes) {
[[nodiscard]] inline Common::Vec4<u8> DecodeRGB565(const u8* bytes) {
u16_le pixel;
std::memcpy(&pixel, bytes, sizeof(pixel));
return {Convert5To8((pixel >> 11) & 0x1F), Convert6To8((pixel >> 5) & 0x3F),
@ -96,7 +96,7 @@ inline Common::Vec4<u8> DecodeRGB565(const u8* bytes) {
* @param bytes Pointer to encoded source color
* @return Result color decoded as Common::Vec4<u8>
*/
inline Common::Vec4<u8> DecodeRGB5A1(const u8* bytes) {
[[nodiscard]] inline Common::Vec4<u8> DecodeRGB5A1(const u8* bytes) {
u16_le pixel;
std::memcpy(&pixel, bytes, sizeof(pixel));
return {Convert5To8((pixel >> 11) & 0x1F), Convert5To8((pixel >> 6) & 0x1F),
@ -108,7 +108,7 @@ inline Common::Vec4<u8> DecodeRGB5A1(const u8* bytes) {
* @param bytes Pointer to encoded source color
* @return Result color decoded as Common::Vec4<u8>
*/
inline Common::Vec4<u8> DecodeRGBA4(const u8* bytes) {
[[nodiscard]] inline Common::Vec4<u8> DecodeRGBA4(const u8* bytes) {
u16_le pixel;
std::memcpy(&pixel, bytes, sizeof(pixel));
return {Convert4To8((pixel >> 12) & 0xF), Convert4To8((pixel >> 8) & 0xF),
@ -120,7 +120,7 @@ inline Common::Vec4<u8> DecodeRGBA4(const u8* bytes) {
* @param bytes Pointer to encoded source value
* @return Depth value as an u32
*/
inline u32 DecodeD16(const u8* bytes) {
[[nodiscard]] inline u32 DecodeD16(const u8* bytes) {
u16_le data;
std::memcpy(&data, bytes, sizeof(data));
return data;
@ -131,7 +131,7 @@ inline u32 DecodeD16(const u8* bytes) {
* @param bytes Pointer to encoded source value
* @return Depth value as an u32
*/
inline u32 DecodeD24(const u8* bytes) {
[[nodiscard]] inline u32 DecodeD24(const u8* bytes) {
return (bytes[2] << 16) | (bytes[1] << 8) | bytes[0];
}
@ -140,7 +140,7 @@ inline u32 DecodeD24(const u8* bytes) {
* @param bytes Pointer to encoded source values
* @return Resulting values stored as a Common::Vec2
*/
inline Common::Vec2<u32> DecodeD24S8(const u8* bytes) {
[[nodiscard]] inline Common::Vec2<u32> DecodeD24S8(const u8* bytes) {
return {static_cast<u32>((bytes[2] << 16) | (bytes[1] << 8) | bytes[0]), bytes[3]};
}

View File

@ -53,14 +53,14 @@ __declspec(dllimport) void __stdcall DebugBreak(void);
// Call directly after the command or use the error num.
// This function might change the error code.
// Defined in Misc.cpp.
std::string GetLastErrorMsg();
[[nodiscard]] std::string GetLastErrorMsg();
#define DECLARE_ENUM_FLAG_OPERATORS(type) \
constexpr type operator|(type a, type b) noexcept { \
[[nodiscard]] constexpr type operator|(type a, type b) noexcept { \
using T = std::underlying_type_t<type>; \
return static_cast<type>(static_cast<T>(a) | static_cast<T>(b)); \
} \
constexpr type operator&(type a, type b) noexcept { \
[[nodiscard]] constexpr type operator&(type a, type b) noexcept { \
using T = std::underlying_type_t<type>; \
return static_cast<type>(static_cast<T>(a) & static_cast<T>(b)); \
} \
@ -74,22 +74,22 @@ std::string GetLastErrorMsg();
a = static_cast<type>(static_cast<T>(a) & static_cast<T>(b)); \
return a; \
} \
constexpr type operator~(type key) noexcept { \
[[nodiscard]] constexpr type operator~(type key) noexcept { \
using T = std::underlying_type_t<type>; \
return static_cast<type>(~static_cast<T>(key)); \
} \
constexpr bool True(type key) noexcept { \
[[nodiscard]] constexpr bool True(type key) noexcept { \
using T = std::underlying_type_t<type>; \
return static_cast<T>(key) != 0; \
} \
constexpr bool False(type key) noexcept { \
[[nodiscard]] constexpr bool False(type key) noexcept { \
using T = std::underlying_type_t<type>; \
return static_cast<T>(key) == 0; \
}
namespace Common {
constexpr u32 MakeMagic(char a, char b, char c, char d) {
[[nodiscard]] constexpr u32 MakeMagic(char a, char b, char c, char d) {
return u32(a) | u32(b) << 8 | u32(c) << 16 | u32(d) << 24;
}

View File

@ -33,7 +33,7 @@ public:
~DynamicLibrary();
/// Returns the specified library name with the platform-specific suffix added.
static std::string GetUnprefixedFilename(const char* filename);
[[nodiscard]] static std::string GetUnprefixedFilename(const char* filename);
/// Returns the specified library name in platform-specific format.
/// Major/minor versions will not be included if set to -1.
@ -41,28 +41,29 @@ public:
/// Windows: LIBNAME-MAJOR-MINOR.dll
/// Linux: libLIBNAME.so.MAJOR.MINOR
/// Mac: libLIBNAME.MAJOR.MINOR.dylib
static std::string GetVersionedFilename(const char* libname, int major = -1, int minor = -1);
[[nodiscard]] static std::string GetVersionedFilename(const char* libname, int major = -1,
int minor = -1);
/// Returns true if a module is loaded, otherwise false.
bool IsOpen() const {
[[nodiscard]] bool IsOpen() const {
return handle != nullptr;
}
/// Loads (or replaces) the handle with the specified library file name.
/// Returns true if the library was loaded and can be used.
bool Open(const char* filename);
[[nodiscard]] bool Open(const char* filename);
/// Unloads the library, any function pointers from this library are no longer valid.
void Close();
/// Returns the address of the specified symbol (function or variable) as an untyped pointer.
/// If the specified symbol does not exist in this library, nullptr is returned.
void* GetSymbolAddress(const char* name) const;
[[nodiscard]] void* GetSymbolAddress(const char* name) const;
/// Obtains the address of the specified symbol, automatically casting to the correct type.
/// Returns true if the symbol was found and assigned, otherwise false.
template <typename T>
bool GetSymbol(const char* name, T* ptr) const {
[[nodiscard]] bool GetSymbol(const char* name, T* ptr) const {
*ptr = reinterpret_cast<T>(GetSymbolAddress(name));
return *ptr != nullptr;
}

View File

@ -47,7 +47,7 @@ public:
/// Yields control from Fiber 'from' to Fiber 'to'
/// Fiber 'from' must be the currently running fiber.
static void YieldTo(std::shared_ptr<Fiber>& from, std::shared_ptr<Fiber>& to);
static std::shared_ptr<Fiber> ThreadToFiber();
[[nodiscard]] static std::shared_ptr<Fiber> ThreadToFiber();
void SetRewindPoint(std::function<void(void*)>&& rewind_func, void* start_parameter);

View File

@ -48,19 +48,19 @@ struct FSTEntry {
};
// Returns true if file filename exists
bool Exists(const std::string& filename);
[[nodiscard]] bool Exists(const std::string& filename);
// Returns true if filename is a directory
bool IsDirectory(const std::string& filename);
[[nodiscard]] bool IsDirectory(const std::string& filename);
// Returns the size of filename (64bit)
u64 GetSize(const std::string& filename);
[[nodiscard]] u64 GetSize(const std::string& filename);
// Overloaded GetSize, accepts file descriptor
u64 GetSize(const int fd);
[[nodiscard]] u64 GetSize(int fd);
// Overloaded GetSize, accepts FILE*
u64 GetSize(FILE* f);
[[nodiscard]] u64 GetSize(FILE* f);
// Returns true if successful, or path already exists.
bool CreateDir(const std::string& filename);
@ -120,7 +120,7 @@ u64 ScanDirectoryTree(const std::string& directory, FSTEntry& parent_entry,
bool DeleteDirRecursively(const std::string& directory, unsigned int recursion = 256);
// Returns the current directory
std::optional<std::string> GetCurrentDir();
[[nodiscard]] std::optional<std::string> GetCurrentDir();
// Create directory and copy contents (does not overwrite existing files)
void CopyDir(const std::string& source_path, const std::string& dest_path);
@ -132,20 +132,20 @@ bool SetCurrentDir(const std::string& directory);
// directory. To be used in "multi-user" mode (that is, installed).
const std::string& GetUserPath(UserPath path, const std::string& new_path = "");
std::string GetHactoolConfigurationPath();
[[nodiscard]] std::string GetHactoolConfigurationPath();
std::string GetNANDRegistrationDir(bool system = false);
[[nodiscard]] std::string GetNANDRegistrationDir(bool system = false);
// Returns the path to where the sys file are
std::string GetSysDirectory();
[[nodiscard]] std::string GetSysDirectory();
#ifdef __APPLE__
std::string GetBundleDirectory();
[[nodiscard]] std::string GetBundleDirectory();
#endif
#ifdef _WIN32
const std::string& GetExeDirectory();
std::string AppDataRoamingDirectory();
[[nodiscard]] const std::string& GetExeDirectory();
[[nodiscard]] std::string AppDataRoamingDirectory();
#endif
std::size_t WriteStringToFile(bool text_file, const std::string& filename, std::string_view str);
@ -164,38 +164,45 @@ void SplitFilename83(const std::string& filename, std::array<char, 9>& short_nam
// Splits the path on '/' or '\' and put the components into a vector
// i.e. "C:\Users\Yuzu\Documents\save.bin" becomes {"C:", "Users", "Yuzu", "Documents", "save.bin" }
std::vector<std::string> SplitPathComponents(std::string_view filename);
[[nodiscard]] std::vector<std::string> SplitPathComponents(std::string_view filename);
// Gets all of the text up to the last '/' or '\' in the path.
std::string_view GetParentPath(std::string_view path);
[[nodiscard]] std::string_view GetParentPath(std::string_view path);
// Gets all of the text after the first '/' or '\' in the path.
std::string_view GetPathWithoutTop(std::string_view path);
[[nodiscard]] std::string_view GetPathWithoutTop(std::string_view path);
// Gets the filename of the path
std::string_view GetFilename(std::string_view path);
[[nodiscard]] std::string_view GetFilename(std::string_view path);
// Gets the extension of the filename
std::string_view GetExtensionFromFilename(std::string_view name);
[[nodiscard]] std::string_view GetExtensionFromFilename(std::string_view name);
// Removes the final '/' or '\' if one exists
std::string_view RemoveTrailingSlash(std::string_view path);
[[nodiscard]] std::string_view RemoveTrailingSlash(std::string_view path);
// Creates a new vector containing indices [first, last) from the original.
template <typename T>
std::vector<T> SliceVector(const std::vector<T>& vector, std::size_t first, std::size_t last) {
if (first >= last)
[[nodiscard]] std::vector<T> SliceVector(const std::vector<T>& vector, std::size_t first,
std::size_t last) {
if (first >= last) {
return {};
}
last = std::min<std::size_t>(last, vector.size());
return std::vector<T>(vector.begin() + first, vector.begin() + first + last);
}
enum class DirectorySeparator { ForwardSlash, BackwardSlash, PlatformDefault };
enum class DirectorySeparator {
ForwardSlash,
BackwardSlash,
PlatformDefault,
};
// Removes trailing slash, makes all '\\' into '/', and removes duplicate '/'. Makes '/' into '\\'
// depending if directory_separator is BackwardSlash or PlatformDefault and running on windows
std::string SanitizePath(std::string_view path,
DirectorySeparator directory_separator = DirectorySeparator::ForwardSlash);
[[nodiscard]] std::string SanitizePath(
std::string_view path,
DirectorySeparator directory_separator = DirectorySeparator::ForwardSlash);
// simple wrapper for cstdlib file functions to
// hopefully will make error checking easier
@ -215,7 +222,7 @@ public:
void Swap(IOFile& other) noexcept;
bool Open(const std::string& filename, const char openmode[], int flags = 0);
[[nodiscard]] bool Open(const std::string& filename, const char openmode[], int flags = 0);
bool Close();
template <typename T>
@ -256,13 +263,13 @@ public:
return WriteArray(str.data(), str.length());
}
bool IsOpen() const {
[[nodiscard]] bool IsOpen() const {
return nullptr != m_file;
}
bool Seek(s64 off, int origin) const;
u64 Tell() const;
u64 GetSize() const;
[[nodiscard]] u64 Tell() const;
[[nodiscard]] u64 GetSize() const;
bool Resize(u64 size);
bool Flush();

View File

@ -5,36 +5,11 @@
#pragma once
#include <cstddef>
#include <cstring>
#include <utility>
#include <boost/functional/hash.hpp>
#include "common/cityhash.h"
#include "common/common_types.h"
namespace Common {
/**
* Computes a 64-bit hash over the specified block of data
* @param data Block of data to compute hash over
* @param len Length of data (in bytes) to compute hash over
* @returns 64-bit hash value that was computed over the data block
*/
static inline u64 ComputeHash64(const void* data, std::size_t len) {
return CityHash64(static_cast<const char*>(data), len);
}
/**
* Computes a 64-bit hash of a struct. In addition to being trivially copyable, it is also critical
* that either the struct includes no padding, or that any padding is initialized to a known value
* by memsetting the struct to 0 before filling it in.
*/
template <typename T>
static inline u64 ComputeStructHash64(const T& data) {
static_assert(std::is_trivially_copyable_v<T>,
"Type passed to ComputeStructHash64 must be trivially copyable");
return ComputeHash64(&data, sizeof(data));
}
struct PairHash {
template <class T1, class T2>
std::size_t operator()(const std::pair<T1, T2>& pair) const noexcept {

View File

@ -14,7 +14,7 @@
namespace Common {
constexpr u8 ToHexNibble(char c) {
[[nodiscard]] constexpr u8 ToHexNibble(char c) {
if (c >= 65 && c <= 70) {
return c - 55;
}
@ -26,10 +26,10 @@ constexpr u8 ToHexNibble(char c) {
return c - 48;
}
std::vector<u8> HexStringToVector(std::string_view str, bool little_endian);
[[nodiscard]] std::vector<u8> HexStringToVector(std::string_view str, bool little_endian);
template <std::size_t Size, bool le = false>
constexpr std::array<u8, Size> HexStringToArray(std::string_view str) {
[[nodiscard]] constexpr std::array<u8, Size> HexStringToArray(std::string_view str) {
std::array<u8, Size> out{};
if constexpr (le) {
for (std::size_t i = 2 * Size - 2; i <= 2 * Size; i -= 2) {
@ -44,7 +44,7 @@ constexpr std::array<u8, Size> HexStringToArray(std::string_view str) {
}
template <typename ContiguousContainer>
std::string HexToString(const ContiguousContainer& data, bool upper = true) {
[[nodiscard]] std::string HexToString(const ContiguousContainer& data, bool upper = true) {
static_assert(std::is_same_v<typename ContiguousContainer::value_type, u8>,
"Underlying type within the contiguous container must be u8.");
@ -60,11 +60,11 @@ std::string HexToString(const ContiguousContainer& data, bool upper = true) {
return out;
}
constexpr std::array<u8, 16> AsArray(const char (&data)[17]) {
[[nodiscard]] constexpr std::array<u8, 16> AsArray(const char (&data)[17]) {
return HexStringToArray<16>(data);
}
constexpr std::array<u8, 32> AsArray(const char (&data)[65]) {
[[nodiscard]] constexpr std::array<u8, 32> AsArray(const char (&data)[65]) {
return HexStringToArray<32>(data);
}

View File

@ -10,52 +10,53 @@
namespace Common::Compression {
std::vector<u8> CompressDataLZ4(std::span<const u8> source) {
ASSERT_MSG(source.size() <= LZ4_MAX_INPUT_SIZE, "Source size exceeds LZ4 maximum input size");
std::vector<u8> CompressDataLZ4(const u8* source, std::size_t source_size) {
ASSERT_MSG(source_size <= LZ4_MAX_INPUT_SIZE, "Source size exceeds LZ4 maximum input size");
const auto source_size_int = static_cast<int>(source.size());
const int max_compressed_size = LZ4_compressBound(source_size_int);
const auto source_size_int = static_cast<int>(source_size);
const auto max_compressed_size = static_cast<std::size_t>(LZ4_compressBound(source_size_int));
std::vector<u8> compressed(max_compressed_size);
const int compressed_size = LZ4_compress_default(reinterpret_cast<const char*>(source.data()),
reinterpret_cast<char*>(compressed.data()),
source_size_int, max_compressed_size);
const int compressed_size = LZ4_compress_default(
reinterpret_cast<const char*>(source), reinterpret_cast<char*>(compressed.data()),
source_size_int, static_cast<int>(max_compressed_size));
if (compressed_size <= 0) {
// Compression failed
return {};
}
compressed.resize(compressed_size);
compressed.resize(static_cast<std::size_t>(compressed_size));
return compressed;
}
std::vector<u8> CompressDataLZ4HC(std::span<const u8> source, s32 compression_level) {
ASSERT_MSG(source.size() <= LZ4_MAX_INPUT_SIZE, "Source size exceeds LZ4 maximum input size");
std::vector<u8> CompressDataLZ4HC(const u8* source, std::size_t source_size,
s32 compression_level) {
ASSERT_MSG(source_size <= LZ4_MAX_INPUT_SIZE, "Source size exceeds LZ4 maximum input size");
compression_level = std::clamp(compression_level, LZ4HC_CLEVEL_MIN, LZ4HC_CLEVEL_MAX);
const auto source_size_int = static_cast<int>(source.size());
const int max_compressed_size = LZ4_compressBound(source_size_int);
const auto source_size_int = static_cast<int>(source_size);
const auto max_compressed_size = static_cast<std::size_t>(LZ4_compressBound(source_size_int));
std::vector<u8> compressed(max_compressed_size);
const int compressed_size = LZ4_compress_HC(
reinterpret_cast<const char*>(source.data()), reinterpret_cast<char*>(compressed.data()),
source_size_int, max_compressed_size, compression_level);
reinterpret_cast<const char*>(source), reinterpret_cast<char*>(compressed.data()),
source_size_int, static_cast<int>(max_compressed_size), compression_level);
if (compressed_size <= 0) {
// Compression failed
return {};
}
compressed.resize(compressed_size);
compressed.resize(static_cast<std::size_t>(compressed_size));
return compressed;
}
std::vector<u8> CompressDataLZ4HCMax(std::span<const u8> source) {
return CompressDataLZ4HC(source, LZ4HC_CLEVEL_MAX);
std::vector<u8> CompressDataLZ4HCMax(const u8* source, std::size_t source_size) {
return CompressDataLZ4HC(source, source_size, LZ4HC_CLEVEL_MAX);
}
std::vector<u8> DecompressDataLZ4(const std::vector<u8>& compressed,

View File

@ -4,7 +4,6 @@
#pragma once
#include <span>
#include <vector>
#include "common/common_types.h"
@ -14,11 +13,12 @@ namespace Common::Compression {
/**
* Compresses a source memory region with LZ4 and returns the compressed data in a vector.
*
* @param source the uncompressed source memory region.
* @param source The uncompressed source memory region.
* @param source_size The size of the uncompressed source memory region.
*
* @return the compressed data.
*/
std::vector<u8> CompressDataLZ4(std::span<const u8> source);
[[nodiscard]] std::vector<u8> CompressDataLZ4(const u8* source, std::size_t source_size);
/**
* Utilizes the LZ4 subalgorithm LZ4HC with the specified compression level. Higher compression
@ -26,21 +26,24 @@ std::vector<u8> CompressDataLZ4(std::span<const u8> source);
* compression level has almost no impact on decompression speed. Data compressed with LZ4HC can
* also be decompressed with the default LZ4 decompression.
*
* @param source the uncompressed source memory region.
* @param compression_level the used compression level. Should be between 3 and 12.
* @param source The uncompressed source memory region.
* @param source_size The size of the uncompressed source memory region.
* @param compression_level The used compression level. Should be between 3 and 12.
*
* @return the compressed data.
*/
std::vector<u8> CompressDataLZ4HC(std::span<const u8> source, s32 compression_level);
[[nodiscard]] std::vector<u8> CompressDataLZ4HC(const u8* source, std::size_t source_size,
s32 compression_level);
/**
* Utilizes the LZ4 subalgorithm LZ4HC with the highest possible compression level.
*
* @param source the uncompressed source memory region.
* @param source The uncompressed source memory region.
* @param source_size The size of the uncompressed source memory region
*
* @return the compressed data.
*/
std::vector<u8> CompressDataLZ4HCMax(std::span<const u8> source);
[[nodiscard]] std::vector<u8> CompressDataLZ4HCMax(const u8* source, std::size_t source_size);
/**
* Decompresses a source memory region with LZ4 and returns the uncompressed data in a vector.
@ -50,6 +53,7 @@ std::vector<u8> CompressDataLZ4HCMax(std::span<const u8> source);
*
* @return the decompressed data.
*/
std::vector<u8> DecompressDataLZ4(const std::vector<u8>& compressed, std::size_t uncompressed_size);
[[nodiscard]] std::vector<u8> DecompressDataLZ4(const std::vector<u8>& compressed,
std::size_t uncompressed_size);
} // namespace Common::Compression

View File

@ -23,7 +23,7 @@ struct Rectangle {
constexpr Rectangle(T left, T top, T right, T bottom)
: left(left), top(top), right(right), bottom(bottom) {}
T GetWidth() const {
[[nodiscard]] T GetWidth() const {
if constexpr (std::is_floating_point_v<T>) {
return std::abs(right - left);
} else {
@ -31,7 +31,7 @@ struct Rectangle {
}
}
T GetHeight() const {
[[nodiscard]] T GetHeight() const {
if constexpr (std::is_floating_point_v<T>) {
return std::abs(bottom - top);
} else {
@ -39,15 +39,15 @@ struct Rectangle {
}
}
Rectangle<T> TranslateX(const T x) const {
[[nodiscard]] Rectangle<T> TranslateX(const T x) const {
return Rectangle{left + x, top, right + x, bottom};
}
Rectangle<T> TranslateY(const T y) const {
[[nodiscard]] Rectangle<T> TranslateY(const T y) const {
return Rectangle{left, top + y, right, bottom + y};
}
Rectangle<T> Scale(const float s) const {
[[nodiscard]] Rectangle<T> Scale(const float s) const {
return Rectangle{left, top, static_cast<T>(left + GetWidth() * s),
static_cast<T>(top + GetHeight() * s)};
}

View File

@ -17,6 +17,6 @@ struct MemoryInfo {
* Gets the memory info of the host system
* @return Reference to a MemoryInfo struct with the physical and swap memory sizes in bytes
*/
const MemoryInfo& GetMemInfo();
[[nodiscard]] const MemoryInfo& GetMemInfo();
} // namespace Common

View File

@ -223,15 +223,15 @@ public:
ListShiftForward(levels[priority], n);
}
std::size_t depth() const {
[[nodiscard]] std::size_t depth() const {
return Depth;
}
std::size_t size(u32 priority) const {
[[nodiscard]] std::size_t size(u32 priority) const {
return levels[priority].size();
}
std::size_t size() const {
[[nodiscard]] std::size_t size() const {
u64 priorities = used_priorities;
std::size_t size = 0;
while (priorities != 0) {
@ -242,64 +242,64 @@ public:
return size;
}
bool empty() const {
[[nodiscard]] bool empty() const {
return used_priorities == 0;
}
bool empty(u32 priority) const {
[[nodiscard]] bool empty(u32 priority) const {
return (used_priorities & (1ULL << priority)) == 0;
}
u32 highest_priority_set(u32 max_priority = 0) const {
[[nodiscard]] u32 highest_priority_set(u32 max_priority = 0) const {
const u64 priorities =
max_priority == 0 ? used_priorities : (used_priorities & ~((1ULL << max_priority) - 1));
return priorities == 0 ? Depth : static_cast<u32>(CountTrailingZeroes64(priorities));
}
u32 lowest_priority_set(u32 min_priority = Depth - 1) const {
[[nodiscard]] u32 lowest_priority_set(u32 min_priority = Depth - 1) const {
const u64 priorities = min_priority >= Depth - 1
? used_priorities
: (used_priorities & ((1ULL << (min_priority + 1)) - 1));
return priorities == 0 ? Depth : 63 - CountLeadingZeroes64(priorities);
}
const_iterator cbegin(u32 max_prio = 0) const {
[[nodiscard]] const_iterator cbegin(u32 max_prio = 0) const {
const u32 priority = highest_priority_set(max_prio);
return priority == Depth ? cend()
: const_iterator{*this, levels[priority].cbegin(), priority};
}
const_iterator begin(u32 max_prio = 0) const {
[[nodiscard]] const_iterator begin(u32 max_prio = 0) const {
return cbegin(max_prio);
}
iterator begin(u32 max_prio = 0) {
[[nodiscard]] iterator begin(u32 max_prio = 0) {
const u32 priority = highest_priority_set(max_prio);
return priority == Depth ? end() : iterator{*this, levels[priority].begin(), priority};
}
const_iterator cend(u32 min_prio = Depth - 1) const {
[[nodiscard]] const_iterator cend(u32 min_prio = Depth - 1) const {
return min_prio == Depth - 1 ? const_iterator{*this, Depth} : cbegin(min_prio + 1);
}
const_iterator end(u32 min_prio = Depth - 1) const {
[[nodiscard]] const_iterator end(u32 min_prio = Depth - 1) const {
return cend(min_prio);
}
iterator end(u32 min_prio = Depth - 1) {
[[nodiscard]] iterator end(u32 min_prio = Depth - 1) {
return min_prio == Depth - 1 ? iterator{*this, Depth} : begin(min_prio + 1);
}
T& front(u32 max_priority = 0) {
[[nodiscard]] T& front(u32 max_priority = 0) {
const u32 priority = highest_priority_set(max_priority);
return levels[priority == Depth ? 0 : priority].front();
}
const T& front(u32 max_priority = 0) const {
[[nodiscard]] const T& front(u32 max_priority = 0) const {
const u32 priority = highest_priority_set(max_priority);
return levels[priority == Depth ? 0 : priority].front();
}
T back(u32 min_priority = Depth - 1) {
[[nodiscard]] T& back(u32 min_priority = Depth - 1) {
const u32 priority = lowest_priority_set(min_priority); // intended
return levels[priority == Depth ? 63 : priority].back();
}
const T& back(u32 min_priority = Depth - 1) const {
[[nodiscard]] const T& back(u32 min_priority = Depth - 1) const {
const u32 priority = lowest_priority_set(min_priority); // intended
return levels[priority == Depth ? 63 : priority].back();
}
@ -329,7 +329,8 @@ private:
in_list.splice(position, out_list, element);
}
static const_list_iterator ListIterateTo(const std::list<T>& list, const T& element) {
[[nodiscard]] static const_list_iterator ListIterateTo(const std::list<T>& list,
const T& element) {
auto it = list.cbegin();
while (it != list.cend() && *it != element) {
++it;

View File

@ -36,11 +36,11 @@ struct SpecialRegion {
MemoryHookPointer handler;
bool operator<(const SpecialRegion& other) const {
[[nodiscard]] bool operator<(const SpecialRegion& other) const {
return std::tie(type, handler) < std::tie(other.type, other.handler);
}
bool operator==(const SpecialRegion& other) const {
[[nodiscard]] bool operator==(const SpecialRegion& other) const {
return std::tie(type, handler) == std::tie(other.type, other.handler);
}
};

View File

@ -24,14 +24,14 @@ public:
ParamPackage& operator=(const ParamPackage& other) = default;
ParamPackage& operator=(ParamPackage&& other) = default;
std::string Serialize() const;
std::string Get(const std::string& key, const std::string& default_value) const;
int Get(const std::string& key, int default_value) const;
float Get(const std::string& key, float default_value) const;
[[nodiscard]] std::string Serialize() const;
[[nodiscard]] std::string Get(const std::string& key, const std::string& default_value) const;
[[nodiscard]] int Get(const std::string& key, int default_value) const;
[[nodiscard]] float Get(const std::string& key, float default_value) const;
void Set(const std::string& key, std::string value);
void Set(const std::string& key, int value);
void Set(const std::string& key, float value);
bool Has(const std::string& key) const;
[[nodiscard]] bool Has(const std::string& key) const;
void Erase(const std::string& key);
void Clear();

View File

@ -14,35 +14,36 @@ public:
Vec3<T> xyz;
T w{};
Quaternion<decltype(-T{})> Inverse() const {
[[nodiscard]] Quaternion<decltype(-T{})> Inverse() const {
return {-xyz, w};
}
Quaternion<decltype(T{} + T{})> operator+(const Quaternion& other) const {
[[nodiscard]] Quaternion<decltype(T{} + T{})> operator+(const Quaternion& other) const {
return {xyz + other.xyz, w + other.w};
}
Quaternion<decltype(T{} - T{})> operator-(const Quaternion& other) const {
[[nodiscard]] Quaternion<decltype(T{} - T{})> operator-(const Quaternion& other) const {
return {xyz - other.xyz, w - other.w};
}
Quaternion<decltype(T{} * T{} - T{} * T{})> operator*(const Quaternion& other) const {
[[nodiscard]] Quaternion<decltype(T{} * T{} - T{} * T{})> operator*(
const Quaternion& other) const {
return {xyz * other.w + other.xyz * w + Cross(xyz, other.xyz),
w * other.w - Dot(xyz, other.xyz)};
}
Quaternion<T> Normalized() const {
[[nodiscard]] Quaternion<T> Normalized() const {
T length = std::sqrt(xyz.Length2() + w * w);
return {xyz / length, w / length};
}
};
template <typename T>
auto QuaternionRotate(const Quaternion<T>& q, const Vec3<T>& v) {
[[nodiscard]] auto QuaternionRotate(const Quaternion<T>& q, const Vec3<T>& v) {
return v + 2 * Cross(q.xyz, Cross(q.xyz, v) + v * q.w);
}
inline Quaternion<float> MakeQuaternion(const Vec3<float>& axis, float angle) {
[[nodiscard]] inline Quaternion<float> MakeQuaternion(const Vec3<float>& axis, float angle) {
return {axis * std::sin(angle / 2), std::cos(angle / 2)};
}

View File

@ -91,12 +91,12 @@ public:
}
/// @returns Number of slots used
std::size_t Size() const {
[[nodiscard]] std::size_t Size() const {
return m_write_index.load() - m_read_index.load();
}
/// @returns Maximum size of ring buffer
constexpr std::size_t Capacity() const {
[[nodiscard]] constexpr std::size_t Capacity() const {
return capacity;
}

View File

@ -17,7 +17,7 @@ class SpinLock {
public:
void lock();
void unlock();
bool try_lock();
[[nodiscard]] bool try_lock();
private:
std::atomic_flag lck = ATOMIC_FLAG_INIT;

View File

@ -12,19 +12,19 @@
namespace Common {
/// Make a string lowercase
std::string ToLower(std::string str);
[[nodiscard]] std::string ToLower(std::string str);
/// Make a string uppercase
std::string ToUpper(std::string str);
[[nodiscard]] std::string ToUpper(std::string str);
std::string StringFromBuffer(const std::vector<u8>& data);
[[nodiscard]] std::string StringFromBuffer(const std::vector<u8>& data);
std::string StripSpaces(const std::string& s);
std::string StripQuotes(const std::string& s);
[[nodiscard]] std::string StripSpaces(const std::string& s);
[[nodiscard]] std::string StripQuotes(const std::string& s);
std::string StringFromBool(bool value);
[[nodiscard]] std::string StringFromBool(bool value);
std::string TabsToSpaces(int tab_size, std::string in);
[[nodiscard]] std::string TabsToSpaces(int tab_size, std::string in);
void SplitString(const std::string& str, char delim, std::vector<std::string>& output);
@ -34,14 +34,15 @@ bool SplitPath(const std::string& full_path, std::string* _pPath, std::string* _
void BuildCompleteFilename(std::string& _CompleteFilename, const std::string& _Path,
const std::string& _Filename);
std::string ReplaceAll(std::string result, const std::string& src, const std::string& dest);
[[nodiscard]] std::string ReplaceAll(std::string result, const std::string& src,
const std::string& dest);
std::string UTF16ToUTF8(const std::u16string& input);
std::u16string UTF8ToUTF16(const std::string& input);
[[nodiscard]] std::string UTF16ToUTF8(const std::u16string& input);
[[nodiscard]] std::u16string UTF8ToUTF16(const std::string& input);
#ifdef _WIN32
std::string UTF16ToUTF8(const std::wstring& input);
std::wstring UTF8ToUTF16W(const std::string& str);
[[nodiscard]] std::string UTF16ToUTF8(const std::wstring& input);
[[nodiscard]] std::wstring UTF8ToUTF16W(const std::string& str);
#endif
@ -50,7 +51,7 @@ std::wstring UTF8ToUTF16W(const std::string& str);
* `other` for equality.
*/
template <typename InIt>
bool ComparePartialString(InIt begin, InIt end, const char* other) {
[[nodiscard]] bool ComparePartialString(InIt begin, InIt end, const char* other) {
for (; begin != end && *other != '\0'; ++begin, ++other) {
if (*begin != *other) {
return false;
@ -64,14 +65,15 @@ bool ComparePartialString(InIt begin, InIt end, const char* other) {
* Creates a std::string from a fixed-size NUL-terminated char buffer. If the buffer isn't
* NUL-terminated then the string ends at max_len characters.
*/
std::string StringFromFixedZeroTerminatedBuffer(const char* buffer, std::size_t max_len);
[[nodiscard]] std::string StringFromFixedZeroTerminatedBuffer(const char* buffer,
std::size_t max_len);
/**
* Creates a UTF-16 std::u16string from a fixed-size NUL-terminated char buffer. If the buffer isn't
* null-terminated, then the string ends at the greatest multiple of two less then or equal to
* max_len_bytes.
*/
std::u16string UTF16StringFromFixedZeroTerminatedBuffer(std::u16string_view buffer,
std::size_t max_len);
[[nodiscard]] std::u16string UTF16StringFromFixedZeroTerminatedBuffer(std::u16string_view buffer,
std::size_t max_len);
} // namespace Common

View File

@ -63,30 +63,30 @@ public:
void Accept(VisitorInterface& visitor) const override;
const std::string& GetName() const override {
[[nodiscard]] const std::string& GetName() const override {
return name;
}
/**
* Returns the type of the field.
*/
FieldType GetType() const {
[[nodiscard]] FieldType GetType() const {
return type;
}
/**
* Returns the value of the field.
*/
const T& GetValue() const {
[[nodiscard]] const T& GetValue() const {
return value;
}
bool operator==(const Field& other) const {
[[nodiscard]] bool operator==(const Field& other) const {
return (type == other.type) && (name == other.name) && (value == other.value);
}
bool operator!=(const Field& other) const {
return !(*this == other);
[[nodiscard]] bool operator!=(const Field& other) const {
return !operator==(other);
}
private:

View File

@ -18,14 +18,14 @@ struct ThreadQueueList {
using Priority = unsigned int;
// Number of priority levels. (Valid levels are [0..NUM_QUEUES).)
static const Priority NUM_QUEUES = N;
static constexpr Priority NUM_QUEUES = N;
ThreadQueueList() {
first = nullptr;
}
// Only for debugging, returns priority level.
Priority contains(const T& uid) const {
[[nodiscard]] Priority contains(const T& uid) const {
for (Priority i = 0; i < NUM_QUEUES; ++i) {
const Queue& cur = queues[i];
if (std::find(cur.data.cbegin(), cur.data.cend(), uid) != cur.data.cend()) {
@ -36,7 +36,7 @@ struct ThreadQueueList {
return -1;
}
T get_first() const {
[[nodiscard]] T get_first() const {
const Queue* cur = first;
while (cur != nullptr) {
if (!cur->data.empty()) {
@ -49,7 +49,7 @@ struct ThreadQueueList {
}
template <typename UnaryPredicate>
T get_first_filter(UnaryPredicate filter) const {
[[nodiscard]] T get_first_filter(UnaryPredicate filter) const {
const Queue* cur = first;
while (cur != nullptr) {
if (!cur->data.empty()) {
@ -129,7 +129,7 @@ struct ThreadQueueList {
first = nullptr;
}
bool empty(Priority priority) const {
[[nodiscard]] bool empty(Priority priority) const {
const Queue* cur = &queues[priority];
return cur->data.empty();
}

View File

@ -25,15 +25,15 @@ public:
delete read_ptr;
}
std::size_t Size() const {
[[nodiscard]] std::size_t Size() const {
return size.load();
}
bool Empty() const {
[[nodiscard]] bool Empty() const {
return Size() == 0;
}
T& Front() const {
[[nodiscard]] T& Front() const {
return read_ptr->current;
}
@ -130,15 +130,15 @@ private:
template <typename T>
class MPSCQueue {
public:
std::size_t Size() const {
[[nodiscard]] std::size_t Size() const {
return spsc_queue.Size();
}
bool Empty() const {
[[nodiscard]] bool Empty() const {
return spsc_queue.Empty();
}
T& Front() const {
[[nodiscard]] T& Front() const {
return spsc_queue.Front();
}

View File

@ -10,9 +10,9 @@
namespace Common::TimeZone {
/// Gets the default timezone, i.e. "GMT"
std::string GetDefaultTimeZone();
[[nodiscard]] std::string GetDefaultTimeZone();
/// Gets the offset of the current timezone (from the default), in seconds
std::chrono::seconds GetCurrentOffsetSeconds();
[[nodiscard]] std::chrono::seconds GetCurrentOffsetSeconds();
} // namespace Common::TimeZone

View File

@ -19,18 +19,18 @@ public:
// The time difference is always returned in milliseconds, regardless of alternative internal
// representation
std::chrono::milliseconds GetTimeDifference();
[[nodiscard]] std::chrono::milliseconds GetTimeDifference();
void AddTimeDifference();
static std::chrono::seconds GetTimeSinceJan1970();
static std::chrono::seconds GetLocalTimeSinceJan1970();
static double GetDoubleTime();
[[nodiscard]] static std::chrono::seconds GetTimeSinceJan1970();
[[nodiscard]] static std::chrono::seconds GetLocalTimeSinceJan1970();
[[nodiscard]] static double GetDoubleTime();
static std::string GetTimeFormatted();
std::string GetTimeElapsedFormatted() const;
std::chrono::milliseconds GetTimeElapsed();
[[nodiscard]] static std::string GetTimeFormatted();
[[nodiscard]] std::string GetTimeElapsedFormatted() const;
[[nodiscard]] std::chrono::milliseconds GetTimeElapsed();
static std::chrono::milliseconds GetTimeMs();
[[nodiscard]] static std::chrono::milliseconds GetTimeMs();
private:
std::chrono::milliseconds m_LastTime;

View File

@ -10,13 +10,13 @@
namespace Common {
// This function multiplies 2 u64 values and divides it by a u64 value.
u64 MultiplyAndDivide64(u64 a, u64 b, u64 d);
[[nodiscard]] u64 MultiplyAndDivide64(u64 a, u64 b, u64 d);
// This function multiplies 2 u64 values and produces a u128 value;
u128 Multiply64Into128(u64 a, u64 b);
[[nodiscard]] u128 Multiply64Into128(u64 a, u64 b);
// This function divides a u128 by a u32 value and produces two u64 values:
// the result of division and the remainder
std::pair<u64, u64> Divide128On32(u128 dividend, u32 divisor);
[[nodiscard]] std::pair<u64, u64> Divide128On32(u128 dividend, u32 divisor);
} // namespace Common

View File

@ -19,21 +19,21 @@ struct UUID {
constexpr explicit UUID(const u128& id) : uuid{id} {}
constexpr explicit UUID(const u64 lo, const u64 hi) : uuid{{lo, hi}} {}
constexpr explicit operator bool() const {
[[nodiscard]] constexpr explicit operator bool() const {
return uuid[0] != INVALID_UUID[0] && uuid[1] != INVALID_UUID[1];
}
constexpr bool operator==(const UUID& rhs) const {
[[nodiscard]] constexpr bool operator==(const UUID& rhs) const {
// TODO(DarkLordZach): Replace with uuid == rhs.uuid with C++20
return uuid[0] == rhs.uuid[0] && uuid[1] == rhs.uuid[1];
}
constexpr bool operator!=(const UUID& rhs) const {
[[nodiscard]] constexpr bool operator!=(const UUID& rhs) const {
return !operator==(rhs);
}
// TODO(ogniK): Properly generate uuids based on RFC-4122
static UUID Generate();
[[nodiscard]] static UUID Generate();
// Set the UUID to {0,0} to be considered an invalid user
constexpr void Invalidate() {
@ -41,12 +41,12 @@ struct UUID {
}
// TODO(ogniK): Properly generate a Nintendo ID
constexpr u64 GetNintendoID() const {
[[nodiscard]] constexpr u64 GetNintendoID() const {
return uuid[0];
}
std::string Format() const;
std::string FormatSwitch() const;
[[nodiscard]] std::string Format() const;
[[nodiscard]] std::string FormatSwitch() const;
};
static_assert(sizeof(UUID) == 16, "UUID is an invalid size!");

View File

@ -52,15 +52,15 @@ public:
constexpr Vec2(const T& x_, const T& y_) : x(x_), y(y_) {}
template <typename T2>
constexpr Vec2<T2> Cast() const {
[[nodiscard]] constexpr Vec2<T2> Cast() const {
return Vec2<T2>(static_cast<T2>(x), static_cast<T2>(y));
}
static constexpr Vec2 AssignToAll(const T& f) {
[[nodiscard]] static constexpr Vec2 AssignToAll(const T& f) {
return Vec2{f, f};
}
constexpr Vec2<decltype(T{} + T{})> operator+(const Vec2& other) const {
[[nodiscard]] constexpr Vec2<decltype(T{} + T{})> operator+(const Vec2& other) const {
return {x + other.x, y + other.y};
}
constexpr Vec2& operator+=(const Vec2& other) {
@ -68,7 +68,7 @@ public:
y += other.y;
return *this;
}
constexpr Vec2<decltype(T{} - T{})> operator-(const Vec2& other) const {
[[nodiscard]] constexpr Vec2<decltype(T{} - T{})> operator-(const Vec2& other) const {
return {x - other.x, y - other.y};
}
constexpr Vec2& operator-=(const Vec2& other) {
@ -78,15 +78,15 @@ public:
}
template <typename U = T>
constexpr Vec2<std::enable_if_t<std::is_signed_v<U>, U>> operator-() const {
[[nodiscard]] constexpr Vec2<std::enable_if_t<std::is_signed_v<U>, U>> operator-() const {
return {-x, -y};
}
constexpr Vec2<decltype(T{} * T{})> operator*(const Vec2& other) const {
[[nodiscard]] constexpr Vec2<decltype(T{} * T{})> operator*(const Vec2& other) const {
return {x * other.x, y * other.y};
}
template <typename V>
constexpr Vec2<decltype(T{} * V{})> operator*(const V& f) const {
[[nodiscard]] constexpr Vec2<decltype(T{} * V{})> operator*(const V& f) const {
return {x * f, y * f};
}
@ -97,7 +97,7 @@ public:
}
template <typename V>
constexpr Vec2<decltype(T{} / V{})> operator/(const V& f) const {
[[nodiscard]] constexpr Vec2<decltype(T{} / V{})> operator/(const V& f) const {
return {x / f, y / f};
}
@ -107,18 +107,18 @@ public:
return *this;
}
constexpr T Length2() const {
[[nodiscard]] constexpr T Length2() const {
return x * x + y * y;
}
// Only implemented for T=float
float Length() const;
float Normalize(); // returns the previous length, which is often useful
[[nodiscard]] float Length() const;
[[nodiscard]] float Normalize(); // returns the previous length, which is often useful
constexpr T& operator[](std::size_t i) {
[[nodiscard]] constexpr T& operator[](std::size_t i) {
return *((&x) + i);
}
constexpr const T& operator[](std::size_t i) const {
[[nodiscard]] constexpr const T& operator[](std::size_t i) const {
return *((&x) + i);
}
@ -128,46 +128,46 @@ public:
}
// Common aliases: UV (texel coordinates), ST (texture coordinates)
constexpr T& u() {
[[nodiscard]] constexpr T& u() {
return x;
}
constexpr T& v() {
[[nodiscard]] constexpr T& v() {
return y;
}
constexpr T& s() {
[[nodiscard]] constexpr T& s() {
return x;
}
constexpr T& t() {
[[nodiscard]] constexpr T& t() {
return y;
}
constexpr const T& u() const {
[[nodiscard]] constexpr const T& u() const {
return x;
}
constexpr const T& v() const {
[[nodiscard]] constexpr const T& v() const {
return y;
}
constexpr const T& s() const {
[[nodiscard]] constexpr const T& s() const {
return x;
}
constexpr const T& t() const {
[[nodiscard]] constexpr const T& t() const {
return y;
}
// swizzlers - create a subvector of specific components
constexpr Vec2 yx() const {
[[nodiscard]] constexpr Vec2 yx() const {
return Vec2(y, x);
}
constexpr Vec2 vu() const {
[[nodiscard]] constexpr Vec2 vu() const {
return Vec2(y, x);
}
constexpr Vec2 ts() const {
[[nodiscard]] constexpr Vec2 ts() const {
return Vec2(y, x);
}
};
template <typename T, typename V>
constexpr Vec2<T> operator*(const V& f, const Vec2<T>& vec) {
[[nodiscard]] constexpr Vec2<T> operator*(const V& f, const Vec2<T>& vec) {
return Vec2<T>(f * vec.x, f * vec.y);
}
@ -196,15 +196,15 @@ public:
constexpr Vec3(const T& x_, const T& y_, const T& z_) : x(x_), y(y_), z(z_) {}
template <typename T2>
constexpr Vec3<T2> Cast() const {
[[nodiscard]] constexpr Vec3<T2> Cast() const {
return Vec3<T2>(static_cast<T2>(x), static_cast<T2>(y), static_cast<T2>(z));
}
static constexpr Vec3 AssignToAll(const T& f) {
[[nodiscard]] static constexpr Vec3 AssignToAll(const T& f) {
return Vec3(f, f, f);
}
constexpr Vec3<decltype(T{} + T{})> operator+(const Vec3& other) const {
[[nodiscard]] constexpr Vec3<decltype(T{} + T{})> operator+(const Vec3& other) const {
return {x + other.x, y + other.y, z + other.z};
}
@ -215,7 +215,7 @@ public:
return *this;
}
constexpr Vec3<decltype(T{} - T{})> operator-(const Vec3& other) const {
[[nodiscard]] constexpr Vec3<decltype(T{} - T{})> operator-(const Vec3& other) const {
return {x - other.x, y - other.y, z - other.z};
}
@ -227,16 +227,16 @@ public:
}
template <typename U = T>
constexpr Vec3<std::enable_if_t<std::is_signed_v<U>, U>> operator-() const {
[[nodiscard]] constexpr Vec3<std::enable_if_t<std::is_signed_v<U>, U>> operator-() const {
return {-x, -y, -z};
}
constexpr Vec3<decltype(T{} * T{})> operator*(const Vec3& other) const {
[[nodiscard]] constexpr Vec3<decltype(T{} * T{})> operator*(const Vec3& other) const {
return {x * other.x, y * other.y, z * other.z};
}
template <typename V>
constexpr Vec3<decltype(T{} * V{})> operator*(const V& f) const {
[[nodiscard]] constexpr Vec3<decltype(T{} * V{})> operator*(const V& f) const {
return {x * f, y * f, z * f};
}
@ -246,7 +246,7 @@ public:
return *this;
}
template <typename V>
constexpr Vec3<decltype(T{} / V{})> operator/(const V& f) const {
[[nodiscard]] constexpr Vec3<decltype(T{} / V{})> operator/(const V& f) const {
return {x / f, y / f, z / f};
}
@ -256,20 +256,20 @@ public:
return *this;
}
constexpr T Length2() const {
[[nodiscard]] constexpr T Length2() const {
return x * x + y * y + z * z;
}
// Only implemented for T=float
float Length() const;
Vec3 Normalized() const;
float Normalize(); // returns the previous length, which is often useful
[[nodiscard]] float Length() const;
[[nodiscard]] Vec3 Normalized() const;
[[nodiscard]] float Normalize(); // returns the previous length, which is often useful
constexpr T& operator[](std::size_t i) {
[[nodiscard]] constexpr T& operator[](std::size_t i) {
return *((&x) + i);
}
constexpr const T& operator[](std::size_t i) const {
[[nodiscard]] constexpr const T& operator[](std::size_t i) const {
return *((&x) + i);
}
@ -280,63 +280,63 @@ public:
}
// Common aliases: UVW (texel coordinates), RGB (colors), STQ (texture coordinates)
constexpr T& u() {
[[nodiscard]] constexpr T& u() {
return x;
}
constexpr T& v() {
[[nodiscard]] constexpr T& v() {
return y;
}
constexpr T& w() {
[[nodiscard]] constexpr T& w() {
return z;
}
constexpr T& r() {
[[nodiscard]] constexpr T& r() {
return x;
}
constexpr T& g() {
[[nodiscard]] constexpr T& g() {
return y;
}
constexpr T& b() {
[[nodiscard]] constexpr T& b() {
return z;
}
constexpr T& s() {
[[nodiscard]] constexpr T& s() {
return x;
}
constexpr T& t() {
[[nodiscard]] constexpr T& t() {
return y;
}
constexpr T& q() {
[[nodiscard]] constexpr T& q() {
return z;
}
constexpr const T& u() const {
[[nodiscard]] constexpr const T& u() const {
return x;
}
constexpr const T& v() const {
[[nodiscard]] constexpr const T& v() const {
return y;
}
constexpr const T& w() const {
[[nodiscard]] constexpr const T& w() const {
return z;
}
constexpr const T& r() const {
[[nodiscard]] constexpr const T& r() const {
return x;
}
constexpr const T& g() const {
[[nodiscard]] constexpr const T& g() const {
return y;
}
constexpr const T& b() const {
[[nodiscard]] constexpr const T& b() const {
return z;
}
constexpr const T& s() const {
[[nodiscard]] constexpr const T& s() const {
return x;
}
constexpr const T& t() const {
[[nodiscard]] constexpr const T& t() const {
return y;
}
constexpr const T& q() const {
[[nodiscard]] constexpr const T& q() const {
return z;
}
@ -345,7 +345,7 @@ public:
// _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all
// component names (x<->r) and permutations (xy<->yx)
#define _DEFINE_SWIZZLER2(a, b, name) \
constexpr Vec2<T> name() const { \
[[nodiscard]] constexpr Vec2<T> name() const { \
return Vec2<T>(a, b); \
}
#define DEFINE_SWIZZLER2(a, b, a2, b2, a3, b3, a4, b4) \
@ -366,7 +366,7 @@ public:
};
template <typename T, typename V>
constexpr Vec3<T> operator*(const V& f, const Vec3<T>& vec) {
[[nodiscard]] constexpr Vec3<T> operator*(const V& f, const Vec3<T>& vec) {
return Vec3<T>(f * vec.x, f * vec.y, f * vec.z);
}
@ -402,16 +402,16 @@ public:
: x(x_), y(y_), z(z_), w(w_) {}
template <typename T2>
constexpr Vec4<T2> Cast() const {
[[nodiscard]] constexpr Vec4<T2> Cast() const {
return Vec4<T2>(static_cast<T2>(x), static_cast<T2>(y), static_cast<T2>(z),
static_cast<T2>(w));
}
static constexpr Vec4 AssignToAll(const T& f) {
[[nodiscard]] static constexpr Vec4 AssignToAll(const T& f) {
return Vec4(f, f, f, f);
}
constexpr Vec4<decltype(T{} + T{})> operator+(const Vec4& other) const {
[[nodiscard]] constexpr Vec4<decltype(T{} + T{})> operator+(const Vec4& other) const {
return {x + other.x, y + other.y, z + other.z, w + other.w};
}
@ -423,7 +423,7 @@ public:
return *this;
}
constexpr Vec4<decltype(T{} - T{})> operator-(const Vec4& other) const {
[[nodiscard]] constexpr Vec4<decltype(T{} - T{})> operator-(const Vec4& other) const {
return {x - other.x, y - other.y, z - other.z, w - other.w};
}
@ -436,16 +436,16 @@ public:
}
template <typename U = T>
constexpr Vec4<std::enable_if_t<std::is_signed_v<U>, U>> operator-() const {
[[nodiscard]] constexpr Vec4<std::enable_if_t<std::is_signed_v<U>, U>> operator-() const {
return {-x, -y, -z, -w};
}
constexpr Vec4<decltype(T{} * T{})> operator*(const Vec4& other) const {
[[nodiscard]] constexpr Vec4<decltype(T{} * T{})> operator*(const Vec4& other) const {
return {x * other.x, y * other.y, z * other.z, w * other.w};
}
template <typename V>
constexpr Vec4<decltype(T{} * V{})> operator*(const V& f) const {
[[nodiscard]] constexpr Vec4<decltype(T{} * V{})> operator*(const V& f) const {
return {x * f, y * f, z * f, w * f};
}
@ -456,7 +456,7 @@ public:
}
template <typename V>
constexpr Vec4<decltype(T{} / V{})> operator/(const V& f) const {
[[nodiscard]] constexpr Vec4<decltype(T{} / V{})> operator/(const V& f) const {
return {x / f, y / f, z / f, w / f};
}
@ -466,15 +466,15 @@ public:
return *this;
}
constexpr T Length2() const {
[[nodiscard]] constexpr T Length2() const {
return x * x + y * y + z * z + w * w;
}
constexpr T& operator[](std::size_t i) {
[[nodiscard]] constexpr T& operator[](std::size_t i) {
return *((&x) + i);
}
constexpr const T& operator[](std::size_t i) const {
[[nodiscard]] constexpr const T& operator[](std::size_t i) const {
return *((&x) + i);
}
@ -486,29 +486,29 @@ public:
}
// Common alias: RGBA (colors)
constexpr T& r() {
[[nodiscard]] constexpr T& r() {
return x;
}
constexpr T& g() {
[[nodiscard]] constexpr T& g() {
return y;
}
constexpr T& b() {
[[nodiscard]] constexpr T& b() {
return z;
}
constexpr T& a() {
[[nodiscard]] constexpr T& a() {
return w;
}
constexpr const T& r() const {
[[nodiscard]] constexpr const T& r() const {
return x;
}
constexpr const T& g() const {
[[nodiscard]] constexpr const T& g() const {
return y;
}
constexpr const T& b() const {
[[nodiscard]] constexpr const T& b() const {
return z;
}
constexpr const T& a() const {
[[nodiscard]] constexpr const T& a() const {
return w;
}
@ -520,7 +520,7 @@ public:
// DEFINE_SWIZZLER2_COMP2 defines two component functions for all component names (x<->r) and
// permutations (xy<->yx)
#define _DEFINE_SWIZZLER2(a, b, name) \
constexpr Vec2<T> name() const { \
[[nodiscard]] constexpr Vec2<T> name() const { \
return Vec2<T>(a, b); \
}
#define DEFINE_SWIZZLER2_COMP1(a, a2) \
@ -547,7 +547,7 @@ public:
#undef _DEFINE_SWIZZLER2
#define _DEFINE_SWIZZLER3(a, b, c, name) \
constexpr Vec3<T> name() const { \
[[nodiscard]] constexpr Vec3<T> name() const { \
return Vec3<T>(a, b, c); \
}
#define DEFINE_SWIZZLER3_COMP1(a, a2) \
@ -581,7 +581,7 @@ public:
};
template <typename T, typename V>
constexpr Vec4<decltype(V{} * T{})> operator*(const V& f, const Vec4<T>& vec) {
[[nodiscard]] constexpr Vec4<decltype(V{} * T{})> operator*(const V& f, const Vec4<T>& vec) {
return {f * vec.x, f * vec.y, f * vec.z, f * vec.w};
}
@ -593,39 +593,41 @@ constexpr decltype(T{} * T{} + T{} * T{}) Dot(const Vec2<T>& a, const Vec2<T>& b
}
template <typename T>
constexpr decltype(T{} * T{} + T{} * T{}) Dot(const Vec3<T>& a, const Vec3<T>& b) {
[[nodiscard]] constexpr decltype(T{} * T{} + T{} * T{}) Dot(const Vec3<T>& a, const Vec3<T>& b) {
return a.x * b.x + a.y * b.y + a.z * b.z;
}
template <typename T>
constexpr decltype(T{} * T{} + T{} * T{}) Dot(const Vec4<T>& a, const Vec4<T>& b) {
[[nodiscard]] constexpr decltype(T{} * T{} + T{} * T{}) Dot(const Vec4<T>& a, const Vec4<T>& b) {
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
}
template <typename T>
constexpr Vec3<decltype(T{} * T{} - T{} * T{})> Cross(const Vec3<T>& a, const Vec3<T>& b) {
[[nodiscard]] constexpr Vec3<decltype(T{} * T{} - T{} * T{})> Cross(const Vec3<T>& a,
const Vec3<T>& b) {
return {a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x};
}
// linear interpolation via float: 0.0=begin, 1.0=end
template <typename X>
constexpr decltype(X{} * float{} + X{} * float{}) Lerp(const X& begin, const X& end,
const float t) {
[[nodiscard]] constexpr decltype(X{} * float{} + X{} * float{}) Lerp(const X& begin, const X& end,
const float t) {
return begin * (1.f - t) + end * t;
}
// linear interpolation via int: 0=begin, base=end
template <typename X, int base>
constexpr decltype((X{} * int{} + X{} * int{}) / base) LerpInt(const X& begin, const X& end,
const int t) {
[[nodiscard]] constexpr decltype((X{} * int{} + X{} * int{}) / base) LerpInt(const X& begin,
const X& end,
const int t) {
return (begin * (base - t) + end * t) / base;
}
// bilinear interpolation. s is for interpolating x00-x01 and x10-x11, and t is for the second
// interpolation.
template <typename X>
constexpr auto BilinearInterp(const X& x00, const X& x01, const X& x10, const X& x11, const float s,
const float t) {
[[nodiscard]] constexpr auto BilinearInterp(const X& x00, const X& x01, const X& x10, const X& x11,
const float s, const float t) {
auto y0 = Lerp(x00, x01, s);
auto y1 = Lerp(x10, x11, s);
return Lerp(y0, y1, t);
@ -633,42 +635,42 @@ constexpr auto BilinearInterp(const X& x00, const X& x01, const X& x10, const X&
// Utility vector factories
template <typename T>
constexpr Vec2<T> MakeVec(const T& x, const T& y) {
[[nodiscard]] constexpr Vec2<T> MakeVec(const T& x, const T& y) {
return Vec2<T>{x, y};
}
template <typename T>
constexpr Vec3<T> MakeVec(const T& x, const T& y, const T& z) {
[[nodiscard]] constexpr Vec3<T> MakeVec(const T& x, const T& y, const T& z) {
return Vec3<T>{x, y, z};
}
template <typename T>
constexpr Vec4<T> MakeVec(const T& x, const T& y, const Vec2<T>& zw) {
[[nodiscard]] constexpr Vec4<T> MakeVec(const T& x, const T& y, const Vec2<T>& zw) {
return MakeVec(x, y, zw[0], zw[1]);
}
template <typename T>
constexpr Vec3<T> MakeVec(const Vec2<T>& xy, const T& z) {
[[nodiscard]] constexpr Vec3<T> MakeVec(const Vec2<T>& xy, const T& z) {
return MakeVec(xy[0], xy[1], z);
}
template <typename T>
constexpr Vec3<T> MakeVec(const T& x, const Vec2<T>& yz) {
[[nodiscard]] constexpr Vec3<T> MakeVec(const T& x, const Vec2<T>& yz) {
return MakeVec(x, yz[0], yz[1]);
}
template <typename T>
constexpr Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w) {
[[nodiscard]] constexpr Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w) {
return Vec4<T>{x, y, z, w};
}
template <typename T>
constexpr Vec4<T> MakeVec(const Vec2<T>& xy, const T& z, const T& w) {
[[nodiscard]] constexpr Vec4<T> MakeVec(const Vec2<T>& xy, const T& z, const T& w) {
return MakeVec(xy[0], xy[1], z, w);
}
template <typename T>
constexpr Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w) {
[[nodiscard]] constexpr Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w) {
return MakeVec(x, yz[0], yz[1], w);
}
@ -676,17 +678,17 @@ constexpr Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w) {
// Even if someone wanted to use an odd object like Vec2<Vec2<T>>, the compiler would error
// out soon enough due to misuse of the returned structure.
template <typename T>
constexpr Vec4<T> MakeVec(const Vec2<T>& xy, const Vec2<T>& zw) {
[[nodiscard]] constexpr Vec4<T> MakeVec(const Vec2<T>& xy, const Vec2<T>& zw) {
return MakeVec(xy[0], xy[1], zw[0], zw[1]);
}
template <typename T>
constexpr Vec4<T> MakeVec(const Vec3<T>& xyz, const T& w) {
[[nodiscard]] constexpr Vec4<T> MakeVec(const Vec3<T>& xyz, const T& w) {
return MakeVec(xyz[0], xyz[1], xyz[2], w);
}
template <typename T>
constexpr Vec4<T> MakeVec(const T& x, const Vec3<T>& yzw) {
[[nodiscard]] constexpr Vec4<T> MakeVec(const T& x, const Vec3<T>& yzw) {
return MakeVec(x, yzw[0], yzw[1], yzw[2]);
}

View File

@ -30,23 +30,23 @@ public:
base_ptr = reinterpret_cast<T*>(AllocateMemoryPages(alloc_size));
}
constexpr const T& operator[](std::size_t index) const {
[[nodiscard]] constexpr const T& operator[](std::size_t index) const {
return base_ptr[index];
}
constexpr T& operator[](std::size_t index) {
[[nodiscard]] constexpr T& operator[](std::size_t index) {
return base_ptr[index];
}
constexpr T* data() {
[[nodiscard]] constexpr T* data() {
return base_ptr;
}
constexpr const T* data() const {
[[nodiscard]] constexpr const T* data() const {
return base_ptr;
}
constexpr std::size_t size() const {
[[nodiscard]] constexpr std::size_t size() const {
return alloc_size / sizeof(T);
}

View File

@ -14,24 +14,24 @@ namespace Common {
class WallClock {
public:
/// Returns current wall time in nanoseconds
virtual std::chrono::nanoseconds GetTimeNS() = 0;
[[nodiscard]] virtual std::chrono::nanoseconds GetTimeNS() = 0;
/// Returns current wall time in microseconds
virtual std::chrono::microseconds GetTimeUS() = 0;
[[nodiscard]] virtual std::chrono::microseconds GetTimeUS() = 0;
/// Returns current wall time in milliseconds
virtual std::chrono::milliseconds GetTimeMS() = 0;
[[nodiscard]] virtual std::chrono::milliseconds GetTimeMS() = 0;
/// Returns current wall time in emulated clock cycles
virtual u64 GetClockCycles() = 0;
[[nodiscard]] virtual u64 GetClockCycles() = 0;
/// Returns current wall time in emulated cpu cycles
virtual u64 GetCPUCycles() = 0;
[[nodiscard]] virtual u64 GetCPUCycles() = 0;
virtual void Pause(bool is_paused) = 0;
/// Tells if the wall clock, uses the host CPU's hardware clock
bool IsNative() const {
[[nodiscard]] bool IsNative() const {
return is_native;
}
@ -47,7 +47,7 @@ private:
bool is_native;
};
std::unique_ptr<WallClock> CreateBestMatchingClock(u32 emulated_cpu_frequency,
u32 emulated_clock_frequency);
[[nodiscard]] std::unique_ptr<WallClock> CreateBestMatchingClock(u32 emulated_cpu_frequency,
u32 emulated_clock_frequency);
} // namespace Common

View File

@ -9,14 +9,14 @@
namespace Common::Compression {
std::vector<u8> CompressDataZSTD(std::span<const u8> source, s32 compression_level) {
std::vector<u8> CompressDataZSTD(const u8* source, std::size_t source_size, s32 compression_level) {
compression_level = std::clamp(compression_level, 1, ZSTD_maxCLevel());
const std::size_t max_compressed_size = ZSTD_compressBound(source.size());
const std::size_t max_compressed_size = ZSTD_compressBound(source_size);
std::vector<u8> compressed(max_compressed_size);
const std::size_t compressed_size = ZSTD_compress(
compressed.data(), compressed.size(), source.data(), source.size(), compression_level);
const std::size_t compressed_size =
ZSTD_compress(compressed.data(), compressed.size(), source, source_size, compression_level);
if (ZSTD_isError(compressed_size)) {
// Compression failed
@ -28,8 +28,8 @@ std::vector<u8> CompressDataZSTD(std::span<const u8> source, s32 compression_lev
return compressed;
}
std::vector<u8> CompressDataZSTDDefault(std::span<const u8> source) {
return CompressDataZSTD(source, ZSTD_CLEVEL_DEFAULT);
std::vector<u8> CompressDataZSTDDefault(const u8* source, std::size_t source_size) {
return CompressDataZSTD(source, source_size, ZSTD_CLEVEL_DEFAULT);
}
std::vector<u8> DecompressDataZSTD(const std::vector<u8>& compressed) {

View File

@ -4,7 +4,6 @@
#pragma once
#include <span>
#include <vector>
#include "common/common_types.h"
@ -14,22 +13,25 @@ namespace Common::Compression {
/**
* Compresses a source memory region with Zstandard and returns the compressed data in a vector.
*
* @param source the uncompressed source memory region.
* @param compression_level the used compression level. Should be between 1 and 22.
* @param source The uncompressed source memory region.
* @param source_size The size of the uncompressed source memory region.
* @param compression_level The used compression level. Should be between 1 and 22.
*
* @return the compressed data.
*/
std::vector<u8> CompressDataZSTD(std::span<const u8> source, s32 compression_level);
[[nodiscard]] std::vector<u8> CompressDataZSTD(const u8* source, std::size_t source_size,
s32 compression_level);
/**
* Compresses a source memory region with Zstandard with the default compression level and returns
* the compressed data in a vector.
*
* @param source the uncompressed source memory region.
* @param source The uncompressed source memory region.
* @param source_size The size of the uncompressed source memory region.
*
* @return the compressed data.
*/
std::vector<u8> CompressDataZSTDDefault(std::span<const u8> source);
[[nodiscard]] std::vector<u8> CompressDataZSTDDefault(const u8* source, std::size_t source_size);
/**
* Decompresses a source memory region with Zstandard and returns the uncompressed data in a vector.
@ -38,6 +40,6 @@ std::vector<u8> CompressDataZSTDDefault(std::span<const u8> source);
*
* @return the decompressed data.
*/
std::vector<u8> DecompressDataZSTD(const std::vector<u8>& compressed);
[[nodiscard]] std::vector<u8> DecompressDataZSTD(const std::vector<u8>& compressed);
} // namespace Common::Compression

View File

@ -422,7 +422,8 @@ void ShaderDiskCacheOpenGL::SavePrecompiledHeaderToVirtualPrecompiledCache() {
void ShaderDiskCacheOpenGL::SaveVirtualPrecompiledFile() {
precompiled_cache_virtual_file_offset = 0;
const std::vector<u8> uncompressed = precompiled_cache_virtual_file.ReadAllBytes();
const std::vector<u8> compressed = Common::Compression::CompressDataZSTDDefault(uncompressed);
const std::vector<u8> compressed =
Common::Compression::CompressDataZSTDDefault(uncompressed.data(), uncompressed.size());
const auto precompiled_path{GetPrecompiledPath()};
FileUtil::IOFile file(precompiled_path, "wb");