forked from ShuriZma/suyu
1
0
Fork 0

Merge pull request #12499 from Kelebek1/time

Rework time services
This commit is contained in:
liamwhite 2024-01-25 14:19:01 -05:00 committed by GitHub
commit d45561ace0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
144 changed files with 8734 additions and 3972 deletions

View File

@ -178,6 +178,9 @@ if (NOT TARGET stb::headers)
add_library(stb::headers ALIAS stb)
endif()
add_library(tz tz/tz/tz.cpp)
target_include_directories(tz PUBLIC ./tz)
add_library(bc_decoder bc_decoder/bc_decoder.cpp)
target_include_directories(bc_decoder PUBLIC ./bc_decoder)

1636
externals/tz/tz/tz.cpp vendored Normal file

File diff suppressed because it is too large Load Diff

81
externals/tz/tz/tz.h vendored Normal file
View File

@ -0,0 +1,81 @@
// SPDX-FileCopyrightText: 2023 yuzu Emulator Project
// SPDX-FileCopyrightText: 1996 Arthur David Olson
// SPDX-License-Identifier: BSD-2-Clause
#pragma once
#include <cstdint>
#include <limits>
#include <span>
#include <array>
#include <time.h>
namespace Tz {
using u8 = uint8_t;
using s8 = int8_t;
using u16 = uint16_t;
using s16 = int16_t;
using u32 = uint32_t;
using s32 = int32_t;
using u64 = uint64_t;
using s64 = int64_t;
constexpr size_t TZ_MAX_TIMES = 1000;
constexpr size_t TZ_MAX_TYPES = 128;
constexpr size_t TZ_MAX_CHARS = 50;
constexpr size_t MY_TZNAME_MAX = 255;
constexpr size_t TZNAME_MAXIMUM = 255;
constexpr size_t TZ_MAX_LEAPS = 50;
constexpr s64 TIME_T_MAX = std::numeric_limits<s64>::max();
constexpr s64 TIME_T_MIN = std::numeric_limits<s64>::min();
constexpr size_t CHARS_EXTRA = 3;
constexpr size_t MAX_ZONE_CHARS = std::max(TZ_MAX_CHARS + CHARS_EXTRA, sizeof("UTC"));
constexpr size_t MAX_TZNAME_CHARS = 2 * (MY_TZNAME_MAX + 1);
struct ttinfo {
s32 tt_utoff;
bool tt_isdst;
s32 tt_desigidx;
bool tt_ttisstd;
bool tt_ttisut;
};
static_assert(sizeof(ttinfo) == 0x10, "ttinfo has the wrong size!");
struct Rule {
s32 timecnt;
s32 typecnt;
s32 charcnt;
bool goback;
bool goahead;
std::array <u8, 0x2> padding0;
std::array<s64, TZ_MAX_TIMES> ats;
std::array<u8, TZ_MAX_TIMES> types;
std::array<ttinfo, TZ_MAX_TYPES> ttis;
std::array<char, std::max(MAX_ZONE_CHARS, MAX_TZNAME_CHARS)> chars;
s32 defaulttype;
std::array <u8, 0x12C4> padding1;
};
static_assert(sizeof(Rule) == 0x4000, "Rule has the wrong size!");
struct CalendarTimeInternal {
s32 tm_sec;
s32 tm_min;
s32 tm_hour;
s32 tm_mday;
s32 tm_mon;
s32 tm_year;
s32 tm_wday;
s32 tm_yday;
s32 tm_isdst;
std::array<char, 16> tm_zone;
s32 tm_utoff;
s32 time_index;
};
static_assert(sizeof(CalendarTimeInternal) == 0x3C, "CalendarTimeInternal has the wrong size!");
s32 ParseTimeZoneBinary(Rule& out_rule, std::span<const u8> binary);
bool localtime_rz(CalendarTimeInternal* tmp, Rule* sp, time_t* timep);
u32 mktime_tzname(time_t* out_time, Rule* sp, CalendarTimeInternal* tmp);
} // namespace Tz

View File

@ -30,27 +30,27 @@ NativeClock::NativeClock() {
}
std::chrono::nanoseconds NativeClock::GetTimeNS() const {
return std::chrono::nanoseconds{MultiplyHigh(GetHostTicksElapsed(), ns_cntfrq_factor)};
return std::chrono::nanoseconds{MultiplyHigh(GetUptime(), ns_cntfrq_factor)};
}
std::chrono::microseconds NativeClock::GetTimeUS() const {
return std::chrono::microseconds{MultiplyHigh(GetHostTicksElapsed(), us_cntfrq_factor)};
return std::chrono::microseconds{MultiplyHigh(GetUptime(), us_cntfrq_factor)};
}
std::chrono::milliseconds NativeClock::GetTimeMS() const {
return std::chrono::milliseconds{MultiplyHigh(GetHostTicksElapsed(), ms_cntfrq_factor)};
return std::chrono::milliseconds{MultiplyHigh(GetUptime(), ms_cntfrq_factor)};
}
u64 NativeClock::GetCNTPCT() const {
return MultiplyHigh(GetHostTicksElapsed(), guest_cntfrq_factor);
s64 NativeClock::GetCNTPCT() const {
return MultiplyHigh(GetUptime(), guest_cntfrq_factor);
}
u64 NativeClock::GetGPUTick() const {
return MultiplyHigh(GetHostTicksElapsed(), gputick_cntfrq_factor);
s64 NativeClock::GetGPUTick() const {
return MultiplyHigh(GetUptime(), gputick_cntfrq_factor);
}
u64 NativeClock::GetHostTicksNow() const {
u64 cntvct_el0 = 0;
s64 NativeClock::GetUptime() const {
s64 cntvct_el0 = 0;
asm volatile("dsb ish\n\t"
"mrs %[cntvct_el0], cntvct_el0\n\t"
"dsb ish\n\t"
@ -58,15 +58,11 @@ u64 NativeClock::GetHostTicksNow() const {
return cntvct_el0;
}
u64 NativeClock::GetHostTicksElapsed() const {
return GetHostTicksNow();
}
bool NativeClock::IsNative() const {
return true;
}
u64 NativeClock::GetHostCNTFRQ() {
s64 NativeClock::GetHostCNTFRQ() {
u64 cntfrq_el0 = 0;
std::string_view board{""};
#ifdef ANDROID

View File

@ -17,17 +17,15 @@ public:
std::chrono::milliseconds GetTimeMS() const override;
u64 GetCNTPCT() const override;
s64 GetCNTPCT() const override;
u64 GetGPUTick() const override;
s64 GetGPUTick() const override;
u64 GetHostTicksNow() const override;
u64 GetHostTicksElapsed() const override;
s64 GetUptime() const override;
bool IsNative() const override;
static u64 GetHostCNTFRQ();
static s64 GetHostCNTFRQ();
public:
using FactorType = unsigned __int128;

View File

@ -18,4 +18,4 @@ struct MemoryInfo {
*/
[[nodiscard]] const MemoryInfo& GetMemInfo();
} // namespace Common
} // namespace Common

View File

@ -419,9 +419,16 @@ struct Values {
linkage, false, "custom_rtc_enabled", Category::System, Specialization::Paired, true, true};
SwitchableSetting<s64> custom_rtc{
linkage, 0, "custom_rtc", Category::System, Specialization::Time,
true, true, &custom_rtc_enabled};
// Set on game boot, reset on stop. Seconds difference between current time and `custom_rtc`
s64 custom_rtc_differential;
false, true, &custom_rtc_enabled};
SwitchableSetting<s64, true> custom_rtc_offset{linkage,
0,
std::numeric_limits<int>::min(),
std::numeric_limits<int>::max(),
"custom_rtc_offset",
Category::System,
Specialization::Countable,
true,
true};
SwitchableSetting<bool> rng_seed_enabled{
linkage, false, "rng_seed_enabled", Category::System, Specialization::Paired, true, true};
SwitchableSetting<u32> rng_seed{

View File

@ -88,7 +88,17 @@ std::string FindSystemTimeZone() {
LOG_ERROR(Common, "Time zone {} not handled, defaulting to hour offset.", tz_index);
}
}
return fmt::format("Etc/GMT{:s}{:d}", hours > 0 ? "-" : "+", std::abs(hours));
// For some reason the Etc/GMT times are reversed. GMT+6 contains -21600 as its offset,
// -6 hours instead of +6 hours, so these signs are purposefully reversed to fix it.
std::string postfix{""};
if (hours > 0) {
postfix = fmt::format("-{:d}", std::abs(hours));
} else if (hours < 0) {
postfix = fmt::format("+{:d}", std::abs(hours));
}
return fmt::format("Etc/GMT{:s}", postfix);
}
} // namespace Common::TimeZone

View File

@ -12,9 +12,8 @@
namespace Common {
struct UUID {
std::array<u8, 0x10> uuid{};
std::array<u8, 0x10> uuid;
/// Constructs an invalid UUID.
constexpr UUID() = default;
/// Constructs a UUID from a reference to a 128 bit array.
@ -34,14 +33,6 @@ struct UUID {
*/
explicit UUID(std::string_view uuid_string);
~UUID() = default;
constexpr UUID(const UUID&) noexcept = default;
constexpr UUID(UUID&&) noexcept = default;
constexpr UUID& operator=(const UUID&) noexcept = default;
constexpr UUID& operator=(UUID&&) noexcept = default;
/**
* Returns whether the stored UUID is valid or not.
*
@ -121,6 +112,7 @@ struct UUID {
friend constexpr bool operator==(const UUID& lhs, const UUID& rhs) = default;
};
static_assert(sizeof(UUID) == 0x10, "UUID has incorrect size.");
static_assert(std::is_trivial_v<UUID>);
/// An invalid UUID. This UUID has all its bytes set to 0.
constexpr UUID InvalidUUID = {};

View File

@ -18,42 +18,40 @@ namespace Common {
class StandardWallClock final : public WallClock {
public:
explicit StandardWallClock() : start_time{SteadyClock::Now()} {}
explicit StandardWallClock() {}
std::chrono::nanoseconds GetTimeNS() const override {
return SteadyClock::Now() - start_time;
return std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::system_clock::now().time_since_epoch());
}
std::chrono::microseconds GetTimeUS() const override {
return static_cast<std::chrono::microseconds>(GetHostTicksElapsed() / NsToUsRatio::den);
return std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::system_clock::now().time_since_epoch());
}
std::chrono::milliseconds GetTimeMS() const override {
return static_cast<std::chrono::milliseconds>(GetHostTicksElapsed() / NsToMsRatio::den);
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now().time_since_epoch());
}
u64 GetCNTPCT() const override {
return GetHostTicksElapsed() * NsToCNTPCTRatio::num / NsToCNTPCTRatio::den;
s64 GetCNTPCT() const override {
return GetUptime() * NsToCNTPCTRatio::num / NsToCNTPCTRatio::den;
}
u64 GetGPUTick() const override {
return GetHostTicksElapsed() * NsToGPUTickRatio::num / NsToGPUTickRatio::den;
s64 GetGPUTick() const override {
return GetUptime() * NsToGPUTickRatio::num / NsToGPUTickRatio::den;
}
u64 GetHostTicksNow() const override {
return static_cast<u64>(SteadyClock::Now().time_since_epoch().count());
}
u64 GetHostTicksElapsed() const override {
return static_cast<u64>(GetTimeNS().count());
s64 GetUptime() const override {
return std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
bool IsNative() const override {
return false;
}
private:
SteadyClock::time_point start_time;
};
std::unique_ptr<WallClock> CreateOptimalClock() {

View File

@ -29,16 +29,13 @@ public:
virtual std::chrono::milliseconds GetTimeMS() const = 0;
/// @returns The guest CNTPCT ticks since the construction of this clock.
virtual u64 GetCNTPCT() const = 0;
virtual s64 GetCNTPCT() const = 0;
/// @returns The guest GPU ticks since the construction of this clock.
virtual u64 GetGPUTick() const = 0;
virtual s64 GetGPUTick() const = 0;
/// @returns The raw host timer ticks since an indeterminate epoch.
virtual u64 GetHostTicksNow() const = 0;
/// @returns The raw host timer ticks since the construction of this clock.
virtual u64 GetHostTicksElapsed() const = 0;
virtual s64 GetUptime() const = 0;
/// @returns Whether the clock directly uses the host's hardware clock.
virtual bool IsNative() const = 0;

View File

@ -8,39 +8,35 @@
namespace Common::X64 {
NativeClock::NativeClock(u64 rdtsc_frequency_)
: start_ticks{FencedRDTSC()}, rdtsc_frequency{rdtsc_frequency_},
ns_rdtsc_factor{GetFixedPoint64Factor(NsRatio::den, rdtsc_frequency)},
: rdtsc_frequency{rdtsc_frequency_}, ns_rdtsc_factor{GetFixedPoint64Factor(NsRatio::den,
rdtsc_frequency)},
us_rdtsc_factor{GetFixedPoint64Factor(UsRatio::den, rdtsc_frequency)},
ms_rdtsc_factor{GetFixedPoint64Factor(MsRatio::den, rdtsc_frequency)},
cntpct_rdtsc_factor{GetFixedPoint64Factor(CNTFRQ, rdtsc_frequency)},
gputick_rdtsc_factor{GetFixedPoint64Factor(GPUTickFreq, rdtsc_frequency)} {}
std::chrono::nanoseconds NativeClock::GetTimeNS() const {
return std::chrono::nanoseconds{MultiplyHigh(GetHostTicksElapsed(), ns_rdtsc_factor)};
return std::chrono::nanoseconds{MultiplyHigh(GetUptime(), ns_rdtsc_factor)};
}
std::chrono::microseconds NativeClock::GetTimeUS() const {
return std::chrono::microseconds{MultiplyHigh(GetHostTicksElapsed(), us_rdtsc_factor)};
return std::chrono::microseconds{MultiplyHigh(GetUptime(), us_rdtsc_factor)};
}
std::chrono::milliseconds NativeClock::GetTimeMS() const {
return std::chrono::milliseconds{MultiplyHigh(GetHostTicksElapsed(), ms_rdtsc_factor)};
return std::chrono::milliseconds{MultiplyHigh(GetUptime(), ms_rdtsc_factor)};
}
u64 NativeClock::GetCNTPCT() const {
return MultiplyHigh(GetHostTicksElapsed(), cntpct_rdtsc_factor);
s64 NativeClock::GetCNTPCT() const {
return MultiplyHigh(GetUptime(), cntpct_rdtsc_factor);
}
u64 NativeClock::GetGPUTick() const {
return MultiplyHigh(GetHostTicksElapsed(), gputick_rdtsc_factor);
s64 NativeClock::GetGPUTick() const {
return MultiplyHigh(GetUptime(), gputick_rdtsc_factor);
}
u64 NativeClock::GetHostTicksNow() const {
return FencedRDTSC();
}
u64 NativeClock::GetHostTicksElapsed() const {
return FencedRDTSC() - start_ticks;
s64 NativeClock::GetUptime() const {
return static_cast<s64>(FencedRDTSC());
}
bool NativeClock::IsNative() const {

View File

@ -17,18 +17,15 @@ public:
std::chrono::milliseconds GetTimeMS() const override;
u64 GetCNTPCT() const override;
s64 GetCNTPCT() const override;
u64 GetGPUTick() const override;
s64 GetGPUTick() const override;
u64 GetHostTicksNow() const override;
u64 GetHostTicksElapsed() const override;
s64 GetUptime() const override;
bool IsNative() const override;
private:
u64 start_ticks;
u64 rdtsc_frequency;
u64 ns_rdtsc_factor;

View File

@ -515,6 +515,24 @@ add_library(core STATIC
hle/service/glue/glue_manager.h
hle/service/glue/notif.cpp
hle/service/glue/notif.h
hle/service/glue/time/alarm_worker.cpp
hle/service/glue/time/alarm_worker.h
hle/service/glue/time/file_timestamp_worker.cpp
hle/service/glue/time/file_timestamp_worker.h
hle/service/glue/time/manager.cpp
hle/service/glue/time/manager.h
hle/service/glue/time/pm_state_change_handler.cpp
hle/service/glue/time/pm_state_change_handler.h
hle/service/glue/time/standard_steady_clock_resource.cpp
hle/service/glue/time/standard_steady_clock_resource.h
hle/service/glue/time/static.cpp
hle/service/glue/time/static.h
hle/service/glue/time/time_zone.cpp
hle/service/glue/time/time_zone.h
hle/service/glue/time/time_zone_binary.cpp
hle/service/glue/time/time_zone_binary.h
hle/service/glue/time/worker.cpp
hle/service/glue/time/worker.h
hle/service/grc/grc.cpp
hle/service/grc/grc.h
hle/service/hid/hid.cpp
@ -693,6 +711,46 @@ add_library(core STATIC
hle/service/prepo/prepo.h
hle/service/psc/psc.cpp
hle/service/psc/psc.h
hle/service/psc/time/alarms.cpp
hle/service/psc/time/alarms.h
hle/service/psc/time/clocks/context_writers.cpp
hle/service/psc/time/clocks/context_writers.h
hle/service/psc/time/clocks/ephemeral_network_system_clock_core.h
hle/service/psc/time/clocks/standard_local_system_clock_core.cpp
hle/service/psc/time/clocks/standard_local_system_clock_core.h
hle/service/psc/time/clocks/standard_network_system_clock_core.cpp
hle/service/psc/time/clocks/standard_network_system_clock_core.h
hle/service/psc/time/clocks/standard_steady_clock_core.cpp
hle/service/psc/time/clocks/standard_steady_clock_core.h
hle/service/psc/time/clocks/standard_user_system_clock_core.cpp
hle/service/psc/time/clocks/standard_user_system_clock_core.h
hle/service/psc/time/clocks/steady_clock_core.h
hle/service/psc/time/clocks/system_clock_core.cpp
hle/service/psc/time/clocks/system_clock_core.h
hle/service/psc/time/clocks/tick_based_steady_clock_core.cpp
hle/service/psc/time/clocks/tick_based_steady_clock_core.h
hle/service/psc/time/common.cpp
hle/service/psc/time/common.h
hle/service/psc/time/errors.h
hle/service/psc/time/shared_memory.cpp
hle/service/psc/time/shared_memory.h
hle/service/psc/time/static.cpp
hle/service/psc/time/static.h
hle/service/psc/time/manager.h
hle/service/psc/time/power_state_service.cpp
hle/service/psc/time/power_state_service.h
hle/service/psc/time/service_manager.cpp
hle/service/psc/time/service_manager.h
hle/service/psc/time/steady_clock.cpp
hle/service/psc/time/steady_clock.h
hle/service/psc/time/system_clock.cpp
hle/service/psc/time/system_clock.h
hle/service/psc/time/time_zone.cpp
hle/service/psc/time/time_zone.h
hle/service/psc/time/time_zone_service.cpp
hle/service/psc/time/time_zone_service.h
hle/service/psc/time/power_state_request_manager.cpp
hle/service/psc/time/power_state_request_manager.h
hle/service/ptm/psm.cpp
hle/service/ptm/psm.h
hle/service/ptm/ptm.cpp
@ -760,40 +818,6 @@ add_library(core STATIC
hle/service/ssl/ssl.cpp
hle/service/ssl/ssl.h
hle/service/ssl/ssl_backend.h
hle/service/time/clock_types.h
hle/service/time/ephemeral_network_system_clock_context_writer.h
hle/service/time/ephemeral_network_system_clock_core.h
hle/service/time/errors.h
hle/service/time/local_system_clock_context_writer.h
hle/service/time/network_system_clock_context_writer.h
hle/service/time/standard_local_system_clock_core.h
hle/service/time/standard_network_system_clock_core.h
hle/service/time/standard_steady_clock_core.cpp
hle/service/time/standard_steady_clock_core.h
hle/service/time/standard_user_system_clock_core.cpp
hle/service/time/standard_user_system_clock_core.h
hle/service/time/steady_clock_core.h
hle/service/time/system_clock_context_update_callback.cpp
hle/service/time/system_clock_context_update_callback.h
hle/service/time/system_clock_core.cpp
hle/service/time/system_clock_core.h
hle/service/time/tick_based_steady_clock_core.cpp
hle/service/time/tick_based_steady_clock_core.h
hle/service/time/time.cpp
hle/service/time/time.h
hle/service/time/time_interface.cpp
hle/service/time/time_interface.h
hle/service/time/time_manager.cpp
hle/service/time/time_manager.h
hle/service/time/time_sharedmemory.cpp
hle/service/time/time_sharedmemory.h
hle/service/time/time_zone_content_manager.cpp
hle/service/time/time_zone_content_manager.h
hle/service/time/time_zone_manager.cpp
hle/service/time/time_zone_manager.h
hle/service/time/time_zone_service.cpp
hle/service/time/time_zone_service.h
hle/service/time/time_zone_types.h
hle/service/usb/usb.cpp
hle/service/usb/usb.h
hle/service/vi/display/vi_display.cpp
@ -874,7 +898,7 @@ endif()
create_target_directory_groups(core)
target_link_libraries(core PUBLIC common PRIVATE audio_core hid_core network video_core nx_tzdb)
target_link_libraries(core PUBLIC common PRIVATE audio_core hid_core network video_core nx_tzdb tz)
target_link_libraries(core PUBLIC Boost::headers PRIVATE fmt::fmt nlohmann_json::nlohmann_json mbedtls RenderDoc::API)
if (MINGW)
target_link_libraries(core PRIVATE ${MSWSOCK_LIBRARY})

View File

@ -40,9 +40,14 @@
#include "core/hle/service/apm/apm_controller.h"
#include "core/hle/service/filesystem/filesystem.h"
#include "core/hle/service/glue/glue_manager.h"
#include "core/hle/service/glue/time/static.h"
#include "core/hle/service/psc/time/static.h"
#include "core/hle/service/psc/time/steady_clock.h"
#include "core/hle/service/psc/time/system_clock.h"
#include "core/hle/service/psc/time/time_zone_service.h"
#include "core/hle/service/service.h"
#include "core/hle/service/set/system_settings_server.h"
#include "core/hle/service/sm/sm.h"
#include "core/hle/service/time/time_manager.h"
#include "core/internal_network/network.h"
#include "core/loader/loader.h"
#include "core/memory.h"
@ -130,8 +135,8 @@ FileSys::VirtualFile GetGameFileFromPath(const FileSys::VirtualFilesystem& vfs,
struct System::Impl {
explicit Impl(System& system)
: kernel{system}, fs_controller{system}, hid_core{}, room_network{}, cpu_manager{system},
reporter{system}, applet_manager{system}, profile_manager{}, time_manager{system} {}
: kernel{system}, fs_controller{system}, hid_core{}, room_network{},
cpu_manager{system}, reporter{system}, applet_manager{system}, profile_manager{} {}
void Initialize(System& system) {
device_memory = std::make_unique<Core::DeviceMemory>();
@ -143,8 +148,6 @@ struct System::Impl {
core_timing.SetMulticore(is_multicore);
core_timing.Initialize([&system]() { system.RegisterHostThread(); });
RefreshTime();
// Create a default fs if one doesn't already exist.
if (virtual_filesystem == nullptr) {
virtual_filesystem = std::make_shared<FileSys::RealVfsFilesystem>();
@ -182,14 +185,57 @@ struct System::Impl {
Initialize(system);
}
void RefreshTime() {
void RefreshTime(System& system) {
if (!system.IsPoweredOn()) {
return;
}
auto settings_service =
system.ServiceManager().GetService<Service::Set::ISystemSettingsServer>("set:sys",
true);
auto static_service_a =
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:a", true);
auto static_service_s =
system.ServiceManager().GetService<Service::PSC::Time::StaticService>("time:s", true);
std::shared_ptr<Service::PSC::Time::SystemClock> user_clock;
static_service_a->GetStandardUserSystemClock(user_clock);
std::shared_ptr<Service::PSC::Time::SystemClock> local_clock;
static_service_a->GetStandardLocalSystemClock(local_clock);
std::shared_ptr<Service::PSC::Time::SystemClock> network_clock;
static_service_s->GetStandardNetworkSystemClock(network_clock);
std::shared_ptr<Service::Glue::Time::TimeZoneService> timezone_service;
static_service_a->GetTimeZoneService(timezone_service);
Service::PSC::Time::LocationName name{};
auto new_name = Settings::GetTimeZoneString(Settings::values.time_zone_index.GetValue());
std::memcpy(name.name.data(), new_name.data(), std::min(name.name.size(), new_name.size()));
timezone_service->SetDeviceLocation(name);
u64 time_offset = 0;
if (Settings::values.custom_rtc_enabled) {
time_offset = Settings::values.custom_rtc_offset.GetValue();
}
const auto posix_time = std::chrono::system_clock::now().time_since_epoch();
const auto current_time =
std::chrono::duration_cast<std::chrono::seconds>(posix_time).count();
Settings::values.custom_rtc_differential =
(Settings::values.custom_rtc_enabled ? Settings::values.custom_rtc.GetValue()
: current_time) -
current_time;
const u64 current_time =
+std::chrono::duration_cast<std::chrono::seconds>(posix_time).count();
const u64 new_time = current_time + time_offset;
Service::PSC::Time::SystemClockContext context{};
settings_service->SetUserSystemClockContext(context);
user_clock->SetCurrentTime(new_time);
local_clock->SetCurrentTime(new_time);
network_clock->GetSystemClockContext(context);
settings_service->SetNetworkSystemClockContext(context);
network_clock->SetCurrentTime(new_time);
}
void Run() {
@ -265,9 +311,6 @@ struct System::Impl {
service_manager = std::make_shared<Service::SM::ServiceManager>(kernel);
services = std::make_unique<Service::Services>(service_manager, system);
// Initialize time manager, which must happen after kernel is created
time_manager.Initialize();
is_powered_on = true;
exit_locked = false;
exit_requested = false;
@ -417,7 +460,6 @@ struct System::Impl {
fs_controller.Reset();
cheat_engine.reset();
telemetry_session.reset();
time_manager.Shutdown();
core_timing.ClearPendingEvents();
app_loader.reset();
audio_core.reset();
@ -533,7 +575,6 @@ struct System::Impl {
/// Service State
Service::Glue::ARPManager arp_manager;
Service::Account::ProfileManager profile_manager;
Service::Time::TimeManager time_manager;
/// Service manager
std::shared_ptr<Service::SM::ServiceManager> service_manager;
@ -911,14 +952,6 @@ const Service::Account::ProfileManager& System::GetProfileManager() const {
return impl->profile_manager;
}
Service::Time::TimeManager& System::GetTimeManager() {
return impl->time_manager;
}
const Service::Time::TimeManager& System::GetTimeManager() const {
return impl->time_manager;
}
void System::SetExitLocked(bool locked) {
impl->exit_locked = locked;
}
@ -1030,13 +1063,9 @@ void System::Exit() {
}
void System::ApplySettings() {
impl->RefreshTime();
impl->RefreshTime(*this);
if (IsPoweredOn()) {
if (Settings::values.custom_rtc_enabled) {
const s64 posix_time{Settings::values.custom_rtc.GetValue()};
GetTimeManager().UpdateLocalSystemClockTime(posix_time);
}
Renderer().RefreshBaseSettings();
}
}

View File

@ -73,10 +73,6 @@ namespace SM {
class ServiceManager;
} // namespace SM
namespace Time {
class TimeManager;
} // namespace Time
} // namespace Service
namespace Tegra {
@ -381,9 +377,6 @@ public:
[[nodiscard]] Service::Account::ProfileManager& GetProfileManager();
[[nodiscard]] const Service::Account::ProfileManager& GetProfileManager() const;
[[nodiscard]] Service::Time::TimeManager& GetTimeManager();
[[nodiscard]] const Service::Time::TimeManager& GetTimeManager() const;
[[nodiscard]] Core::Debugger& GetDebugger();
[[nodiscard]] const Core::Debugger& GetDebugger() const;

View File

@ -157,7 +157,7 @@ void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
}
}
for (auto h : to_remove) {
for (auto& h : to_remove) {
event_queue.erase(h);
}

View File

@ -67,25 +67,29 @@ constexpr std::array<SystemArchiveDescriptor, SYSTEM_ARCHIVE_COUNT> SYSTEM_ARCHI
}};
VirtualFile SynthesizeSystemArchive(const u64 title_id) {
if (title_id < SYSTEM_ARCHIVES.front().title_id || title_id > SYSTEM_ARCHIVES.back().title_id)
if (title_id < SYSTEM_ARCHIVES.front().title_id || title_id > SYSTEM_ARCHIVES.back().title_id) {
return nullptr;
}
const auto& desc = SYSTEM_ARCHIVES[title_id - SYSTEM_ARCHIVE_BASE_TITLE_ID];
LOG_INFO(Service_FS, "Synthesizing system archive '{}' (0x{:016X}).", desc.name, desc.title_id);
if (desc.supplier == nullptr)
if (desc.supplier == nullptr) {
return nullptr;
}
const auto dir = desc.supplier();
if (dir == nullptr)
if (dir == nullptr) {
return nullptr;
}
const auto romfs = CreateRomFS(dir);
if (romfs == nullptr)
if (romfs == nullptr) {
return nullptr;
}
LOG_INFO(Service_FS, " - System archive generation successful!");
return romfs;

View File

@ -6,7 +6,6 @@
#include "common/swap.h"
#include "core/file_sys/system_archive/time_zone_binary.h"
#include "core/file_sys/vfs_vector.h"
#include "core/hle/service/time/time_zone_types.h"
#include "nx_tzdb.h"

View File

@ -10,8 +10,10 @@
#include "core/core.h"
#include "core/hle/service/caps/caps_manager.h"
#include "core/hle/service/caps/caps_result.h"
#include "core/hle/service/time/time_manager.h"
#include "core/hle/service/time/time_zone_content_manager.h"
#include "core/hle/service/glue/time/static.h"
#include "core/hle/service/psc/time/system_clock.h"
#include "core/hle/service/service.h"
#include "core/hle/service/sm/sm.h"
namespace Service::Capture {
@ -239,10 +241,15 @@ Result AlbumManager::SaveScreenShot(ApplicationAlbumEntry& out_entry,
const ApplicationData& app_data, std::span<const u8> image_data,
u64 aruid) {
const u64 title_id = system.GetApplicationProcessProgramID();
const auto& user_clock = system.GetTimeManager().GetStandardUserSystemClockCore();
auto static_service =
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u", true);
std::shared_ptr<Service::PSC::Time::SystemClock> user_clock{};
static_service->GetStandardUserSystemClock(user_clock);
s64 posix_time{};
Result result = user_clock.GetCurrentTime(system, posix_time);
auto result = user_clock->GetCurrentTime(posix_time);
if (result.IsError()) {
return result;
@ -257,10 +264,14 @@ Result AlbumManager::SaveEditedScreenShot(ApplicationAlbumEntry& out_entry,
const ScreenShotAttribute& attribute,
const AlbumFileId& file_id,
std::span<const u8> image_data) {
const auto& user_clock = system.GetTimeManager().GetStandardUserSystemClockCore();
auto static_service =
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u", true);
std::shared_ptr<Service::PSC::Time::SystemClock> user_clock{};
static_service->GetStandardUserSystemClock(user_clock);
s64 posix_time{};
Result result = user_clock.GetCurrentTime(system, posix_time);
auto result = user_clock->GetCurrentTime(posix_time);
if (result.IsError()) {
return result;
@ -455,19 +466,23 @@ Result AlbumManager::SaveImage(ApplicationAlbumEntry& out_entry, std::span<const
}
AlbumFileDateTime AlbumManager::ConvertToAlbumDateTime(u64 posix_time) const {
Time::TimeZone::CalendarInfo calendar_date{};
const auto& time_zone_manager =
system.GetTimeManager().GetTimeZoneContentManager().GetTimeZoneManager();
auto static_service =
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u", true);
time_zone_manager.ToCalendarTimeWithMyRules(posix_time, calendar_date);
std::shared_ptr<Service::Glue::Time::TimeZoneService> timezone_service{};
static_service->GetTimeZoneService(timezone_service);
Service::PSC::Time::CalendarTime calendar_time{};
Service::PSC::Time::CalendarAdditionalInfo additional_info{};
timezone_service->ToCalendarTimeWithMyRule(calendar_time, additional_info, posix_time);
return {
.year = calendar_date.time.year,
.month = calendar_date.time.month,
.day = calendar_date.time.day,
.hour = calendar_date.time.hour,
.minute = calendar_date.time.minute,
.second = calendar_date.time.second,
.year = calendar_time.year,
.month = calendar_time.month,
.day = calendar_time.day,
.hour = calendar_time.hour,
.minute = calendar_time.minute,
.second = calendar_time.second,
.unique_id = 0,
};
}

View File

@ -8,6 +8,9 @@
#include "core/hle/service/glue/ectx.h"
#include "core/hle/service/glue/glue.h"
#include "core/hle/service/glue/notif.h"
#include "core/hle/service/glue/time/manager.h"
#include "core/hle/service/glue/time/static.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/server_manager.h"
namespace Service::Glue {
@ -31,6 +34,22 @@ void LoopProcess(Core::System& system) {
// Notification Services for application
server_manager->RegisterNamedService("notif:a", std::make_shared<NOTIF_A>(system));
// Time
auto time = std::make_shared<Time::TimeManager>(system);
server_manager->RegisterNamedService(
"time:u",
std::make_shared<Time::StaticService>(
system, Service::PSC::Time::StaticServiceSetupInfo{0, 0, 0, 0, 0, 0}, time, "time:u"));
server_manager->RegisterNamedService(
"time:a",
std::make_shared<Time::StaticService>(
system, Service::PSC::Time::StaticServiceSetupInfo{1, 1, 0, 1, 0, 0}, time, "time:a"));
server_manager->RegisterNamedService(
"time:r",
std::make_shared<Time::StaticService>(
system, Service::PSC::Time::StaticServiceSetupInfo{0, 0, 0, 0, 1, 0}, time, "time:r"));
ServerManager::RunServer(std::move(server_manager));
}

View File

@ -0,0 +1,82 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/service/glue/time/alarm_worker.h"
#include "core/hle/service/psc/time/service_manager.h"
#include "core/hle/service/sm/sm.h"
namespace Service::Glue::Time {
AlarmWorker::AlarmWorker(Core::System& system, StandardSteadyClockResource& steady_clock_resource)
: m_system{system}, m_ctx{system, "Glue:AlarmWorker"}, m_steady_clock_resource{
steady_clock_resource} {}
AlarmWorker::~AlarmWorker() {
m_system.CoreTiming().UnscheduleEvent(m_timer_timing_event);
m_ctx.CloseEvent(m_timer_event);
}
void AlarmWorker::Initialize(std::shared_ptr<Service::PSC::Time::ServiceManager> time_m) {
m_time_m = std::move(time_m);
m_timer_event = m_ctx.CreateEvent("Glue:AlarmWorker:TimerEvent");
m_timer_timing_event = Core::Timing::CreateEvent(
"Glue:AlarmWorker::AlarmTimer",
[this](s64 time,
std::chrono::nanoseconds ns_late) -> std::optional<std::chrono::nanoseconds> {
m_timer_event->Signal();
return std::nullopt;
});
AttachToClosestAlarmEvent();
}
bool AlarmWorker::GetClosestAlarmInfo(Service::PSC::Time::AlarmInfo& out_alarm_info,
s64& out_time) {
bool is_valid{};
Service::PSC::Time::AlarmInfo alarm_info{};
s64 closest_time{};
auto res = m_time_m->GetClosestAlarmInfo(is_valid, alarm_info, closest_time);
ASSERT(res == ResultSuccess);
if (is_valid) {
out_alarm_info = alarm_info;
out_time = closest_time;
}
return is_valid;
}
void AlarmWorker::OnPowerStateChanged() {
Service::PSC::Time::AlarmInfo closest_alarm_info{};
s64 closest_time{};
if (!GetClosestAlarmInfo(closest_alarm_info, closest_time)) {
m_system.CoreTiming().UnscheduleEvent(m_timer_timing_event);
m_timer_event->Clear();
return;
}
if (closest_alarm_info.alert_time <= closest_time) {
m_time_m->CheckAndSignalAlarms();
} else {
auto next_time{closest_alarm_info.alert_time - closest_time};
m_system.CoreTiming().UnscheduleEvent(m_timer_timing_event);
m_timer_event->Clear();
m_system.CoreTiming().ScheduleEvent(std::chrono::nanoseconds(next_time),
m_timer_timing_event);
}
}
Result AlarmWorker::AttachToClosestAlarmEvent() {
m_time_m->GetClosestAlarmUpdatedEvent(&m_event);
R_SUCCEED();
}
} // namespace Service::Glue::Time

View File

@ -0,0 +1,53 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/common_types.h"
#include "core/hle/kernel/k_event.h"
#include "core/hle/service/kernel_helpers.h"
#include "core/hle/service/psc/time/common.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
class ServiceManager;
}
namespace Service::Glue::Time {
class StandardSteadyClockResource;
class AlarmWorker {
public:
explicit AlarmWorker(Core::System& system, StandardSteadyClockResource& steady_clock_resource);
~AlarmWorker();
void Initialize(std::shared_ptr<Service::PSC::Time::ServiceManager> time_m);
Kernel::KEvent& GetEvent() {
return *m_event;
}
Kernel::KEvent& GetTimerEvent() {
return *m_timer_event;
}
void OnPowerStateChanged();
private:
bool GetClosestAlarmInfo(Service::PSC::Time::AlarmInfo& out_alarm_info, s64& out_time);
Result AttachToClosestAlarmEvent();
Core::System& m_system;
KernelHelpers::ServiceContext m_ctx;
std::shared_ptr<Service::PSC::Time::ServiceManager> m_time_m;
Kernel::KEvent* m_event{};
Kernel::KEvent* m_timer_event{};
std::shared_ptr<Core::Timing::EventType> m_timer_timing_event;
StandardSteadyClockResource& m_steady_clock_resource;
};
} // namespace Service::Glue::Time

View File

@ -0,0 +1,23 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/hle/service/glue/time/file_timestamp_worker.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/psc/time/system_clock.h"
#include "core/hle/service/psc/time/time_zone_service.h"
namespace Service::Glue::Time {
void FileTimestampWorker::SetFilesystemPosixTime() {
s64 time{};
Service::PSC::Time::CalendarTime calendar_time{};
Service::PSC::Time::CalendarAdditionalInfo additional_info{};
if (m_initialized && m_system_clock->GetCurrentTime(time) == ResultSuccess &&
m_time_zone->ToCalendarTimeWithMyRule(calendar_time, additional_info, time) ==
ResultSuccess) {
// TODO IFileSystemProxy::SetCurrentPosixTime
}
}
} // namespace Service::Glue::Time

View File

@ -0,0 +1,28 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <memory>
#include "common/common_types.h"
namespace Service::PSC::Time {
class SystemClock;
class TimeZoneService;
} // namespace Service::PSC::Time
namespace Service::Glue::Time {
class FileTimestampWorker {
public:
FileTimestampWorker() = default;
void SetFilesystemPosixTime();
std::shared_ptr<Service::PSC::Time::SystemClock> m_system_clock{};
std::shared_ptr<Service::PSC::Time::TimeZoneService> m_time_zone{};
bool m_initialized{};
};
} // namespace Service::Glue::Time

View File

@ -0,0 +1,277 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <chrono>
#include "core/core.h"
#include "core/core_timing.h"
#include "common/settings.h"
#include "common/time_zone.h"
#include "core/file_sys/vfs.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/service/glue/time/manager.h"
#include "core/hle/service/glue/time/time_zone_binary.h"
#include "core/hle/service/psc/time/service_manager.h"
#include "core/hle/service/psc/time/static.h"
#include "core/hle/service/psc/time/system_clock.h"
#include "core/hle/service/psc/time/time_zone_service.h"
#include "core/hle/service/set/system_settings_server.h"
#include "core/hle/service/sm/sm.h"
namespace Service::Glue::Time {
namespace {
template <typename T>
T GetSettingsItemValue(std::shared_ptr<Service::Set::ISystemSettingsServer>& set_sys,
const char* category, const char* name) {
std::vector<u8> interval_buf;
auto res = set_sys->GetSettingsItemValue(interval_buf, category, name);
ASSERT(res == ResultSuccess);
T v{};
std::memcpy(&v, interval_buf.data(), sizeof(T));
return v;
}
s64 CalendarTimeToEpoch(Service::PSC::Time::CalendarTime calendar) {
constexpr auto is_leap = [](s32 year) -> bool {
return (((year) % 4) == 0 && (((year) % 100) != 0 || ((year) % 400) == 0));
};
constexpr std::array<s32, 12> MonthStartDayOfYear{
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334,
};
s16 month_s16{calendar.month};
s8 month{static_cast<s8>(((month_s16 * 43) & ~std::numeric_limits<s16>::max()) +
((month_s16 * 43) >> 9))};
s8 month_index{static_cast<s8>(calendar.month - 12 * month)};
if (month_index == 0) {
month_index = 12;
}
s32 year{(month + calendar.year) - !month_index};
s32 v8{year >= 0 ? year : year + 3};
s64 days_since_epoch = calendar.day + MonthStartDayOfYear[month_index - 1];
days_since_epoch += (year * 365) + (v8 / 4) - (year / 100) + (year / 400) - 365;
if (month_index <= 2 && is_leap(year)) {
days_since_epoch--;
}
auto epoch_s{((24ll * days_since_epoch + calendar.hour) * 60ll + calendar.minute) * 60ll +
calendar.second};
return epoch_s - 62135683200ll;
}
s64 GetEpochTimeFromInitialYear(std::shared_ptr<Service::Set::ISystemSettingsServer>& set_sys) {
Service::PSC::Time::CalendarTime calendar{
.year = GetSettingsItemValue<s16>(set_sys, "time", "standard_user_clock_initial_year"),
.month = 1,
.day = 1,
.hour = 0,
.minute = 0,
.second = 0,
};
return CalendarTimeToEpoch(calendar);
}
Service::PSC::Time::LocationName GetTimeZoneString(Service::PSC::Time::LocationName& in_name) {
auto configured_zone = Settings::GetTimeZoneString(Settings::values.time_zone_index.GetValue());
Service::PSC::Time::LocationName configured_name{};
std::memcpy(configured_name.name.data(), configured_zone.data(),
std::min(configured_name.name.size(), configured_zone.size()));
if (!IsTimeZoneBinaryValid(configured_name)) {
configured_zone = Common::TimeZone::FindSystemTimeZone();
configured_name = {};
std::memcpy(configured_name.name.data(), configured_zone.data(),
std::min(configured_name.name.size(), configured_zone.size()));
}
ASSERT_MSG(IsTimeZoneBinaryValid(configured_name), "Invalid time zone {}!",
configured_name.name.data());
return configured_name;
}
} // namespace
TimeManager::TimeManager(Core::System& system)
: m_steady_clock_resource{system}, m_worker{system, m_steady_clock_resource,
m_file_timestamp_worker} {
m_time_m =
system.ServiceManager().GetService<Service::PSC::Time::ServiceManager>("time:m", true);
auto res = m_time_m->GetStaticServiceAsServiceManager(m_time_sm);
ASSERT(res == ResultSuccess);
m_set_sys =
system.ServiceManager().GetService<Service::Set::ISystemSettingsServer>("set:sys", true);
res = MountTimeZoneBinary(system);
ASSERT(res == ResultSuccess);
m_worker.Initialize(m_time_sm, m_set_sys);
res = m_time_sm->GetStandardUserSystemClock(m_file_timestamp_worker.m_system_clock);
ASSERT(res == ResultSuccess);
res = m_time_sm->GetTimeZoneService(m_file_timestamp_worker.m_time_zone);
ASSERT(res == ResultSuccess);
res = SetupStandardSteadyClockCore();
ASSERT(res == ResultSuccess);
Service::PSC::Time::SystemClockContext user_clock_context{};
res = m_set_sys->GetUserSystemClockContext(user_clock_context);
ASSERT(res == ResultSuccess);
// TODO the local clock should initialise with this epoch time, and be updated somewhere else on
// first boot to update it, but I haven't been able to find that point (likely via ntc's auto
// correct as it's defaulted to be enabled). So to get a time that isn't stuck in the past for
// first boot, grab the current real seconds.
auto epoch_time{GetEpochTimeFromInitialYear(m_set_sys)};
if (user_clock_context == Service::PSC::Time::SystemClockContext{}) {
m_steady_clock_resource.GetRtcTimeInSeconds(epoch_time);
}
res = m_time_m->SetupStandardLocalSystemClockCore(user_clock_context, epoch_time);
ASSERT(res == ResultSuccess);
Service::PSC::Time::SystemClockContext network_clock_context{};
res = m_set_sys->GetNetworkSystemClockContext(network_clock_context);
ASSERT(res == ResultSuccess);
auto network_accuracy_m{GetSettingsItemValue<s32>(
m_set_sys, "time", "standard_network_clock_sufficient_accuracy_minutes")};
auto one_minute_ns{
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::minutes(1)).count()};
s64 network_accuracy_ns{network_accuracy_m * one_minute_ns};
res = m_time_m->SetupStandardNetworkSystemClockCore(network_clock_context, network_accuracy_ns);
ASSERT(res == ResultSuccess);
bool is_automatic_correction_enabled{};
res = m_set_sys->IsUserSystemClockAutomaticCorrectionEnabled(is_automatic_correction_enabled);
ASSERT(res == ResultSuccess);
Service::PSC::Time::SteadyClockTimePoint automatic_correction_time_point{};
res = m_set_sys->GetUserSystemClockAutomaticCorrectionUpdatedTime(
automatic_correction_time_point);
ASSERT(res == ResultSuccess);
res = m_time_m->SetupStandardUserSystemClockCore(automatic_correction_time_point,
is_automatic_correction_enabled);
ASSERT(res == ResultSuccess);
res = m_time_m->SetupEphemeralNetworkSystemClockCore();
ASSERT(res == ResultSuccess);
res = SetupTimeZoneServiceCore();
ASSERT(res == ResultSuccess);
s64 rtc_time_s{};
res = m_steady_clock_resource.GetRtcTimeInSeconds(rtc_time_s);
ASSERT(res == ResultSuccess);
// TODO system report "launch"
// "rtc_reset" = m_steady_clock_resource.m_rtc_reset
// "rtc_value" = rtc_time_s
m_worker.StartThread();
m_file_timestamp_worker.m_initialized = true;
s64 system_clock_time{};
if (m_file_timestamp_worker.m_system_clock->GetCurrentTime(system_clock_time) ==
ResultSuccess) {
Service::PSC::Time::CalendarTime calendar_time{};
Service::PSC::Time::CalendarAdditionalInfo calendar_additional{};
if (m_file_timestamp_worker.m_time_zone->ToCalendarTimeWithMyRule(
calendar_time, calendar_additional, system_clock_time) == ResultSuccess) {
// TODO IFileSystemProxy::SetCurrentPosixTime(system_clock_time,
// calendar_additional.ut_offset)
}
}
}
Result TimeManager::SetupStandardSteadyClockCore() {
Common::UUID external_clock_source_id{};
auto res = m_set_sys->GetExternalSteadyClockSourceId(external_clock_source_id);
ASSERT(res == ResultSuccess);
s64 external_steady_clock_internal_offset_s{};
res = m_set_sys->GetExternalSteadyClockInternalOffset(external_steady_clock_internal_offset_s);
ASSERT(res == ResultSuccess);
auto one_second_ns{
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(1)).count()};
s64 external_steady_clock_internal_offset_ns{external_steady_clock_internal_offset_s *
one_second_ns};
s32 standard_steady_clock_test_offset_m{
GetSettingsItemValue<s32>(m_set_sys, "time", "standard_steady_clock_test_offset_minutes")};
auto one_minute_ns{
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::minutes(1)).count()};
s64 standard_steady_clock_test_offset_ns{standard_steady_clock_test_offset_m * one_minute_ns};
auto reset_detected = m_steady_clock_resource.GetResetDetected();
if (reset_detected) {
external_clock_source_id = {};
}
Common::UUID clock_source_id{};
m_steady_clock_resource.Initialize(&clock_source_id, &external_clock_source_id);
if (clock_source_id != external_clock_source_id) {
m_set_sys->SetExternalSteadyClockSourceId(clock_source_id);
}
res = m_time_m->SetupStandardSteadyClockCore(clock_source_id, m_steady_clock_resource.GetTime(),
external_steady_clock_internal_offset_ns,
standard_steady_clock_test_offset_ns,
reset_detected);
ASSERT(res == ResultSuccess);
R_SUCCEED();
}
Result TimeManager::SetupTimeZoneServiceCore() {
Service::PSC::Time::LocationName name{};
auto res = m_set_sys->GetDeviceTimeZoneLocationName(name);
ASSERT(res == ResultSuccess);
auto configured_zone = GetTimeZoneString(name);
if (configured_zone.name != name.name) {
m_set_sys->SetDeviceTimeZoneLocationName(configured_zone);
name = configured_zone;
std::shared_ptr<Service::PSC::Time::SystemClock> local_clock;
m_time_sm->GetStandardLocalSystemClock(local_clock);
Service::PSC::Time::SystemClockContext context{};
local_clock->GetSystemClockContext(context);
m_set_sys->SetDeviceTimeZoneLocationUpdatedTime(context.steady_time_point);
}
Service::PSC::Time::SteadyClockTimePoint time_point{};
res = m_set_sys->GetDeviceTimeZoneLocationUpdatedTime(time_point);
ASSERT(res == ResultSuccess);
auto location_count = GetTimeZoneCount();
Service::PSC::Time::RuleVersion rule_version{};
GetTimeZoneVersion(rule_version);
std::span<const u8> rule_buffer{};
size_t rule_size{};
res = GetTimeZoneRule(rule_buffer, rule_size, name);
ASSERT(res == ResultSuccess);
res = m_time_m->SetupTimeZoneServiceCore(name, time_point, rule_version, location_count,
rule_buffer);
ASSERT(res == ResultSuccess);
R_SUCCEED();
}
} // namespace Service::Glue::Time

View File

@ -0,0 +1,42 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <functional>
#include <string>
#include "common/common_types.h"
#include "core/file_sys/vfs_types.h"
#include "core/hle/service/glue/time/file_timestamp_worker.h"
#include "core/hle/service/glue/time/standard_steady_clock_resource.h"
#include "core/hle/service/glue/time/worker.h"
#include "core/hle/service/service.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
class ServiceManager;
class StaticService;
} // namespace Service::PSC::Time
namespace Service::Glue::Time {
class TimeManager {
public:
explicit TimeManager(Core::System& system);
std::shared_ptr<Service::Set::ISystemSettingsServer> m_set_sys;
std::shared_ptr<Service::PSC::Time::ServiceManager> m_time_m{};
std::shared_ptr<Service::PSC::Time::StaticService> m_time_sm{};
StandardSteadyClockResource m_steady_clock_resource;
FileTimestampWorker m_file_timestamp_worker;
TimeWorker m_worker;
private:
Result SetupStandardSteadyClockCore();
Result SetupTimeZoneServiceCore();
};
} // namespace Service::Glue::Time

View File

@ -0,0 +1,13 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/hle/service/glue/time/pm_state_change_handler.h"
namespace Service::Glue::Time {
PmStateChangeHandler::PmStateChangeHandler(AlarmWorker& alarm_worker)
: m_alarm_worker{alarm_worker} {
// TODO Initialize IPmModule, dependent on Rtc and Fs
}
} // namespace Service::Glue::Time

View File

@ -0,0 +1,18 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/common_types.h"
namespace Service::Glue::Time {
class AlarmWorker;
class PmStateChangeHandler {
public:
explicit PmStateChangeHandler(AlarmWorker& alarm_worker);
AlarmWorker& m_alarm_worker;
s32 m_priority{};
};
} // namespace Service::Glue::Time

View File

@ -0,0 +1,123 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <chrono>
#include "common/settings.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/service/glue/time/standard_steady_clock_resource.h"
#include "core/hle/service/psc/time/errors.h"
namespace Service::Glue::Time {
namespace {
[[maybe_unused]] constexpr u32 Max77620PmicSession = 0x3A000001;
[[maybe_unused]] constexpr u32 Max77620RtcSession = 0x3B000001;
Result GetTimeInSeconds(Core::System& system, s64& out_time_s) {
out_time_s = std::chrono::duration_cast<std::chrono::seconds>(
std::chrono::system_clock::now().time_since_epoch())
.count();
if (Settings::values.custom_rtc_enabled) {
out_time_s += Settings::values.custom_rtc_offset.GetValue();
}
R_SUCCEED();
}
} // namespace
StandardSteadyClockResource::StandardSteadyClockResource(Core::System& system) : m_system{system} {}
void StandardSteadyClockResource::Initialize(Common::UUID* out_source_id,
Common::UUID* external_source_id) {
constexpr size_t NUM_TRIES{20};
size_t i{0};
Result res{ResultSuccess};
for (; i < NUM_TRIES; i++) {
res = SetCurrentTime();
if (res == ResultSuccess) {
break;
}
Kernel::Svc::SleepThread(m_system, std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::milliseconds(1))
.count());
}
if (i < NUM_TRIES) {
m_set_time_result = ResultSuccess;
if (*external_source_id != Service::PSC::Time::ClockSourceId{}) {
m_clock_source_id = *external_source_id;
} else {
m_clock_source_id = Common::UUID::MakeRandom();
}
} else {
m_set_time_result = res;
auto ticks{m_system.CoreTiming().GetClockTicks()};
m_time = -Service::PSC::Time::ConvertToTimeSpan(ticks).count();
m_clock_source_id = Common::UUID::MakeRandom();
}
if (out_source_id) {
*out_source_id = m_clock_source_id;
}
}
bool StandardSteadyClockResource::GetResetDetected() {
// TODO:
// call Rtc::GetRtcResetDetected(Max77620RtcSession)
// if detected:
// SetSys::SetExternalSteadyClockSourceId(invalid_id)
// Rtc::ClearRtcResetDetected(Max77620RtcSession)
// set m_rtc_reset to result
// Instead, only set reset to true if we're booting for the first time.
m_rtc_reset = false;
return m_rtc_reset;
}
Result StandardSteadyClockResource::SetCurrentTime() {
auto start_tick{m_system.CoreTiming().GetClockTicks()};
s64 rtc_time_s{};
// TODO R_TRY(Rtc::GetTimeInSeconds(rtc_time_s, Max77620RtcSession))
R_TRY(GetTimeInSeconds(m_system, rtc_time_s));
auto end_tick{m_system.CoreTiming().GetClockTicks()};
auto diff{Service::PSC::Time::ConvertToTimeSpan(end_tick - start_tick)};
// Why is this here?
R_UNLESS(diff < std::chrono::milliseconds(101), Service::PSC::Time::ResultRtcTimeout);
auto one_second_ns{
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(1)).count()};
s64 boot_time{rtc_time_s * one_second_ns -
Service::PSC::Time::ConvertToTimeSpan(end_tick).count()};
std::scoped_lock l{m_mutex};
m_time = boot_time;
R_SUCCEED();
}
Result StandardSteadyClockResource::GetRtcTimeInSeconds(s64& out_time) {
// TODO
// R_TRY(Rtc::GetTimeInSeconds(time_s, Max77620RtcSession)
R_RETURN(GetTimeInSeconds(m_system, out_time));
}
void StandardSteadyClockResource::UpdateTime() {
constexpr size_t NUM_TRIES{3};
size_t i{0};
Result res{ResultSuccess};
for (; i < NUM_TRIES; i++) {
res = SetCurrentTime();
if (res == ResultSuccess) {
break;
}
Kernel::Svc::SleepThread(m_system, std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::milliseconds(1))
.count());
}
}
} // namespace Service::Glue::Time

View File

@ -0,0 +1,41 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <mutex>
#include "common/common_types.h"
#include "core/hle/result.h"
#include "core/hle/service/psc/time/common.h"
namespace Core {
class System;
}
namespace Service::Glue::Time {
class StandardSteadyClockResource {
public:
StandardSteadyClockResource(Core::System& system);
void Initialize(Common::UUID* out_source_id, Common::UUID* external_source_id);
s64 GetTime() const {
return m_time;
}
bool GetResetDetected();
Result SetCurrentTime();
Result GetRtcTimeInSeconds(s64& out_time);
void UpdateTime();
private:
Core::System& m_system;
std::mutex m_mutex;
Service::PSC::Time::ClockSourceId m_clock_source_id{};
s64 m_time{};
Result m_set_time_result;
bool m_rtc_reset;
};
} // namespace Service::Glue::Time

View File

@ -0,0 +1,448 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <chrono>
#include "core/core.h"
#include "core/hle/kernel/k_shared_memory.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/service/glue/time/file_timestamp_worker.h"
#include "core/hle/service/glue/time/static.h"
#include "core/hle/service/psc/time/errors.h"
#include "core/hle/service/psc/time/service_manager.h"
#include "core/hle/service/psc/time/static.h"
#include "core/hle/service/psc/time/steady_clock.h"
#include "core/hle/service/psc/time/system_clock.h"
#include "core/hle/service/psc/time/time_zone_service.h"
#include "core/hle/service/set/system_settings_server.h"
#include "core/hle/service/sm/sm.h"
namespace Service::Glue::Time {
namespace {
template <typename T>
T GetSettingsItemValue(std::shared_ptr<Service::Set::ISystemSettingsServer>& set_sys,
const char* category, const char* name) {
std::vector<u8> interval_buf;
auto res = set_sys->GetSettingsItemValue(interval_buf, category, name);
ASSERT(res == ResultSuccess);
T v{};
std::memcpy(&v, interval_buf.data(), sizeof(T));
return v;
}
} // namespace
StaticService::StaticService(Core::System& system_,
Service::PSC::Time::StaticServiceSetupInfo setup_info,
std::shared_ptr<TimeManager> time, const char* name)
: ServiceFramework{system_, name}, m_system{system_}, m_time_m{time->m_time_m},
m_setup_info{setup_info}, m_time_sm{time->m_time_sm},
m_file_timestamp_worker{time->m_file_timestamp_worker}, m_standard_steady_clock_resource{
time->m_steady_clock_resource} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &StaticService::Handle_GetStandardUserSystemClock, "GetStandardUserSystemClock"},
{1, &StaticService::Handle_GetStandardNetworkSystemClock, "GetStandardNetworkSystemClock"},
{2, &StaticService::Handle_GetStandardSteadyClock, "GetStandardSteadyClock"},
{3, &StaticService::Handle_GetTimeZoneService, "GetTimeZoneService"},
{4, &StaticService::Handle_GetStandardLocalSystemClock, "GetStandardLocalSystemClock"},
{5, &StaticService::Handle_GetEphemeralNetworkSystemClock, "GetEphemeralNetworkSystemClock"},
{20, &StaticService::Handle_GetSharedMemoryNativeHandle, "GetSharedMemoryNativeHandle"},
{50, &StaticService::Handle_SetStandardSteadyClockInternalOffset, "SetStandardSteadyClockInternalOffset"},
{51, &StaticService::Handle_GetStandardSteadyClockRtcValue, "GetStandardSteadyClockRtcValue"},
{100, &StaticService::Handle_IsStandardUserSystemClockAutomaticCorrectionEnabled, "IsStandardUserSystemClockAutomaticCorrectionEnabled"},
{101, &StaticService::Handle_SetStandardUserSystemClockAutomaticCorrectionEnabled, "SetStandardUserSystemClockAutomaticCorrectionEnabled"},
{102, &StaticService::Handle_GetStandardUserSystemClockInitialYear, "GetStandardUserSystemClockInitialYear"},
{200, &StaticService::Handle_IsStandardNetworkSystemClockAccuracySufficient, "IsStandardNetworkSystemClockAccuracySufficient"},
{201, &StaticService::Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedTime, "GetStandardUserSystemClockAutomaticCorrectionUpdatedTime"},
{300, &StaticService::Handle_CalculateMonotonicSystemClockBaseTimePoint, "CalculateMonotonicSystemClockBaseTimePoint"},
{400, &StaticService::Handle_GetClockSnapshot, "GetClockSnapshot"},
{401, &StaticService::Handle_GetClockSnapshotFromSystemClockContext, "GetClockSnapshotFromSystemClockContext"},
{500, &StaticService::Handle_CalculateStandardUserSystemClockDifferenceByUser, "CalculateStandardUserSystemClockDifferenceByUser"},
{501, &StaticService::Handle_CalculateSpanBetween, "CalculateSpanBetween"},
};
// clang-format on
RegisterHandlers(functions);
m_set_sys =
m_system.ServiceManager().GetService<Service::Set::ISystemSettingsServer>("set:sys", true);
if (m_setup_info.can_write_local_clock && m_setup_info.can_write_user_clock &&
!m_setup_info.can_write_network_clock && m_setup_info.can_write_timezone_device_location &&
!m_setup_info.can_write_steady_clock && !m_setup_info.can_write_uninitialized_clock) {
m_time_m->GetStaticServiceAsAdmin(m_wrapped_service);
} else if (!m_setup_info.can_write_local_clock && !m_setup_info.can_write_user_clock &&
!m_setup_info.can_write_network_clock &&
!m_setup_info.can_write_timezone_device_location &&
!m_setup_info.can_write_steady_clock &&
!m_setup_info.can_write_uninitialized_clock) {
m_time_m->GetStaticServiceAsUser(m_wrapped_service);
} else if (!m_setup_info.can_write_local_clock && !m_setup_info.can_write_user_clock &&
!m_setup_info.can_write_network_clock &&
!m_setup_info.can_write_timezone_device_location &&
m_setup_info.can_write_steady_clock && !m_setup_info.can_write_uninitialized_clock) {
m_time_m->GetStaticServiceAsRepair(m_wrapped_service);
} else {
UNREACHABLE();
}
auto res = m_wrapped_service->GetTimeZoneService(m_time_zone);
ASSERT(res == ResultSuccess);
}
void StaticService::Handle_GetStandardUserSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<Service::PSC::Time::SystemClock> service{};
auto res = GetStandardUserSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<Service::PSC::Time::SystemClock>(std::move(service));
}
void StaticService::Handle_GetStandardNetworkSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<Service::PSC::Time::SystemClock> service{};
auto res = GetStandardNetworkSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<Service::PSC::Time::SystemClock>(std::move(service));
}
void StaticService::Handle_GetStandardSteadyClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<Service::PSC::Time::SteadyClock> service{};
auto res = GetStandardSteadyClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface(std::move(service));
}
void StaticService::Handle_GetTimeZoneService(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<TimeZoneService> service{};
auto res = GetTimeZoneService(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface(std::move(service));
}
void StaticService::Handle_GetStandardLocalSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<Service::PSC::Time::SystemClock> service{};
auto res = GetStandardLocalSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<Service::PSC::Time::SystemClock>(std::move(service));
}
void StaticService::Handle_GetEphemeralNetworkSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<Service::PSC::Time::SystemClock> service{};
auto res = GetEphemeralNetworkSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<Service::PSC::Time::SystemClock>(std::move(service));
}
void StaticService::Handle_GetSharedMemoryNativeHandle(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KSharedMemory* shared_memory{};
auto res = GetSharedMemoryNativeHandle(&shared_memory);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(shared_memory);
}
void StaticService::Handle_SetStandardSteadyClockInternalOffset(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto offset_ns{rp.Pop<s64>()};
auto res = SetStandardSteadyClockInternalOffset(offset_ns);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_GetStandardSteadyClockRtcValue(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
s64 rtc_value{};
auto res = GetStandardSteadyClockRtcValue(rtc_value);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(rtc_value);
}
void StaticService::Handle_IsStandardUserSystemClockAutomaticCorrectionEnabled(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
bool is_enabled{};
auto res = IsStandardUserSystemClockAutomaticCorrectionEnabled(is_enabled);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push<bool>(is_enabled);
}
void StaticService::Handle_SetStandardUserSystemClockAutomaticCorrectionEnabled(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto automatic_correction{rp.Pop<bool>()};
auto res = SetStandardUserSystemClockAutomaticCorrectionEnabled(automatic_correction);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_GetStandardUserSystemClockInitialYear(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
s32 initial_year{};
auto res = GetStandardUserSystemClockInitialYear(initial_year);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(initial_year);
}
void StaticService::Handle_IsStandardNetworkSystemClockAccuracySufficient(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
bool is_sufficient{};
auto res = IsStandardNetworkSystemClockAccuracySufficient(is_sufficient);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push<bool>(is_sufficient);
}
void StaticService::Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Service::PSC::Time::SteadyClockTimePoint time_point{};
auto res = GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(time_point);
IPC::ResponseBuilder rb{ctx,
2 + sizeof(Service::PSC::Time::SteadyClockTimePoint) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<Service::PSC::Time::SteadyClockTimePoint>(time_point);
}
void StaticService::Handle_CalculateMonotonicSystemClockBaseTimePoint(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto context{rp.PopRaw<Service::PSC::Time::SystemClockContext>()};
s64 time{};
auto res = CalculateMonotonicSystemClockBaseTimePoint(time, context);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push<s64>(time);
}
void StaticService::Handle_GetClockSnapshot(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto type{rp.PopEnum<Service::PSC::Time::TimeType>()};
Service::PSC::Time::ClockSnapshot snapshot{};
auto res = GetClockSnapshot(snapshot, type);
ctx.WriteBuffer(snapshot);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_GetClockSnapshotFromSystemClockContext(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto clock_type{rp.PopEnum<Service::PSC::Time::TimeType>()};
[[maybe_unused]] auto alignment{rp.Pop<u32>()};
auto user_context{rp.PopRaw<Service::PSC::Time::SystemClockContext>()};
auto network_context{rp.PopRaw<Service::PSC::Time::SystemClockContext>()};
Service::PSC::Time::ClockSnapshot snapshot{};
auto res =
GetClockSnapshotFromSystemClockContext(snapshot, user_context, network_context, clock_type);
ctx.WriteBuffer(snapshot);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_CalculateStandardUserSystemClockDifferenceByUser(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Service::PSC::Time::ClockSnapshot a{};
Service::PSC::Time::ClockSnapshot b{};
auto a_buffer{ctx.ReadBuffer(0)};
auto b_buffer{ctx.ReadBuffer(1)};
std::memcpy(&a, a_buffer.data(), sizeof(Service::PSC::Time::ClockSnapshot));
std::memcpy(&b, b_buffer.data(), sizeof(Service::PSC::Time::ClockSnapshot));
s64 difference{};
auto res = CalculateStandardUserSystemClockDifferenceByUser(difference, a, b);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(difference);
}
void StaticService::Handle_CalculateSpanBetween(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Service::PSC::Time::ClockSnapshot a{};
Service::PSC::Time::ClockSnapshot b{};
auto a_buffer{ctx.ReadBuffer(0)};
auto b_buffer{ctx.ReadBuffer(1)};
std::memcpy(&a, a_buffer.data(), sizeof(Service::PSC::Time::ClockSnapshot));
std::memcpy(&b, b_buffer.data(), sizeof(Service::PSC::Time::ClockSnapshot));
s64 time{};
auto res = CalculateSpanBetween(time, a, b);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(time);
}
// =============================== Implementations ===========================
Result StaticService::GetStandardUserSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service) {
R_RETURN(m_wrapped_service->GetStandardUserSystemClock(out_service));
}
Result StaticService::GetStandardNetworkSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service) {
R_RETURN(m_wrapped_service->GetStandardNetworkSystemClock(out_service));
}
Result StaticService::GetStandardSteadyClock(
std::shared_ptr<Service::PSC::Time::SteadyClock>& out_service) {
R_RETURN(m_wrapped_service->GetStandardSteadyClock(out_service));
}
Result StaticService::GetTimeZoneService(std::shared_ptr<TimeZoneService>& out_service) {
out_service = std::make_shared<TimeZoneService>(m_system, m_file_timestamp_worker,
m_setup_info.can_write_timezone_device_location,
m_time_zone);
R_SUCCEED();
}
Result StaticService::GetStandardLocalSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service) {
R_RETURN(m_wrapped_service->GetStandardLocalSystemClock(out_service));
}
Result StaticService::GetEphemeralNetworkSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service) {
R_RETURN(m_wrapped_service->GetEphemeralNetworkSystemClock(out_service));
}
Result StaticService::GetSharedMemoryNativeHandle(Kernel::KSharedMemory** out_shared_memory) {
R_RETURN(m_wrapped_service->GetSharedMemoryNativeHandle(out_shared_memory));
}
Result StaticService::SetStandardSteadyClockInternalOffset(s64 offset_ns) {
R_UNLESS(m_setup_info.can_write_steady_clock, Service::PSC::Time::ResultPermissionDenied);
R_RETURN(m_set_sys->SetExternalSteadyClockInternalOffset(
offset_ns /
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(1)).count()));
}
Result StaticService::GetStandardSteadyClockRtcValue(s64& out_rtc_value) {
R_RETURN(m_standard_steady_clock_resource.GetRtcTimeInSeconds(out_rtc_value));
}
Result StaticService::IsStandardUserSystemClockAutomaticCorrectionEnabled(
bool& out_automatic_correction) {
R_RETURN(m_wrapped_service->IsStandardUserSystemClockAutomaticCorrectionEnabled(
out_automatic_correction));
}
Result StaticService::SetStandardUserSystemClockAutomaticCorrectionEnabled(
bool automatic_correction) {
R_RETURN(m_wrapped_service->SetStandardUserSystemClockAutomaticCorrectionEnabled(
automatic_correction));
}
Result StaticService::GetStandardUserSystemClockInitialYear(s32& out_year) {
out_year = GetSettingsItemValue<s32>(m_set_sys, "time", "standard_user_clock_initial_year");
R_SUCCEED();
}
Result StaticService::IsStandardNetworkSystemClockAccuracySufficient(bool& out_is_sufficient) {
R_RETURN(m_wrapped_service->IsStandardNetworkSystemClockAccuracySufficient(out_is_sufficient));
}
Result StaticService::GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
Service::PSC::Time::SteadyClockTimePoint& out_time_point) {
R_RETURN(m_wrapped_service->GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
out_time_point));
}
Result StaticService::CalculateMonotonicSystemClockBaseTimePoint(
s64& out_time, Service::PSC::Time::SystemClockContext& context) {
R_RETURN(m_wrapped_service->CalculateMonotonicSystemClockBaseTimePoint(out_time, context));
}
Result StaticService::GetClockSnapshot(Service::PSC::Time::ClockSnapshot& out_snapshot,
Service::PSC::Time::TimeType type) {
R_RETURN(m_wrapped_service->GetClockSnapshot(out_snapshot, type));
}
Result StaticService::GetClockSnapshotFromSystemClockContext(
Service::PSC::Time::ClockSnapshot& out_snapshot,
Service::PSC::Time::SystemClockContext& user_context,
Service::PSC::Time::SystemClockContext& network_context, Service::PSC::Time::TimeType type) {
R_RETURN(m_wrapped_service->GetClockSnapshotFromSystemClockContext(out_snapshot, user_context,
network_context, type));
}
Result StaticService::CalculateStandardUserSystemClockDifferenceByUser(
s64& out_time, Service::PSC::Time::ClockSnapshot& a, Service::PSC::Time::ClockSnapshot& b) {
R_RETURN(m_wrapped_service->CalculateStandardUserSystemClockDifferenceByUser(out_time, a, b));
}
Result StaticService::CalculateSpanBetween(s64& out_time, Service::PSC::Time::ClockSnapshot& a,
Service::PSC::Time::ClockSnapshot& b) {
R_RETURN(m_wrapped_service->CalculateSpanBetween(out_time, a, b));
}
} // namespace Service::Glue::Time

View File

@ -0,0 +1,110 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/common_types.h"
#include "core/hle/service/glue/time/manager.h"
#include "core/hle/service/glue/time/time_zone.h"
#include "core/hle/service/psc/time/common.h"
namespace Core {
class System;
}
namespace Service::Set {
class ISystemSettingsServer;
}
namespace Service::PSC::Time {
class StaticService;
class SystemClock;
class SteadyClock;
class TimeZoneService;
class ServiceManager;
} // namespace Service::PSC::Time
namespace Service::Glue::Time {
class FileTimestampWorker;
class StandardSteadyClockResource;
class StaticService final : public ServiceFramework<StaticService> {
public:
explicit StaticService(Core::System& system,
Service::PSC::Time::StaticServiceSetupInfo setup_info,
std::shared_ptr<TimeManager> time, const char* name);
~StaticService() override = default;
Result GetStandardUserSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service);
Result GetStandardNetworkSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service);
Result GetStandardSteadyClock(std::shared_ptr<Service::PSC::Time::SteadyClock>& out_service);
Result GetTimeZoneService(std::shared_ptr<TimeZoneService>& out_service);
Result GetStandardLocalSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service);
Result GetEphemeralNetworkSystemClock(
std::shared_ptr<Service::PSC::Time::SystemClock>& out_service);
Result GetSharedMemoryNativeHandle(Kernel::KSharedMemory** out_shared_memory);
Result SetStandardSteadyClockInternalOffset(s64 offset);
Result GetStandardSteadyClockRtcValue(s64& out_rtc_value);
Result IsStandardUserSystemClockAutomaticCorrectionEnabled(bool& out_automatic_correction);
Result SetStandardUserSystemClockAutomaticCorrectionEnabled(bool automatic_correction);
Result GetStandardUserSystemClockInitialYear(s32& out_year);
Result IsStandardNetworkSystemClockAccuracySufficient(bool& out_is_sufficient);
Result GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
Service::PSC::Time::SteadyClockTimePoint& out_time_point);
Result CalculateMonotonicSystemClockBaseTimePoint(
s64& out_time, Service::PSC::Time::SystemClockContext& context);
Result GetClockSnapshot(Service::PSC::Time::ClockSnapshot& out_snapshot,
Service::PSC::Time::TimeType type);
Result GetClockSnapshotFromSystemClockContext(
Service::PSC::Time::ClockSnapshot& out_snapshot,
Service::PSC::Time::SystemClockContext& user_context,
Service::PSC::Time::SystemClockContext& network_context, Service::PSC::Time::TimeType type);
Result CalculateStandardUserSystemClockDifferenceByUser(s64& out_time,
Service::PSC::Time::ClockSnapshot& a,
Service::PSC::Time::ClockSnapshot& b);
Result CalculateSpanBetween(s64& out_time, Service::PSC::Time::ClockSnapshot& a,
Service::PSC::Time::ClockSnapshot& b);
private:
Result GetClockSnapshotImpl(Service::PSC::Time::ClockSnapshot& out_snapshot,
Service::PSC::Time::SystemClockContext& user_context,
Service::PSC::Time::SystemClockContext& network_context,
Service::PSC::Time::TimeType type);
void Handle_GetStandardUserSystemClock(HLERequestContext& ctx);
void Handle_GetStandardNetworkSystemClock(HLERequestContext& ctx);
void Handle_GetStandardSteadyClock(HLERequestContext& ctx);
void Handle_GetTimeZoneService(HLERequestContext& ctx);
void Handle_GetStandardLocalSystemClock(HLERequestContext& ctx);
void Handle_GetEphemeralNetworkSystemClock(HLERequestContext& ctx);
void Handle_GetSharedMemoryNativeHandle(HLERequestContext& ctx);
void Handle_SetStandardSteadyClockInternalOffset(HLERequestContext& ctx);
void Handle_GetStandardSteadyClockRtcValue(HLERequestContext& ctx);
void Handle_IsStandardUserSystemClockAutomaticCorrectionEnabled(HLERequestContext& ctx);
void Handle_SetStandardUserSystemClockAutomaticCorrectionEnabled(HLERequestContext& ctx);
void Handle_GetStandardUserSystemClockInitialYear(HLERequestContext& ctx);
void Handle_IsStandardNetworkSystemClockAccuracySufficient(HLERequestContext& ctx);
void Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(HLERequestContext& ctx);
void Handle_CalculateMonotonicSystemClockBaseTimePoint(HLERequestContext& ctx);
void Handle_GetClockSnapshot(HLERequestContext& ctx);
void Handle_GetClockSnapshotFromSystemClockContext(HLERequestContext& ctx);
void Handle_CalculateStandardUserSystemClockDifferenceByUser(HLERequestContext& ctx);
void Handle_CalculateSpanBetween(HLERequestContext& ctx);
Core::System& m_system;
std::shared_ptr<Service::Set::ISystemSettingsServer> m_set_sys;
std::shared_ptr<Service::PSC::Time::ServiceManager> m_time_m;
std::shared_ptr<Service::PSC::Time::StaticService> m_wrapped_service;
Service::PSC::Time::StaticServiceSetupInfo m_setup_info;
std::shared_ptr<Service::PSC::Time::StaticService> m_time_sm;
std::shared_ptr<Service::PSC::Time::TimeZoneService> m_time_zone;
FileTimestampWorker& m_file_timestamp_worker;
StandardSteadyClockResource& m_standard_steady_clock_resource;
};
} // namespace Service::Glue::Time

View File

@ -0,0 +1,377 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <chrono>
#include "core/core.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/service/glue/time/file_timestamp_worker.h"
#include "core/hle/service/glue/time/time_zone.h"
#include "core/hle/service/glue/time/time_zone_binary.h"
#include "core/hle/service/psc/time/time_zone_service.h"
#include "core/hle/service/set/system_settings_server.h"
#include "core/hle/service/sm/sm.h"
namespace Service::Glue::Time {
namespace {
static std::mutex g_list_mutex;
static Common::IntrusiveListBaseTraits<Service::PSC::Time::OperationEvent>::ListType g_list_nodes{};
} // namespace
TimeZoneService::TimeZoneService(
Core::System& system_, FileTimestampWorker& file_timestamp_worker,
bool can_write_timezone_device_location,
std::shared_ptr<Service::PSC::Time::TimeZoneService> time_zone_service)
: ServiceFramework{system_, "ITimeZoneService"}, m_system{system},
m_can_write_timezone_device_location{can_write_timezone_device_location},
m_file_timestamp_worker{file_timestamp_worker},
m_wrapped_service{std::move(time_zone_service)}, m_operation_event{m_system} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &TimeZoneService::Handle_GetDeviceLocationName, "GetDeviceLocationName"},
{1, &TimeZoneService::Handle_SetDeviceLocationName, "SetDeviceLocationName"},
{2, &TimeZoneService::Handle_GetTotalLocationNameCount, "GetTotalLocationNameCount"},
{3, &TimeZoneService::Handle_LoadLocationNameList, "LoadLocationNameList"},
{4, &TimeZoneService::Handle_LoadTimeZoneRule, "LoadTimeZoneRule"},
{5, &TimeZoneService::Handle_GetTimeZoneRuleVersion, "GetTimeZoneRuleVersion"},
{6, &TimeZoneService::Handle_GetDeviceLocationNameAndUpdatedTime, "GetDeviceLocationNameAndUpdatedTime"},
{7, &TimeZoneService::Handle_SetDeviceLocationNameWithTimeZoneRule, "SetDeviceLocationNameWithTimeZoneRule"},
{8, &TimeZoneService::Handle_ParseTimeZoneBinary, "ParseTimeZoneBinary"},
{20, &TimeZoneService::Handle_GetDeviceLocationNameOperationEventReadableHandle, "GetDeviceLocationNameOperationEventReadableHandle"},
{100, &TimeZoneService::Handle_ToCalendarTime, "ToCalendarTime"},
{101, &TimeZoneService::Handle_ToCalendarTimeWithMyRule, "ToCalendarTimeWithMyRule"},
{201, &TimeZoneService::Handle_ToPosixTime, "ToPosixTime"},
{202, &TimeZoneService::Handle_ToPosixTimeWithMyRule, "ToPosixTimeWithMyRule"},
};
// clang-format on
RegisterHandlers(functions);
g_list_nodes.clear();
m_set_sys =
m_system.ServiceManager().GetService<Service::Set::ISystemSettingsServer>("set:sys", true);
}
TimeZoneService::~TimeZoneService() = default;
void TimeZoneService::Handle_GetDeviceLocationName(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Service::PSC::Time::LocationName name{};
auto res = GetDeviceLocationName(name);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(Service::PSC::Time::LocationName) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<Service::PSC::Time::LocationName>(name);
}
void TimeZoneService::Handle_SetDeviceLocationName(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto name{rp.PopRaw<Service::PSC::Time::LocationName>()};
auto res = SetDeviceLocation(name);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void TimeZoneService::Handle_GetTotalLocationNameCount(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
u32 count{};
auto res = GetTotalLocationNameCount(count);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
void TimeZoneService::Handle_LoadLocationNameList(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto index{rp.Pop<u32>()};
auto max_names{ctx.GetWriteBufferSize() / sizeof(Service::PSC::Time::LocationName)};
std::vector<Service::PSC::Time::LocationName> names{};
u32 count{};
auto res = LoadLocationNameList(count, names, max_names, index);
ctx.WriteBuffer(names);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
void TimeZoneService::Handle_LoadTimeZoneRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto name{rp.PopRaw<Service::PSC::Time::LocationName>()};
Tz::Rule rule{};
auto res = LoadTimeZoneRule(rule, name);
ctx.WriteBuffer(rule);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void TimeZoneService::Handle_GetTimeZoneRuleVersion(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Service::PSC::Time::RuleVersion rule_version{};
auto res = GetTimeZoneRuleVersion(rule_version);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(Service::PSC::Time::RuleVersion) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<Service::PSC::Time::RuleVersion>(rule_version);
}
void TimeZoneService::Handle_GetDeviceLocationNameAndUpdatedTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Service::PSC::Time::LocationName name{};
Service::PSC::Time::SteadyClockTimePoint time_point{};
auto res = GetDeviceLocationNameAndUpdatedTime(time_point, name);
IPC::ResponseBuilder rb{ctx,
2 + (sizeof(Service::PSC::Time::LocationName) / sizeof(u32)) +
(sizeof(Service::PSC::Time::SteadyClockTimePoint) / sizeof(u32))};
rb.Push(res);
rb.PushRaw<Service::PSC::Time::LocationName>(name);
rb.PushRaw<Service::PSC::Time::SteadyClockTimePoint>(time_point);
}
void TimeZoneService::Handle_SetDeviceLocationNameWithTimeZoneRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
auto res = SetDeviceLocationNameWithTimeZoneRule();
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void TimeZoneService::Handle_ParseTimeZoneBinary(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(Service::PSC::Time::ResultNotImplemented);
}
void TimeZoneService::Handle_GetDeviceLocationNameOperationEventReadableHandle(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetDeviceLocationNameOperationEventReadableHandle(&event);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(event->GetReadableEvent());
}
void TimeZoneService::Handle_ToCalendarTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto time{rp.Pop<s64>()};
auto rule_buffer{ctx.ReadBuffer()};
Tz::Rule rule{};
std::memcpy(&rule, rule_buffer.data(), sizeof(Tz::Rule));
Service::PSC::Time::CalendarTime calendar_time{};
Service::PSC::Time::CalendarAdditionalInfo additional_info{};
auto res = ToCalendarTime(calendar_time, additional_info, time, rule);
IPC::ResponseBuilder rb{ctx,
2 + (sizeof(Service::PSC::Time::CalendarTime) / sizeof(u32)) +
(sizeof(Service::PSC::Time::CalendarAdditionalInfo) / sizeof(u32))};
rb.Push(res);
rb.PushRaw<Service::PSC::Time::CalendarTime>(calendar_time);
rb.PushRaw<Service::PSC::Time::CalendarAdditionalInfo>(additional_info);
}
void TimeZoneService::Handle_ToCalendarTimeWithMyRule(HLERequestContext& ctx) {
IPC::RequestParser rp{ctx};
auto time{rp.Pop<s64>()};
LOG_DEBUG(Service_Time, "called. time={}", time);
Service::PSC::Time::CalendarTime calendar_time{};
Service::PSC::Time::CalendarAdditionalInfo additional_info{};
auto res = ToCalendarTimeWithMyRule(calendar_time, additional_info, time);
IPC::ResponseBuilder rb{ctx,
2 + (sizeof(Service::PSC::Time::CalendarTime) / sizeof(u32)) +
(sizeof(Service::PSC::Time::CalendarAdditionalInfo) / sizeof(u32))};
rb.Push(res);
rb.PushRaw<Service::PSC::Time::CalendarTime>(calendar_time);
rb.PushRaw<Service::PSC::Time::CalendarAdditionalInfo>(additional_info);
}
void TimeZoneService::Handle_ToPosixTime(HLERequestContext& ctx) {
IPC::RequestParser rp{ctx};
auto calendar{rp.PopRaw<Service::PSC::Time::CalendarTime>()};
LOG_DEBUG(Service_Time, "called. calendar year {} month {} day {} hour {} minute {} second {}",
calendar.year, calendar.month, calendar.day, calendar.hour, calendar.minute,
calendar.second);
auto binary{ctx.ReadBuffer()};
Tz::Rule rule{};
std::memcpy(&rule, binary.data(), sizeof(Tz::Rule));
u32 count{};
std::array<s64, 2> times{};
u32 times_count{static_cast<u32>(ctx.GetWriteBufferSize() / sizeof(s64))};
auto res = ToPosixTime(count, times, times_count, calendar, rule);
ctx.WriteBuffer(times);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
void TimeZoneService::Handle_ToPosixTimeWithMyRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto calendar{rp.PopRaw<Service::PSC::Time::CalendarTime>()};
u32 count{};
std::array<s64, 2> times{};
u32 times_count{static_cast<u32>(ctx.GetWriteBufferSize() / sizeof(s64))};
auto res = ToPosixTimeWithMyRule(count, times, times_count, calendar);
ctx.WriteBuffer(times);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
// =============================== Implementations ===========================
Result TimeZoneService::GetDeviceLocationName(Service::PSC::Time::LocationName& out_location_name) {
R_RETURN(m_wrapped_service->GetDeviceLocationName(out_location_name));
}
Result TimeZoneService::SetDeviceLocation(Service::PSC::Time::LocationName& location_name) {
R_UNLESS(m_can_write_timezone_device_location, Service::PSC::Time::ResultPermissionDenied);
R_UNLESS(IsTimeZoneBinaryValid(location_name), Service::PSC::Time::ResultTimeZoneNotFound);
std::scoped_lock l{m_mutex};
std::span<const u8> binary{};
size_t binary_size{};
R_TRY(GetTimeZoneRule(binary, binary_size, location_name))
R_TRY(m_wrapped_service->SetDeviceLocationNameWithTimeZoneRule(location_name, binary));
m_file_timestamp_worker.SetFilesystemPosixTime();
Service::PSC::Time::SteadyClockTimePoint time_point{};
Service::PSC::Time::LocationName name{};
R_TRY(m_wrapped_service->GetDeviceLocationNameAndUpdatedTime(time_point, name));
m_set_sys->SetDeviceTimeZoneLocationName(name);
m_set_sys->SetDeviceTimeZoneLocationUpdatedTime(time_point);
std::scoped_lock m{g_list_mutex};
for (auto& operation_event : g_list_nodes) {
operation_event.m_event->Signal();
}
R_SUCCEED();
}
Result TimeZoneService::GetTotalLocationNameCount(u32& out_count) {
R_RETURN(m_wrapped_service->GetTotalLocationNameCount(out_count));
}
Result TimeZoneService::LoadLocationNameList(
u32& out_count, std::vector<Service::PSC::Time::LocationName>& out_names, size_t max_names,
u32 index) {
std::scoped_lock l{m_mutex};
R_RETURN(GetTimeZoneLocationList(out_count, out_names, max_names, index));
}
Result TimeZoneService::LoadTimeZoneRule(Tz::Rule& out_rule,
Service::PSC::Time::LocationName& name) {
std::scoped_lock l{m_mutex};
std::span<const u8> binary{};
size_t binary_size{};
R_TRY(GetTimeZoneRule(binary, binary_size, name))
R_RETURN(m_wrapped_service->ParseTimeZoneBinary(out_rule, binary));
}
Result TimeZoneService::GetTimeZoneRuleVersion(Service::PSC::Time::RuleVersion& out_rule_version) {
R_RETURN(m_wrapped_service->GetTimeZoneRuleVersion(out_rule_version));
}
Result TimeZoneService::GetDeviceLocationNameAndUpdatedTime(
Service::PSC::Time::SteadyClockTimePoint& out_time_point,
Service::PSC::Time::LocationName& location_name) {
R_RETURN(m_wrapped_service->GetDeviceLocationNameAndUpdatedTime(out_time_point, location_name));
}
Result TimeZoneService::SetDeviceLocationNameWithTimeZoneRule() {
R_UNLESS(m_can_write_timezone_device_location, Service::PSC::Time::ResultPermissionDenied);
R_RETURN(Service::PSC::Time::ResultNotImplemented);
}
Result TimeZoneService::GetDeviceLocationNameOperationEventReadableHandle(
Kernel::KEvent** out_event) {
if (!operation_event_initialized) {
operation_event_initialized = false;
m_operation_event.m_ctx.CloseEvent(m_operation_event.m_event);
m_operation_event.m_event =
m_operation_event.m_ctx.CreateEvent("Psc:TimeZoneService:OperationEvent");
operation_event_initialized = true;
std::scoped_lock l{m_mutex};
g_list_nodes.push_back(m_operation_event);
}
*out_event = m_operation_event.m_event;
R_SUCCEED();
}
Result TimeZoneService::ToCalendarTime(
Service::PSC::Time::CalendarTime& out_calendar_time,
Service::PSC::Time::CalendarAdditionalInfo& out_additional_info, s64 time, Tz::Rule& rule) {
R_RETURN(m_wrapped_service->ToCalendarTime(out_calendar_time, out_additional_info, time, rule));
}
Result TimeZoneService::ToCalendarTimeWithMyRule(
Service::PSC::Time::CalendarTime& out_calendar_time,
Service::PSC::Time::CalendarAdditionalInfo& out_additional_info, s64 time) {
R_RETURN(
m_wrapped_service->ToCalendarTimeWithMyRule(out_calendar_time, out_additional_info, time));
}
Result TimeZoneService::ToPosixTime(u32& out_count, std::span<s64, 2> out_times,
u32 out_times_count,
Service::PSC::Time::CalendarTime& calendar_time,
Tz::Rule& rule) {
R_RETURN(
m_wrapped_service->ToPosixTime(out_count, out_times, out_times_count, calendar_time, rule));
}
Result TimeZoneService::ToPosixTimeWithMyRule(u32& out_count, std::span<s64, 2> out_times,
u32 out_times_count,
Service::PSC::Time::CalendarTime& calendar_time) {
R_RETURN(m_wrapped_service->ToPosixTimeWithMyRule(out_count, out_times, out_times_count,
calendar_time));
}
} // namespace Service::Glue::Time

View File

@ -0,0 +1,95 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <memory>
#include <mutex>
#include <span>
#include <vector>
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/server_manager.h"
#include "core/hle/service/service.h"
namespace Core {
class System;
}
namespace Tz {
struct Rule;
}
namespace Service::Set {
class ISystemSettingsServer;
}
namespace Service::PSC::Time {
class TimeZoneService;
}
namespace Service::Glue::Time {
class FileTimestampWorker;
class TimeZoneService final : public ServiceFramework<TimeZoneService> {
public:
explicit TimeZoneService(
Core::System& system, FileTimestampWorker& file_timestamp_worker,
bool can_write_timezone_device_location,
std::shared_ptr<Service::PSC::Time::TimeZoneService> time_zone_service);
~TimeZoneService() override;
Result GetDeviceLocationName(Service::PSC::Time::LocationName& out_location_name);
Result SetDeviceLocation(Service::PSC::Time::LocationName& location_name);
Result GetTotalLocationNameCount(u32& out_count);
Result LoadLocationNameList(u32& out_count,
std::vector<Service::PSC::Time::LocationName>& out_names,
size_t max_names, u32 index);
Result LoadTimeZoneRule(Tz::Rule& out_rule, Service::PSC::Time::LocationName& name);
Result GetTimeZoneRuleVersion(Service::PSC::Time::RuleVersion& out_rule_version);
Result GetDeviceLocationNameAndUpdatedTime(
Service::PSC::Time::SteadyClockTimePoint& out_time_point,
Service::PSC::Time::LocationName& location_name);
Result SetDeviceLocationNameWithTimeZoneRule();
Result GetDeviceLocationNameOperationEventReadableHandle(Kernel::KEvent** out_event);
Result ToCalendarTime(Service::PSC::Time::CalendarTime& out_calendar_time,
Service::PSC::Time::CalendarAdditionalInfo& out_additional_info, s64 time,
Tz::Rule& rule);
Result ToCalendarTimeWithMyRule(Service::PSC::Time::CalendarTime& out_calendar_time,
Service::PSC::Time::CalendarAdditionalInfo& out_additional_info,
s64 time);
Result ToPosixTime(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
Service::PSC::Time::CalendarTime& calendar_time, Tz::Rule& rule);
Result ToPosixTimeWithMyRule(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
Service::PSC::Time::CalendarTime& calendar_time);
private:
void Handle_GetDeviceLocationName(HLERequestContext& ctx);
void Handle_SetDeviceLocationName(HLERequestContext& ctx);
void Handle_GetTotalLocationNameCount(HLERequestContext& ctx);
void Handle_LoadLocationNameList(HLERequestContext& ctx);
void Handle_LoadTimeZoneRule(HLERequestContext& ctx);
void Handle_GetTimeZoneRuleVersion(HLERequestContext& ctx);
void Handle_GetDeviceLocationNameAndUpdatedTime(HLERequestContext& ctx);
void Handle_SetDeviceLocationNameWithTimeZoneRule(HLERequestContext& ctx);
void Handle_ParseTimeZoneBinary(HLERequestContext& ctx);
void Handle_GetDeviceLocationNameOperationEventReadableHandle(HLERequestContext& ctx);
void Handle_ToCalendarTime(HLERequestContext& ctx);
void Handle_ToCalendarTimeWithMyRule(HLERequestContext& ctx);
void Handle_ToPosixTime(HLERequestContext& ctx);
void Handle_ToPosixTimeWithMyRule(HLERequestContext& ctx);
Core::System& m_system;
std::shared_ptr<Service::Set::ISystemSettingsServer> m_set_sys;
bool m_can_write_timezone_device_location;
FileTimestampWorker& m_file_timestamp_worker;
std::shared_ptr<Service::PSC::Time::TimeZoneService> m_wrapped_service;
std::mutex m_mutex;
bool operation_event_initialized{};
Service::PSC::Time::OperationEvent m_operation_event;
};
} // namespace Service::Glue::Time

View File

@ -0,0 +1,221 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/file_sys/content_archive.h"
#include "core/file_sys/nca_metadata.h"
#include "core/file_sys/registered_cache.h"
#include "core/file_sys/romfs.h"
#include "core/file_sys/system_archive/system_archive.h"
#include "core/file_sys/vfs.h"
#include "core/hle/service/filesystem/filesystem.h"
#include "core/hle/service/glue/time/time_zone_binary.h"
namespace Service::Glue::Time {
namespace {
constexpr u64 TimeZoneBinaryId = 0x10000000000080E;
static FileSys::VirtualDir g_time_zone_binary_romfs{};
static Result g_time_zone_binary_mount_result{ResultUnknown};
static std::vector<u8> g_time_zone_scratch_space(0x2800, 0);
Result TimeZoneReadBinary(size_t& out_read_size, std::span<u8> out_buffer, size_t out_buffer_size,
std::string_view path) {
R_UNLESS(g_time_zone_binary_mount_result == ResultSuccess, g_time_zone_binary_mount_result);
auto vfs_file{g_time_zone_binary_romfs->GetFileRelative(path)};
R_UNLESS(vfs_file, ResultUnknown);
auto file_size{vfs_file->GetSize()};
R_UNLESS(file_size > 0, ResultUnknown);
R_UNLESS(file_size <= out_buffer_size, Service::PSC::Time::ResultFailed);
out_read_size = vfs_file->Read(out_buffer.data(), file_size);
R_UNLESS(out_read_size > 0, ResultUnknown);
R_SUCCEED();
}
} // namespace
void ResetTimeZoneBinary() {
g_time_zone_binary_romfs = {};
g_time_zone_binary_mount_result = ResultUnknown;
g_time_zone_scratch_space.clear();
g_time_zone_scratch_space.resize(0x2800, 0);
}
Result MountTimeZoneBinary(Core::System& system) {
ResetTimeZoneBinary();
auto& fsc{system.GetFileSystemController()};
std::unique_ptr<FileSys::NCA> nca{};
auto* bis_system = fsc.GetSystemNANDContents();
R_UNLESS(bis_system, ResultUnknown);
nca = bis_system->GetEntry(TimeZoneBinaryId, FileSys::ContentRecordType::Data);
if (nca) {
g_time_zone_binary_romfs = FileSys::ExtractRomFS(nca->GetRomFS());
}
if (g_time_zone_binary_romfs) {
// Validate that the romfs is readable, using invalid firmware keys can cause this to get
// set but the files to be garbage. In that case, we want to hit the next path and
// synthesise them instead.
Service::PSC::Time::LocationName name{"Etc/GMT"};
if (!IsTimeZoneBinaryValid(name)) {
ResetTimeZoneBinary();
}
}
if (!g_time_zone_binary_romfs) {
g_time_zone_binary_romfs = FileSys::ExtractRomFS(
FileSys::SystemArchive::SynthesizeSystemArchive(TimeZoneBinaryId));
}
R_UNLESS(g_time_zone_binary_romfs, ResultUnknown);
g_time_zone_binary_mount_result = ResultSuccess;
R_SUCCEED();
}
void GetTimeZoneBinaryListPath(std::string& out_path) {
if (g_time_zone_binary_mount_result != ResultSuccess) {
return;
}
// out_path = fmt::format("{}:/binaryList.txt", "TimeZoneBinary");
out_path = "/binaryList.txt";
}
void GetTimeZoneBinaryVersionPath(std::string& out_path) {
if (g_time_zone_binary_mount_result != ResultSuccess) {
return;
}
// out_path = fmt::format("{}:/version.txt", "TimeZoneBinary");
out_path = "/version.txt";
}
void GetTimeZoneZonePath(std::string& out_path, Service::PSC::Time::LocationName& name) {
if (g_time_zone_binary_mount_result != ResultSuccess) {
return;
}
// out_path = fmt::format("{}:/zoneinfo/{}", "TimeZoneBinary", name);
out_path = fmt::format("/zoneinfo/{}", name.name.data());
}
bool IsTimeZoneBinaryValid(Service::PSC::Time::LocationName& name) {
std::string path{};
GetTimeZoneZonePath(path, name);
auto vfs_file{g_time_zone_binary_romfs->GetFileRelative(path)};
if (!vfs_file) {
LOG_INFO(Service_Time, "Could not find timezone file {}", path);
return false;
}
return vfs_file->GetSize() != 0;
}
u32 GetTimeZoneCount() {
std::string path{};
GetTimeZoneBinaryListPath(path);
size_t bytes_read{};
if (TimeZoneReadBinary(bytes_read, g_time_zone_scratch_space, 0x2800, path) != ResultSuccess) {
return 0;
}
if (bytes_read == 0) {
return 0;
}
auto chars = std::span(reinterpret_cast<char*>(g_time_zone_scratch_space.data()), bytes_read);
u32 count{};
for (auto chr : chars) {
if (chr == '\n') {
count++;
}
}
return count;
}
Result GetTimeZoneVersion(Service::PSC::Time::RuleVersion& out_rule_version) {
std::string path{};
GetTimeZoneBinaryVersionPath(path);
auto rule_version_buffer{std::span(reinterpret_cast<u8*>(&out_rule_version),
sizeof(Service::PSC::Time::RuleVersion))};
size_t bytes_read{};
R_TRY(TimeZoneReadBinary(bytes_read, rule_version_buffer, rule_version_buffer.size_bytes(),
path));
rule_version_buffer[bytes_read] = 0;
R_SUCCEED();
}
Result GetTimeZoneRule(std::span<const u8>& out_rule, size_t& out_rule_size,
Service::PSC::Time::LocationName& name) {
std::string path{};
GetTimeZoneZonePath(path, name);
size_t bytes_read{};
R_TRY(TimeZoneReadBinary(bytes_read, g_time_zone_scratch_space,
g_time_zone_scratch_space.size(), path));
out_rule = std::span(g_time_zone_scratch_space.data(), bytes_read);
out_rule_size = bytes_read;
R_SUCCEED();
}
Result GetTimeZoneLocationList(u32& out_count,
std::vector<Service::PSC::Time::LocationName>& out_names,
size_t max_names, u32 index) {
std::string path{};
GetTimeZoneBinaryListPath(path);
size_t bytes_read{};
R_TRY(TimeZoneReadBinary(bytes_read, g_time_zone_scratch_space,
g_time_zone_scratch_space.size(), path));
out_count = 0;
R_SUCCEED_IF(bytes_read == 0);
Service::PSC::Time::LocationName current_name{};
size_t current_name_len{};
std::span<const u8> chars{g_time_zone_scratch_space};
u32 name_count{};
for (auto chr : chars) {
if (chr == '\r') {
continue;
}
if (chr == '\n') {
if (name_count >= index) {
out_names.push_back(current_name);
out_count++;
if (out_count >= max_names) {
break;
}
}
name_count++;
current_name_len = 0;
current_name = {};
continue;
}
if (chr == '\0') {
break;
}
R_UNLESS(current_name_len <= current_name.name.size() - 2,
Service::PSC::Time::ResultFailed);
current_name.name[current_name_len++] = chr;
}
R_SUCCEED();
}
} // namespace Service::Glue::Time

View File

@ -0,0 +1,32 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <span>
#include <string>
#include <string_view>
#include "core/hle/service/psc/time/common.h"
namespace Core {
class System;
}
namespace Service::Glue::Time {
void ResetTimeZoneBinary();
Result MountTimeZoneBinary(Core::System& system);
void GetTimeZoneBinaryListPath(std::string& out_path);
void GetTimeZoneBinaryVersionPath(std::string& out_path);
void GetTimeZoneZonePath(std::string& out_path, Service::PSC::Time::LocationName& name);
bool IsTimeZoneBinaryValid(Service::PSC::Time::LocationName& name);
u32 GetTimeZoneCount();
Result GetTimeZoneVersion(Service::PSC::Time::RuleVersion& out_rule_version);
Result GetTimeZoneRule(std::span<const u8>& out_rule, size_t& out_rule_size,
Service::PSC::Time::LocationName& name);
Result GetTimeZoneLocationList(u32& out_count,
std::vector<Service::PSC::Time::LocationName>& out_names,
size_t max_names, u32 index);
} // namespace Service::Glue::Time

View File

@ -0,0 +1,338 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/service/glue/time/file_timestamp_worker.h"
#include "core/hle/service/glue/time/standard_steady_clock_resource.h"
#include "core/hle/service/glue/time/worker.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/psc/time/service_manager.h"
#include "core/hle/service/psc/time/static.h"
#include "core/hle/service/psc/time/system_clock.h"
#include "core/hle/service/set/system_settings_server.h"
#include "core/hle/service/sm/sm.h"
namespace Service::Glue::Time {
namespace {
bool g_ig_report_network_clock_context_set{};
Service::PSC::Time::SystemClockContext g_report_network_clock_context{};
bool g_ig_report_ephemeral_clock_context_set{};
Service::PSC::Time::SystemClockContext g_report_ephemeral_clock_context{};
template <typename T>
T GetSettingsItemValue(std::shared_ptr<Service::Set::ISystemSettingsServer>& set_sys,
const char* category, const char* name) {
std::vector<u8> interval_buf;
auto res = set_sys->GetSettingsItemValue(interval_buf, category, name);
ASSERT(res == ResultSuccess);
T v{};
std::memcpy(&v, interval_buf.data(), sizeof(T));
return v;
}
} // namespace
TimeWorker::TimeWorker(Core::System& system, StandardSteadyClockResource& steady_clock_resource,
FileTimestampWorker& file_timestamp_worker)
: m_system{system}, m_ctx{m_system, "Glue:58"}, m_event{m_ctx.CreateEvent("Glue:58:Event")},
m_steady_clock_resource{steady_clock_resource},
m_file_timestamp_worker{file_timestamp_worker}, m_timer_steady_clock{m_ctx.CreateEvent(
"Glue:58:SteadyClockTimerEvent")},
m_timer_file_system{m_ctx.CreateEvent("Glue:58:FileTimeTimerEvent")},
m_alarm_worker{m_system, m_steady_clock_resource}, m_pm_state_change_handler{m_alarm_worker} {
g_ig_report_network_clock_context_set = false;
g_report_network_clock_context = {};
g_ig_report_ephemeral_clock_context_set = false;
g_report_ephemeral_clock_context = {};
m_timer_steady_clock_timing_event = Core::Timing::CreateEvent(
"Time::SteadyClockEvent",
[this](s64 time,
std::chrono::nanoseconds ns_late) -> std::optional<std::chrono::nanoseconds> {
m_timer_steady_clock->Signal();
return std::nullopt;
});
m_timer_file_system_timing_event = Core::Timing::CreateEvent(
"Time::SteadyClockEvent",
[this](s64 time,
std::chrono::nanoseconds ns_late) -> std::optional<std::chrono::nanoseconds> {
m_timer_file_system->Signal();
return std::nullopt;
});
}
TimeWorker::~TimeWorker() {
m_local_clock_event->Signal();
m_network_clock_event->Signal();
m_ephemeral_clock_event->Signal();
std::this_thread::sleep_for(std::chrono::milliseconds(16));
m_thread.request_stop();
m_event->Signal();
m_thread.join();
m_ctx.CloseEvent(m_event);
m_system.CoreTiming().UnscheduleEvent(m_timer_steady_clock_timing_event);
m_ctx.CloseEvent(m_timer_steady_clock);
m_system.CoreTiming().UnscheduleEvent(m_timer_file_system_timing_event);
m_ctx.CloseEvent(m_timer_file_system);
}
void TimeWorker::Initialize(std::shared_ptr<Service::PSC::Time::StaticService> time_sm,
std::shared_ptr<Service::Set::ISystemSettingsServer> set_sys) {
m_set_sys = std::move(set_sys);
m_time_m =
m_system.ServiceManager().GetService<Service::PSC::Time::ServiceManager>("time:m", true);
m_time_sm = std::move(time_sm);
m_alarm_worker.Initialize(m_time_m);
auto steady_clock_interval_m = GetSettingsItemValue<s32>(
m_set_sys, "time", "standard_steady_clock_rtc_update_interval_minutes");
auto one_minute_ns{
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::minutes(1)).count()};
s64 steady_clock_interval_ns{steady_clock_interval_m * one_minute_ns};
m_system.CoreTiming().ScheduleLoopingEvent(std::chrono::nanoseconds(0),
std::chrono::nanoseconds(steady_clock_interval_ns),
m_timer_steady_clock_timing_event);
auto fs_notify_time_s =
GetSettingsItemValue<s32>(m_set_sys, "time", "notify_time_to_fs_interval_seconds");
auto one_second_ns{
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(1)).count()};
s64 fs_notify_time_ns{fs_notify_time_s * one_second_ns};
m_system.CoreTiming().ScheduleLoopingEvent(std::chrono::nanoseconds(0),
std::chrono::nanoseconds(fs_notify_time_ns),
m_timer_file_system_timing_event);
auto res = m_time_sm->GetStandardLocalSystemClock(m_local_clock);
ASSERT(res == ResultSuccess);
res = m_time_m->GetStandardLocalClockOperationEvent(&m_local_clock_event);
ASSERT(res == ResultSuccess);
res = m_time_sm->GetStandardNetworkSystemClock(m_network_clock);
ASSERT(res == ResultSuccess);
res = m_time_m->GetStandardNetworkClockOperationEventForServiceManager(&m_network_clock_event);
ASSERT(res == ResultSuccess);
res = m_time_sm->GetEphemeralNetworkSystemClock(m_ephemeral_clock);
ASSERT(res == ResultSuccess);
res =
m_time_m->GetEphemeralNetworkClockOperationEventForServiceManager(&m_ephemeral_clock_event);
ASSERT(res == ResultSuccess);
res = m_time_m->GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent(
&m_standard_user_auto_correct_clock_event);
ASSERT(res == ResultSuccess);
}
void TimeWorker::StartThread() {
m_thread = std::jthread(std::bind_front(&TimeWorker::ThreadFunc, this));
}
void TimeWorker::ThreadFunc(std::stop_token stop_token) {
Common::SetCurrentThreadName("TimeWorker");
Common::SetCurrentThreadPriority(Common::ThreadPriority::Low);
enum class EventType {
Exit = 0,
IpmModuleService_GetEvent = 1,
PowerStateChange = 2,
SignalAlarms = 3,
UpdateLocalSystemClock = 4,
UpdateNetworkSystemClock = 5,
UpdateEphemeralSystemClock = 6,
UpdateSteadyClock = 7,
UpdateFileTimestamp = 8,
AutoCorrect = 9,
Max = 10,
};
s32 num_objs{};
std::array<Kernel::KSynchronizationObject*, static_cast<u32>(EventType::Max)> wait_objs{};
std::array<EventType, static_cast<u32>(EventType::Max)> wait_indices{};
const auto AddWaiter{
[&](Kernel::KSynchronizationObject* synchronization_object, EventType type) {
// Open a new reference to the object.
synchronization_object->Open();
// Insert into the list.
wait_indices[num_objs] = type;
wait_objs[num_objs++] = synchronization_object;
}};
while (!stop_token.stop_requested()) {
SCOPE_EXIT({
for (s32 i = 0; i < num_objs; i++) {
wait_objs[i]->Close();
}
});
num_objs = {};
wait_objs = {};
if (m_pm_state_change_handler.m_priority != 0) {
AddWaiter(&m_event->GetReadableEvent(), EventType::Exit);
// TODO
// AddWaiter(gIPmModuleService::GetEvent(), 1);
AddWaiter(&m_alarm_worker.GetEvent().GetReadableEvent(), EventType::PowerStateChange);
} else {
AddWaiter(&m_event->GetReadableEvent(), EventType::Exit);
// TODO
// AddWaiter(gIPmModuleService::GetEvent(), 1);
AddWaiter(&m_alarm_worker.GetEvent().GetReadableEvent(), EventType::PowerStateChange);
AddWaiter(&m_alarm_worker.GetTimerEvent().GetReadableEvent(), EventType::SignalAlarms);
AddWaiter(&m_local_clock_event->GetReadableEvent(), EventType::UpdateLocalSystemClock);
AddWaiter(&m_network_clock_event->GetReadableEvent(),
EventType::UpdateNetworkSystemClock);
AddWaiter(&m_ephemeral_clock_event->GetReadableEvent(),
EventType::UpdateEphemeralSystemClock);
AddWaiter(&m_timer_steady_clock->GetReadableEvent(), EventType::UpdateSteadyClock);
AddWaiter(&m_timer_file_system->GetReadableEvent(), EventType::UpdateFileTimestamp);
AddWaiter(&m_standard_user_auto_correct_clock_event->GetReadableEvent(),
EventType::AutoCorrect);
}
s32 out_index{-1};
Kernel::KSynchronizationObject::Wait(m_system.Kernel(), &out_index, wait_objs.data(),
num_objs, -1);
ASSERT(out_index >= 0 && out_index < num_objs);
if (stop_token.stop_requested()) {
return;
}
switch (wait_indices[out_index]) {
case EventType::Exit:
return;
case EventType::IpmModuleService_GetEvent:
// TODO
// IPmModuleService::GetEvent()
// clear the event
// Handle power state change event
break;
case EventType::PowerStateChange:
m_alarm_worker.GetEvent().Clear();
if (m_pm_state_change_handler.m_priority <= 1) {
m_alarm_worker.OnPowerStateChanged();
}
break;
case EventType::SignalAlarms:
m_alarm_worker.GetTimerEvent().Clear();
m_time_m->CheckAndSignalAlarms();
break;
case EventType::UpdateLocalSystemClock: {
m_local_clock_event->Clear();
Service::PSC::Time::SystemClockContext context{};
auto res = m_local_clock->GetSystemClockContext(context);
ASSERT(res == ResultSuccess);
m_set_sys->SetUserSystemClockContext(context);
m_file_timestamp_worker.SetFilesystemPosixTime();
} break;
case EventType::UpdateNetworkSystemClock: {
m_network_clock_event->Clear();
Service::PSC::Time::SystemClockContext context{};
auto res = m_network_clock->GetSystemClockContext(context);
ASSERT(res == ResultSuccess);
m_set_sys->SetNetworkSystemClockContext(context);
s64 time{};
if (m_network_clock->GetCurrentTime(time) != ResultSuccess) {
break;
}
[[maybe_unused]] auto offset_before{
g_ig_report_network_clock_context_set ? g_report_network_clock_context.offset : 0};
// TODO system report "standard_netclock_operation"
// "clock_time" = time
// "context_offset_before" = offset_before
// "context_offset_after" = context.offset
g_report_network_clock_context = context;
if (!g_ig_report_network_clock_context_set) {
g_ig_report_network_clock_context_set = true;
}
m_file_timestamp_worker.SetFilesystemPosixTime();
} break;
case EventType::UpdateEphemeralSystemClock: {
m_ephemeral_clock_event->Clear();
Service::PSC::Time::SystemClockContext context{};
auto res = m_ephemeral_clock->GetSystemClockContext(context);
if (res != ResultSuccess) {
break;
}
s64 time{};
res = m_ephemeral_clock->GetCurrentTime(time);
if (res != ResultSuccess) {
break;
}
[[maybe_unused]] auto offset_before{g_ig_report_ephemeral_clock_context_set
? g_report_ephemeral_clock_context.offset
: 0};
// TODO system report "ephemeral_netclock_operation"
// "clock_time" = time
// "context_offset_before" = offset_before
// "context_offset_after" = context.offset
g_report_ephemeral_clock_context = context;
if (!g_ig_report_ephemeral_clock_context_set) {
g_ig_report_ephemeral_clock_context_set = true;
}
} break;
case EventType::UpdateSteadyClock:
m_timer_steady_clock->Clear();
m_steady_clock_resource.UpdateTime();
m_time_m->SetStandardSteadyClockBaseTime(m_steady_clock_resource.GetTime());
break;
case EventType::UpdateFileTimestamp:
m_timer_file_system->Clear();
m_file_timestamp_worker.SetFilesystemPosixTime();
break;
case EventType::AutoCorrect: {
m_standard_user_auto_correct_clock_event->Clear();
bool automatic_correction{};
auto res = m_time_sm->IsStandardUserSystemClockAutomaticCorrectionEnabled(
automatic_correction);
ASSERT(res == ResultSuccess);
Service::PSC::Time::SteadyClockTimePoint time_point{};
res = m_time_sm->GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(time_point);
ASSERT(res == ResultSuccess);
m_set_sys->SetUserSystemClockAutomaticCorrectionEnabled(automatic_correction);
m_set_sys->SetUserSystemClockAutomaticCorrectionUpdatedTime(time_point);
} break;
default:
UNREACHABLE();
break;
}
}
}
} // namespace Service::Glue::Time

View File

@ -0,0 +1,64 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "common/common_types.h"
#include "core/hle/kernel/k_event.h"
#include "core/hle/service/glue/time/alarm_worker.h"
#include "core/hle/service/glue/time/pm_state_change_handler.h"
#include "core/hle/service/kernel_helpers.h"
namespace Service::Set {
class ISystemSettingsServer;
}
namespace Service::PSC::Time {
class StaticService;
class SystemClock;
} // namespace Service::PSC::Time
namespace Service::Glue::Time {
class FileTimestampWorker;
class StandardSteadyClockResource;
class TimeWorker {
public:
explicit TimeWorker(Core::System& system, StandardSteadyClockResource& steady_clock_resource,
FileTimestampWorker& file_timestamp_worker);
~TimeWorker();
void Initialize(std::shared_ptr<Service::PSC::Time::StaticService> time_sm,
std::shared_ptr<Service::Set::ISystemSettingsServer> set_sys);
void StartThread();
private:
void ThreadFunc(std::stop_token stop_token);
Core::System& m_system;
KernelHelpers::ServiceContext m_ctx;
std::shared_ptr<Service::Set::ISystemSettingsServer> m_set_sys;
std::jthread m_thread;
Kernel::KEvent* m_event{};
std::shared_ptr<Service::PSC::Time::ServiceManager> m_time_m;
std::shared_ptr<Service::PSC::Time::StaticService> m_time_sm;
std::shared_ptr<Service::PSC::Time::SystemClock> m_network_clock;
std::shared_ptr<Service::PSC::Time::SystemClock> m_local_clock;
std::shared_ptr<Service::PSC::Time::SystemClock> m_ephemeral_clock;
StandardSteadyClockResource& m_steady_clock_resource;
FileTimestampWorker& m_file_timestamp_worker;
Kernel::KEvent* m_local_clock_event{};
Kernel::KEvent* m_network_clock_event{};
Kernel::KEvent* m_ephemeral_clock_event{};
Kernel::KEvent* m_standard_user_auto_correct_clock_event{};
Kernel::KEvent* m_timer_steady_clock{};
std::shared_ptr<Core::Timing::EventType> m_timer_steady_clock_timing_event;
Kernel::KEvent* m_timer_file_system{};
std::shared_ptr<Core::Timing::EventType> m_timer_file_system_timing_event;
AlarmWorker m_alarm_worker;
PmStateChangeHandler m_pm_state_change_handler;
};
} // namespace Service::Glue::Time

View File

@ -65,6 +65,9 @@ Kernel::KEvent* ServiceContext::CreateEvent(std::string&& name) {
}
void ServiceContext::CloseEvent(Kernel::KEvent* event) {
if (!event) {
return;
}
event->GetReadableEvent().Close();
event->Close();
}

View File

@ -1,6 +1,8 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/hle/service/glue/time/static.h"
#include "core/hle/service/psc/time/steady_clock.h"
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4701) // Potentially uninitialized local variable 'result' used
@ -29,7 +31,8 @@
#include "core/hle/service/nfc/common/device.h"
#include "core/hle/service/nfc/mifare_result.h"
#include "core/hle/service/nfc/nfc_result.h"
#include "core/hle/service/time/time_manager.h"
#include "core/hle/service/service.h"
#include "core/hle/service/sm/sm.h"
#include "hid_core/frontend/emulated_controller.h"
#include "hid_core/hid_core.h"
#include "hid_core/hid_types.h"
@ -393,8 +396,7 @@ Result NfcDevice::WriteMifare(std::span<const MifareWriteBlockParameter> paramet
return result;
}
Result NfcDevice::SendCommandByPassThrough(const Time::Clock::TimeSpanType& timeout,
std::span<const u8> command_data,
Result NfcDevice::SendCommandByPassThrough(const s64& timeout, std::span<const u8> command_data,
std::span<u8> out_data) {
// Not implemented
return ResultSuccess;
@ -1399,27 +1401,41 @@ void NfcDevice::SetAmiiboName(NFP::AmiiboSettings& settings,
}
NFP::AmiiboDate NfcDevice::GetAmiiboDate(s64 posix_time) const {
const auto& time_zone_manager =
system.GetTimeManager().GetTimeZoneContentManager().GetTimeZoneManager();
Time::TimeZone::CalendarInfo calendar_info{};
auto static_service =
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u", true);
std::shared_ptr<Service::Glue::Time::TimeZoneService> timezone_service{};
static_service->GetTimeZoneService(timezone_service);
Service::PSC::Time::CalendarTime calendar_time{};
Service::PSC::Time::CalendarAdditionalInfo additional_info{};
NFP::AmiiboDate amiibo_date{};
amiibo_date.SetYear(2000);
amiibo_date.SetMonth(1);
amiibo_date.SetDay(1);
if (time_zone_manager.ToCalendarTime({}, posix_time, calendar_info) == ResultSuccess) {
amiibo_date.SetYear(calendar_info.time.year);
amiibo_date.SetMonth(calendar_info.time.month);
amiibo_date.SetDay(calendar_info.time.day);
if (timezone_service->ToCalendarTimeWithMyRule(calendar_time, additional_info, posix_time) ==
ResultSuccess) {
amiibo_date.SetYear(calendar_time.year);
amiibo_date.SetMonth(calendar_time.month);
amiibo_date.SetDay(calendar_time.day);
}
return amiibo_date;
}
u64 NfcDevice::GetCurrentPosixTime() const {
auto& standard_steady_clock{system.GetTimeManager().GetStandardSteadyClockCore()};
return standard_steady_clock.GetCurrentTimePoint(system).time_point;
s64 NfcDevice::GetCurrentPosixTime() const {
auto static_service =
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u", true);
std::shared_ptr<Service::PSC::Time::SteadyClock> steady_clock{};
static_service->GetStandardSteadyClock(steady_clock);
Service::PSC::Time::SteadyClockTimePoint time_point{};
R_ASSERT(steady_clock->GetCurrentTimePoint(time_point));
return time_point.time_point;
}
u64 NfcDevice::RemoveVersionByte(u64 application_id) const {

View File

@ -11,7 +11,6 @@
#include "core/hle/service/nfc/nfc_types.h"
#include "core/hle/service/nfp/nfp_types.h"
#include "core/hle/service/service.h"
#include "core/hle/service/time/clock_types.h"
namespace Kernel {
class KEvent;
@ -49,8 +48,8 @@ public:
Result WriteMifare(std::span<const MifareWriteBlockParameter> parameters);
Result SendCommandByPassThrough(const Time::Clock::TimeSpanType& timeout,
std::span<const u8> command_data, std::span<u8> out_data);
Result SendCommandByPassThrough(const s64& timeout, std::span<const u8> command_data,
std::span<u8> out_data);
Result Mount(NFP::ModelType model_type, NFP::MountTarget mount_target);
Result Unmount();
@ -108,7 +107,7 @@ private:
NFP::AmiiboName GetAmiiboName(const NFP::AmiiboSettings& settings) const;
void SetAmiiboName(NFP::AmiiboSettings& settings, const NFP::AmiiboName& amiibo_name) const;
NFP::AmiiboDate GetAmiiboDate(s64 posix_time) const;
u64 GetCurrentPosixTime() const;
s64 GetCurrentPosixTime() const;
u64 RemoveVersionByte(u64 application_id) const;
void UpdateSettingsCrc();
void UpdateRegisterInfoCrc();

View File

@ -6,12 +6,14 @@
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/k_event.h"
#include "core/hle/service/glue/time/static.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/nfc/common/device.h"
#include "core/hle/service/nfc/common/device_manager.h"
#include "core/hle/service/nfc/nfc_result.h"
#include "core/hle/service/time/clock_types.h"
#include "core/hle/service/time/time_manager.h"
#include "core/hle/service/psc/time/steady_clock.h"
#include "core/hle/service/service.h"
#include "core/hle/service/sm/sm.h"
#include "hid_core/hid_types.h"
#include "hid_core/hid_util.h"
@ -82,11 +84,19 @@ Result DeviceManager::ListDevices(std::vector<u64>& nfp_devices, std::size_t max
continue;
}
if (skip_fatal_errors) {
constexpr u64 MinimumRecoveryTime = 60;
auto& standard_steady_clock{system.GetTimeManager().GetStandardSteadyClockCore()};
const u64 elapsed_time = standard_steady_clock.GetCurrentTimePoint(system).time_point -
time_since_last_error;
constexpr s64 MinimumRecoveryTime = 60;
auto static_service =
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u",
true);
std::shared_ptr<Service::PSC::Time::SteadyClock> steady_clock{};
static_service->GetStandardSteadyClock(steady_clock);
Service::PSC::Time::SteadyClockTimePoint time_point{};
R_ASSERT(steady_clock->GetCurrentTimePoint(time_point));
const s64 elapsed_time = time_point.time_point - time_since_last_error;
if (time_since_last_error != 0 && elapsed_time < MinimumRecoveryTime) {
continue;
}
@ -250,8 +260,7 @@ Result DeviceManager::WriteMifare(u64 device_handle,
return result;
}
Result DeviceManager::SendCommandByPassThrough(u64 device_handle,
const Time::Clock::TimeSpanType& timeout,
Result DeviceManager::SendCommandByPassThrough(u64 device_handle, const s64& timeout,
std::span<const u8> command_data,
std::span<u8> out_data) {
std::scoped_lock lock{mutex};
@ -741,8 +750,16 @@ Result DeviceManager::VerifyDeviceResult(std::shared_ptr<NfcDevice> device,
if (operation_result == ResultUnknown112 || operation_result == ResultUnknown114 ||
operation_result == ResultUnknown115) {
auto& standard_steady_clock{system.GetTimeManager().GetStandardSteadyClockCore()};
time_since_last_error = standard_steady_clock.GetCurrentTimePoint(system).time_point;
auto static_service =
system.ServiceManager().GetService<Service::Glue::Time::StaticService>("time:u", true);
std::shared_ptr<Service::PSC::Time::SteadyClock> steady_clock{};
static_service->GetStandardSteadyClock(steady_clock);
Service::PSC::Time::SteadyClockTimePoint time_point{};
R_ASSERT(steady_clock->GetCurrentTimePoint(time_point));
time_since_last_error = time_point.time_point;
}
return operation_result;

View File

@ -13,7 +13,6 @@
#include "core/hle/service/nfc/nfc_types.h"
#include "core/hle/service/nfp/nfp_types.h"
#include "core/hle/service/service.h"
#include "core/hle/service/time/clock_types.h"
#include "hid_core/hid_types.h"
namespace Service::NFC {
@ -42,7 +41,7 @@ public:
std::span<MifareReadBlockData> read_data);
Result WriteMifare(u64 device_handle,
std::span<const MifareWriteBlockParameter> write_parameters);
Result SendCommandByPassThrough(u64 device_handle, const Time::Clock::TimeSpanType& timeout,
Result SendCommandByPassThrough(u64 device_handle, const s64& timeout,
std::span<const u8> command_data, std::span<u8> out_data);
// Nfp device manager
@ -92,7 +91,7 @@ private:
const std::optional<std::shared_ptr<NfcDevice>> GetNfcDevice(u64 handle) const;
bool is_initialized = false;
u64 time_since_last_error = 0;
s64 time_since_last_error = 0;
mutable std::mutex mutex;
std::array<std::shared_ptr<NfcDevice>, 10> devices{};

View File

@ -13,7 +13,6 @@
#include "core/hle/service/nfc/nfc_result.h"
#include "core/hle/service/nfc/nfc_types.h"
#include "core/hle/service/nfp/nfp_result.h"
#include "core/hle/service/time/clock_types.h"
#include "hid_core/hid_types.h"
namespace Service::NFC {
@ -261,10 +260,10 @@ void NfcInterface::WriteMifare(HLERequestContext& ctx) {
void NfcInterface::SendCommandByPassThrough(HLERequestContext& ctx) {
IPC::RequestParser rp{ctx};
const auto device_handle{rp.Pop<u64>()};
const auto timeout{rp.PopRaw<Time::Clock::TimeSpanType>()};
const auto timeout{rp.PopRaw<s64>()};
const auto command_data{ctx.ReadBuffer()};
LOG_INFO(Service_NFC, "(STUBBED) called, device_handle={}, timeout={}, data_size={}",
device_handle, timeout.ToSeconds(), command_data.size());
device_handle, timeout, command_data.size());
std::vector<u8> out_data(1);
auto result =

View File

@ -415,4 +415,4 @@ std::optional<Set::LanguageCode> ConvertToLanguageCode(const ApplicationLanguage
return std::nullopt;
}
}
} // namespace Service::NS
} // namespace Service::NS

View File

@ -5,10 +5,7 @@
#include <optional>
#include "common/common_types.h"
namespace Service::Set {
enum class LanguageCode : u64;
}
#include "core/hle/service/set/system_settings_server.h"
namespace Service::NS {
/// This is nn::ns::detail::ApplicationLanguage

View File

@ -4,9 +4,13 @@
#include <memory>
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/psc.h"
#include "core/hle/service/server_manager.h"
#include "core/hle/service/psc/time/manager.h"
#include "core/hle/service/psc/time/power_state_service.h"
#include "core/hle/service/psc/time/service_manager.h"
#include "core/hle/service/psc/time/static.h"
#include "core/hle/service/service.h"
namespace Service::PSC {
@ -76,6 +80,17 @@ void LoopProcess(Core::System& system) {
server_manager->RegisterNamedService("psc:c", std::make_shared<IPmControl>(system));
server_manager->RegisterNamedService("psc:m", std::make_shared<IPmService>(system));
auto time = std::make_shared<Time::TimeManager>(system);
server_manager->RegisterNamedService(
"time:m", std::make_shared<Time::ServiceManager>(system, time, server_manager.get()));
server_manager->RegisterNamedService(
"time:su", std::make_shared<Time::StaticService>(
system, Time::StaticServiceSetupInfo{0, 0, 0, 0, 0, 1}, time, "time:su"));
server_manager->RegisterNamedService("time:al",
std::make_shared<Time::IAlarmService>(system, time));
ServerManager::RunServer(std::move(server_manager));
}

View File

@ -0,0 +1,209 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/service/psc/time/alarms.h"
#include "core/hle/service/psc/time/manager.h"
namespace Service::PSC::Time {
Alarm::Alarm(Core::System& system, KernelHelpers::ServiceContext& ctx, AlarmType type)
: m_ctx{ctx}, m_event{ctx.CreateEvent("Psc:Alarm:Event")} {
m_event->Clear();
switch (type) {
case WakeupAlarm:
m_priority = 1;
break;
case BackgroundTaskAlarm:
m_priority = 0;
break;
default:
UNREACHABLE();
return;
}
}
Alarm::~Alarm() {
m_ctx.CloseEvent(m_event);
}
Alarms::Alarms(Core::System& system, StandardSteadyClockCore& steady_clock,
PowerStateRequestManager& power_state_request_manager)
: m_system{system}, m_ctx{system, "Psc:Alarms"}, m_steady_clock{steady_clock},
m_power_state_request_manager{power_state_request_manager}, m_event{m_ctx.CreateEvent(
"Psc:Alarms:Event")} {}
Alarms::~Alarms() {
m_ctx.CloseEvent(m_event);
}
Result Alarms::Enable(Alarm& alarm, s64 time) {
R_UNLESS(m_steady_clock.IsInitialized(), ResultClockUninitialized);
std::scoped_lock l{m_mutex};
R_UNLESS(alarm.IsLinked(), ResultAlarmNotRegistered);
auto time_ns{time + m_steady_clock.GetRawTime()};
auto one_second_ns{
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(1)).count()};
time_ns = Common::AlignUp(time_ns, one_second_ns);
alarm.SetAlertTime(time_ns);
Insert(alarm);
R_RETURN(UpdateClosestAndSignal());
}
void Alarms::Disable(Alarm& alarm) {
std::scoped_lock l{m_mutex};
if (!alarm.IsLinked()) {
return;
}
Erase(alarm);
UpdateClosestAndSignal();
}
void Alarms::CheckAndSignal() {
std::scoped_lock l{m_mutex};
if (m_alarms.empty()) {
return;
}
bool alarm_signalled{false};
for (auto& alarm : m_alarms) {
if (m_steady_clock.GetRawTime() >= alarm.GetAlertTime()) {
alarm.Signal();
alarm.Lock();
Erase(alarm);
m_power_state_request_manager.UpdatePendingPowerStateRequestPriority(
alarm.GetPriority());
alarm_signalled = true;
}
}
if (!alarm_signalled) {
return;
}
m_power_state_request_manager.SignalPowerStateRequestAvailability();
UpdateClosestAndSignal();
}
bool Alarms::GetClosestAlarm(Alarm** out_alarm) {
std::scoped_lock l{m_mutex};
auto alarm = m_alarms.empty() ? nullptr : std::addressof(m_alarms.front());
*out_alarm = alarm;
return alarm != nullptr;
}
void Alarms::Insert(Alarm& alarm) {
// Alarms are sorted by alert time, then priority
auto it{m_alarms.begin()};
while (it != m_alarms.end()) {
if (alarm.GetAlertTime() < it->GetAlertTime() ||
(alarm.GetAlertTime() == it->GetAlertTime() &&
alarm.GetPriority() < it->GetPriority())) {
m_alarms.insert(it, alarm);
return;
}
it++;
}
m_alarms.push_back(alarm);
}
void Alarms::Erase(Alarm& alarm) {
m_alarms.erase(m_alarms.iterator_to(alarm));
}
Result Alarms::UpdateClosestAndSignal() {
m_closest_alarm = m_alarms.empty() ? nullptr : std::addressof(m_alarms.front());
R_SUCCEED_IF(m_closest_alarm == nullptr);
m_event->Signal();
R_SUCCEED();
}
IAlarmService::IAlarmService(Core::System& system_, std::shared_ptr<TimeManager> manager)
: ServiceFramework{system_, "time:al"}, m_system{system}, m_alarms{manager->m_alarms} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &IAlarmService::CreateWakeupAlarm, "CreateWakeupAlarm"},
{1, &IAlarmService::CreateBackgroundTaskAlarm, "CreateBackgroundTaskAlarm"},
};
// clang-format on
RegisterHandlers(functions);
}
void IAlarmService::CreateWakeupAlarm(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(ResultSuccess);
rb.PushIpcInterface<ISteadyClockAlarm>(system, m_alarms, AlarmType::WakeupAlarm);
}
void IAlarmService::CreateBackgroundTaskAlarm(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(ResultSuccess);
rb.PushIpcInterface<ISteadyClockAlarm>(system, m_alarms, AlarmType::BackgroundTaskAlarm);
}
ISteadyClockAlarm::ISteadyClockAlarm(Core::System& system_, Alarms& alarms, AlarmType type)
: ServiceFramework{system_, "ISteadyClockAlarm"}, m_ctx{system, "Psc:ISteadyClockAlarm"},
m_alarms{alarms}, m_alarm{system, m_ctx, type} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &ISteadyClockAlarm::GetAlarmEvent, "GetAlarmEvent"},
{1, &ISteadyClockAlarm::Enable, "Enable"},
{2, &ISteadyClockAlarm::Disable, "Disable"},
{3, &ISteadyClockAlarm::IsEnabled, "IsEnabled"},
{10, nullptr, "CreateWakeLock"},
{11, nullptr, "DestroyWakeLock"},
};
// clang-format on
RegisterHandlers(functions);
}
void ISteadyClockAlarm::GetAlarmEvent(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(ResultSuccess);
rb.PushCopyObjects(m_alarm.GetEventHandle());
}
void ISteadyClockAlarm::Enable(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto time{rp.Pop<s64>()};
auto res = m_alarms.Enable(m_alarm, time);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ISteadyClockAlarm::Disable(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
m_alarms.Disable(m_alarm);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultSuccess);
}
void ISteadyClockAlarm::IsEnabled(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(ResultSuccess);
rb.Push<bool>(m_alarm.IsLinked());
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,139 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <mutex>
#include "core/hle/kernel/k_event.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/kernel_helpers.h"
#include "core/hle/service/psc/time/clocks/standard_steady_clock_core.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/psc/time/power_state_request_manager.h"
#include "core/hle/service/server_manager.h"
#include "core/hle/service/service.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
class TimeManager;
enum AlarmType : u32 {
WakeupAlarm = 0,
BackgroundTaskAlarm = 1,
};
struct Alarm : public Common::IntrusiveListBaseNode<Alarm> {
using AlarmList = Common::IntrusiveListBaseTraits<Alarm>::ListType;
Alarm(Core::System& system, KernelHelpers::ServiceContext& ctx, AlarmType type);
~Alarm();
Kernel::KReadableEvent& GetEventHandle() {
return m_event->GetReadableEvent();
}
s64 GetAlertTime() const {
return m_alert_time;
}
void SetAlertTime(s64 time) {
m_alert_time = time;
}
u32 GetPriority() const {
return m_priority;
}
void Signal() {
m_event->Signal();
}
Result Lock() {
// TODO
// if (m_lock_service) {
// return m_lock_service->Lock();
// }
R_SUCCEED();
}
KernelHelpers::ServiceContext& m_ctx;
u32 m_priority;
Kernel::KEvent* m_event{};
s64 m_alert_time{};
// TODO
// nn::psc::sf::IPmStateLock* m_lock_service{};
};
class Alarms {
public:
explicit Alarms(Core::System& system, StandardSteadyClockCore& steady_clock,
PowerStateRequestManager& power_state_request_manager);
~Alarms();
Kernel::KEvent& GetEvent() {
return *m_event;
}
s64 GetRawTime() {
return m_steady_clock.GetRawTime();
}
Result Enable(Alarm& alarm, s64 time);
void Disable(Alarm& alarm);
void CheckAndSignal();
bool GetClosestAlarm(Alarm** out_alarm);
private:
void Insert(Alarm& alarm);
void Erase(Alarm& alarm);
Result UpdateClosestAndSignal();
Core::System& m_system;
KernelHelpers::ServiceContext m_ctx;
StandardSteadyClockCore& m_steady_clock;
PowerStateRequestManager& m_power_state_request_manager;
Alarm::AlarmList m_alarms;
Kernel::KEvent* m_event{};
Alarm* m_closest_alarm{};
std::mutex m_mutex;
};
class IAlarmService final : public ServiceFramework<IAlarmService> {
public:
explicit IAlarmService(Core::System& system, std::shared_ptr<TimeManager> manager);
~IAlarmService() override = default;
private:
void CreateWakeupAlarm(HLERequestContext& ctx);
void CreateBackgroundTaskAlarm(HLERequestContext& ctx);
Core::System& m_system;
Alarms& m_alarms;
};
class ISteadyClockAlarm final : public ServiceFramework<ISteadyClockAlarm> {
public:
explicit ISteadyClockAlarm(Core::System& system, Alarms& alarms, AlarmType type);
~ISteadyClockAlarm() override = default;
private:
void GetAlarmEvent(HLERequestContext& ctx);
void Enable(HLERequestContext& ctx);
void Disable(HLERequestContext& ctx);
void IsEnabled(HLERequestContext& ctx);
KernelHelpers::ServiceContext m_ctx;
Alarms& m_alarms;
Alarm m_alarm;
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,83 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/service/psc/time/clocks/context_writers.h"
namespace Service::PSC::Time {
void ContextWriter::SignalAllNodes() {
std::scoped_lock l{m_mutex};
for (auto& operation : m_operation_events) {
operation.m_event->Signal();
}
}
void ContextWriter::Link(OperationEvent& operation_event) {
std::scoped_lock l{m_mutex};
m_operation_events.push_back(operation_event);
}
LocalSystemClockContextWriter::LocalSystemClockContextWriter(Core::System& system,
SharedMemory& shared_memory)
: m_system{system}, m_shared_memory{shared_memory} {}
Result LocalSystemClockContextWriter::Write(SystemClockContext& context) {
if (m_in_use) {
R_SUCCEED_IF(context == m_context);
m_context = context;
} else {
m_context = context;
m_in_use = true;
}
m_shared_memory.SetLocalSystemContext(context);
SignalAllNodes();
R_SUCCEED();
}
NetworkSystemClockContextWriter::NetworkSystemClockContextWriter(Core::System& system,
SharedMemory& shared_memory,
SystemClockCore& system_clock)
: m_system{system}, m_shared_memory{shared_memory}, m_system_clock{system_clock} {}
Result NetworkSystemClockContextWriter::Write(SystemClockContext& context) {
s64 time{};
[[maybe_unused]] auto res = m_system_clock.GetCurrentTime(&time);
if (m_in_use) {
R_SUCCEED_IF(context == m_context);
m_context = context;
} else {
m_context = context;
m_in_use = true;
}
m_shared_memory.SetNetworkSystemContext(context);
SignalAllNodes();
R_SUCCEED();
}
EphemeralNetworkSystemClockContextWriter::EphemeralNetworkSystemClockContextWriter(
Core::System& system)
: m_system{system} {}
Result EphemeralNetworkSystemClockContextWriter::Write(SystemClockContext& context) {
if (m_in_use) {
R_SUCCEED_IF(context == m_context);
m_context = context;
} else {
m_context = context;
m_in_use = true;
}
SignalAllNodes();
R_SUCCEED();
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,79 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <list>
#include "common/common_types.h"
#include "core/hle/kernel/k_event.h"
#include "core/hle/service/psc/time/clocks/system_clock_core.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/psc/time/shared_memory.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
class ContextWriter {
private:
using OperationEventList = Common::IntrusiveListBaseTraits<OperationEvent>::ListType;
public:
virtual ~ContextWriter() = default;
virtual Result Write(SystemClockContext& context) = 0;
void SignalAllNodes();
void Link(OperationEvent& operation_event);
private:
OperationEventList m_operation_events;
std::mutex m_mutex;
};
class LocalSystemClockContextWriter : public ContextWriter {
public:
explicit LocalSystemClockContextWriter(Core::System& system, SharedMemory& shared_memory);
Result Write(SystemClockContext& context) override;
private:
Core::System& m_system;
SharedMemory& m_shared_memory;
bool m_in_use{};
SystemClockContext m_context{};
};
class NetworkSystemClockContextWriter : public ContextWriter {
public:
explicit NetworkSystemClockContextWriter(Core::System& system, SharedMemory& shared_memory,
SystemClockCore& system_clock);
Result Write(SystemClockContext& context) override;
private:
Core::System& m_system;
SharedMemory& m_shared_memory;
bool m_in_use{};
SystemClockContext m_context{};
SystemClockCore& m_system_clock;
};
class EphemeralNetworkSystemClockContextWriter : public ContextWriter {
public:
EphemeralNetworkSystemClockContextWriter(Core::System& system);
Result Write(SystemClockContext& context) override;
private:
Core::System& m_system;
bool m_in_use{};
SystemClockContext m_context{};
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,21 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/result.h"
#include "core/hle/service/psc/time/clocks/context_writers.h"
#include "core/hle/service/psc/time/clocks/steady_clock_core.h"
#include "core/hle/service/psc/time/clocks/system_clock_core.h"
#include "core/hle/service/psc/time/common.h"
namespace Service::PSC::Time {
class EphemeralNetworkSystemClockCore : public SystemClockCore {
public:
explicit EphemeralNetworkSystemClockCore(SteadyClockCore& steady_clock)
: SystemClockCore{steady_clock} {}
~EphemeralNetworkSystemClockCore() override = default;
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,20 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/hle/service/psc/time/clocks/standard_local_system_clock_core.h"
namespace Service::PSC::Time {
void StandardLocalSystemClockCore::Initialize(SystemClockContext& context, s64 time) {
SteadyClockTimePoint time_point{};
if (GetCurrentTimePoint(time_point) == ResultSuccess &&
context.steady_time_point.IdMatches(time_point)) {
SetContextAndWrite(context);
} else if (SetCurrentTime(time) != ResultSuccess) {
LOG_ERROR(Service_Time, "Failed to SetCurrentTime");
}
SetInitialized();
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,23 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/result.h"
#include "core/hle/service/psc/time/clocks/context_writers.h"
#include "core/hle/service/psc/time/clocks/steady_clock_core.h"
#include "core/hle/service/psc/time/clocks/system_clock_core.h"
#include "core/hle/service/psc/time/common.h"
namespace Service::PSC::Time {
class StandardLocalSystemClockCore : public SystemClockCore {
public:
explicit StandardLocalSystemClockCore(SteadyClockCore& steady_clock)
: SystemClockCore{steady_clock} {}
~StandardLocalSystemClockCore() override = default;
void Initialize(SystemClockContext& context, s64 time);
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,42 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/hle/service/psc/time/clocks/standard_network_system_clock_core.h"
namespace Service::PSC::Time {
void StandardNetworkSystemClockCore::Initialize(SystemClockContext& context, s64 accuracy) {
if (SetContextAndWrite(context) != ResultSuccess) {
LOG_ERROR(Service_Time, "Failed to SetContext");
}
m_sufficient_accuracy = accuracy;
SetInitialized();
}
bool StandardNetworkSystemClockCore::IsAccuracySufficient() {
if (!IsInitialized()) {
return false;
}
SystemClockContext context{};
SteadyClockTimePoint current_time_point{};
if (GetCurrentTimePoint(current_time_point) != ResultSuccess ||
GetContext(context) != ResultSuccess) {
return false;
}
s64 seconds{};
if (GetSpanBetweenTimePoints(&seconds, context.steady_time_point, current_time_point) !=
ResultSuccess) {
return false;
}
if (std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(seconds))
.count() < m_sufficient_accuracy) {
return true;
}
return false;
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,30 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <chrono>
#include "core/hle/result.h"
#include "core/hle/service/psc/time/clocks/context_writers.h"
#include "core/hle/service/psc/time/clocks/steady_clock_core.h"
#include "core/hle/service/psc/time/clocks/system_clock_core.h"
#include "core/hle/service/psc/time/common.h"
namespace Service::PSC::Time {
class StandardNetworkSystemClockCore : public SystemClockCore {
public:
explicit StandardNetworkSystemClockCore(SteadyClockCore& steady_clock)
: SystemClockCore{steady_clock} {}
~StandardNetworkSystemClockCore() override = default;
void Initialize(SystemClockContext& context, s64 accuracy);
bool IsAccuracySufficient();
private:
s64 m_sufficient_accuracy{
std::chrono ::duration_cast<std::chrono::nanoseconds>(std::chrono::days(10)).count()};
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,101 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <chrono>
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/service/psc/time/clocks/standard_steady_clock_core.h"
namespace Service::PSC::Time {
void StandardSteadyClockCore::Initialize(ClockSourceId clock_source_id, s64 rtc_offset,
s64 internal_offset, s64 test_offset,
bool is_rtc_reset_detected) {
m_clock_source_id = clock_source_id;
m_rtc_offset = rtc_offset;
m_internal_offset = internal_offset;
m_test_offset = test_offset;
if (is_rtc_reset_detected) {
SetResetDetected();
}
SetInitialized();
}
void StandardSteadyClockCore::SetRtcOffset(s64 offset) {
m_rtc_offset = offset;
}
void StandardSteadyClockCore::SetContinuousAdjustment(ClockSourceId clock_source_id, s64 time) {
auto ticks{m_system.CoreTiming().GetClockTicks()};
m_continuous_adjustment_time_point.rtc_offset = ConvertToTimeSpan(ticks).count();
m_continuous_adjustment_time_point.diff_scale = 0;
m_continuous_adjustment_time_point.shift_amount = 0;
m_continuous_adjustment_time_point.lower = time;
m_continuous_adjustment_time_point.upper = time;
m_continuous_adjustment_time_point.clock_source_id = clock_source_id;
}
void StandardSteadyClockCore::GetContinuousAdjustment(
ContinuousAdjustmentTimePoint& out_time_point) const {
out_time_point = m_continuous_adjustment_time_point;
}
void StandardSteadyClockCore::UpdateContinuousAdjustmentTime(s64 in_time) {
auto ticks{m_system.CoreTiming().GetClockTicks()};
auto uptime_ns{ConvertToTimeSpan(ticks).count()};
auto adjusted_time{((uptime_ns - m_continuous_adjustment_time_point.rtc_offset) *
m_continuous_adjustment_time_point.diff_scale) >>
m_continuous_adjustment_time_point.shift_amount};
auto expected_time{adjusted_time + m_continuous_adjustment_time_point.lower};
auto last_time_point{m_continuous_adjustment_time_point.upper};
m_continuous_adjustment_time_point.upper = in_time;
auto t1{std::min<s64>(expected_time, last_time_point)};
expected_time = std::max<s64>(expected_time, last_time_point);
expected_time = m_continuous_adjustment_time_point.diff_scale >= 0 ? t1 : expected_time;
auto new_diff{in_time < expected_time ? -55 : 55};
m_continuous_adjustment_time_point.rtc_offset = uptime_ns;
m_continuous_adjustment_time_point.shift_amount = expected_time == in_time ? 0 : 14;
m_continuous_adjustment_time_point.diff_scale = expected_time == in_time ? 0 : new_diff;
m_continuous_adjustment_time_point.lower = expected_time;
}
Result StandardSteadyClockCore::GetCurrentTimePointImpl(SteadyClockTimePoint& out_time_point) {
auto current_time_ns = GetCurrentRawTimePointImpl();
auto current_time_s =
std::chrono::duration_cast<std::chrono::seconds>(std::chrono::nanoseconds(current_time_ns));
out_time_point.time_point = current_time_s.count();
out_time_point.clock_source_id = m_clock_source_id;
R_SUCCEED();
}
s64 StandardSteadyClockCore::GetCurrentRawTimePointImpl() {
std::scoped_lock l{m_mutex};
auto ticks{static_cast<s64>(m_system.CoreTiming().GetClockTicks())};
auto current_time_ns = m_rtc_offset + ConvertToTimeSpan(ticks).count();
auto time_point = std::max<s64>(current_time_ns, m_cached_time_point);
m_cached_time_point = time_point;
return time_point;
}
s64 StandardSteadyClockCore::GetTestOffsetImpl() const {
return m_test_offset;
}
void StandardSteadyClockCore::SetTestOffsetImpl(s64 offset) {
m_test_offset = offset;
}
s64 StandardSteadyClockCore::GetInternalOffsetImpl() const {
return m_internal_offset;
}
void StandardSteadyClockCore::SetInternalOffsetImpl(s64 offset) {
m_internal_offset = offset;
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,54 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <mutex>
#include "core/hle/service/psc/time/clocks/steady_clock_core.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
class StandardSteadyClockCore : public SteadyClockCore {
public:
explicit StandardSteadyClockCore(Core::System& system) : m_system{system} {}
~StandardSteadyClockCore() override = default;
void Initialize(ClockSourceId clock_source_id, s64 rtc_offset, s64 internal_offset,
s64 test_offset, bool is_rtc_reset_detected);
void SetRtcOffset(s64 offset);
void SetContinuousAdjustment(ClockSourceId clock_source_id, s64 time);
void GetContinuousAdjustment(ContinuousAdjustmentTimePoint& out_time_point) const;
void UpdateContinuousAdjustmentTime(s64 time);
Result GetCurrentTimePointImpl(SteadyClockTimePoint& out_time_point) override;
s64 GetCurrentRawTimePointImpl() override;
s64 GetTestOffsetImpl() const override;
void SetTestOffsetImpl(s64 offset) override;
s64 GetInternalOffsetImpl() const override;
void SetInternalOffsetImpl(s64 offset) override;
Result GetRtcValueImpl(s64& out_value) override {
R_RETURN(ResultNotImplemented);
}
Result GetSetupResultValueImpl() override {
R_SUCCEED();
}
private:
Core::System& m_system;
std::mutex m_mutex;
s64 m_test_offset{};
s64 m_internal_offset{};
ClockSourceId m_clock_source_id{};
s64 m_rtc_offset{};
s64 m_cached_time_point{};
ContinuousAdjustmentTimePoint m_continuous_adjustment_time_point{};
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,63 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/service/psc/time/clocks/standard_user_system_clock_core.h"
namespace Service::PSC::Time {
StandardUserSystemClockCore::StandardUserSystemClockCore(
Core::System& system, StandardLocalSystemClockCore& local_clock,
StandardNetworkSystemClockCore& network_clock)
: SystemClockCore{local_clock.GetSteadyClock()}, m_system{system},
m_ctx{m_system, "Psc:StandardUserSystemClockCore"}, m_local_system_clock{local_clock},
m_network_system_clock{network_clock}, m_event{m_ctx.CreateEvent(
"Psc:StandardUserSystemClockCore:Event")} {}
StandardUserSystemClockCore::~StandardUserSystemClockCore() {
m_ctx.CloseEvent(m_event);
}
Result StandardUserSystemClockCore::SetAutomaticCorrection(bool automatic_correction) {
R_SUCCEED_IF(m_automatic_correction == automatic_correction);
R_SUCCEED_IF(!m_network_system_clock.CheckClockSourceMatches());
SystemClockContext context{};
R_TRY(m_network_system_clock.GetContext(context));
R_TRY(m_local_system_clock.SetContextAndWrite(context));
m_automatic_correction = automatic_correction;
R_SUCCEED();
}
Result StandardUserSystemClockCore::GetContext(SystemClockContext& out_context) const {
if (!m_automatic_correction) {
R_RETURN(m_local_system_clock.GetContext(out_context));
}
if (!m_network_system_clock.CheckClockSourceMatches()) {
R_RETURN(m_local_system_clock.GetContext(out_context));
}
SystemClockContext context{};
R_TRY(m_network_system_clock.GetContext(context));
R_TRY(m_local_system_clock.SetContextAndWrite(context));
R_RETURN(m_local_system_clock.GetContext(out_context));
}
Result StandardUserSystemClockCore::SetContext(SystemClockContext& context) {
R_RETURN(ResultNotImplemented);
}
Result StandardUserSystemClockCore::GetTimePoint(SteadyClockTimePoint& out_time_point) {
out_time_point = m_time_point;
R_SUCCEED();
}
void StandardUserSystemClockCore::SetTimePointAndSignal(SteadyClockTimePoint& time_point) {
m_time_point = time_point;
m_event->Signal();
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,55 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/kernel/k_event.h"
#include "core/hle/result.h"
#include "core/hle/service/kernel_helpers.h"
#include "core/hle/service/psc/time/clocks/context_writers.h"
#include "core/hle/service/psc/time/clocks/standard_local_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_network_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/steady_clock_core.h"
#include "core/hle/service/psc/time/clocks/system_clock_core.h"
#include "core/hle/service/psc/time/common.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
class StandardUserSystemClockCore : public SystemClockCore {
public:
explicit StandardUserSystemClockCore(Core::System& system,
StandardLocalSystemClockCore& local_clock,
StandardNetworkSystemClockCore& network_clock);
~StandardUserSystemClockCore() override;
Kernel::KEvent& GetEvent() {
return *m_event;
}
bool GetAutomaticCorrection() const {
return m_automatic_correction;
}
Result SetAutomaticCorrection(bool automatic_correction);
Result GetContext(SystemClockContext& out_context) const override;
Result SetContext(SystemClockContext& context) override;
Result GetTimePoint(SteadyClockTimePoint& out_time_point);
void SetTimePointAndSignal(SteadyClockTimePoint& time_point);
private:
Core::System& m_system;
KernelHelpers::ServiceContext m_ctx;
bool m_automatic_correction{};
StandardLocalSystemClockCore& m_local_system_clock;
StandardNetworkSystemClockCore& m_network_system_clock;
SteadyClockTimePoint m_time_point{};
Kernel::KEvent* m_event{};
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,81 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <chrono>
#include "core/hle/result.h"
#include "core/hle/service/psc/time/common.h"
namespace Service::PSC::Time {
class SteadyClockCore {
public:
SteadyClockCore() = default;
virtual ~SteadyClockCore() = default;
void SetInitialized() {
m_initialized = true;
}
bool IsInitialized() const {
return m_initialized;
}
void SetResetDetected() {
m_reset_detected = true;
}
bool IsResetDetected() const {
return m_reset_detected;
}
Result GetCurrentTimePoint(SteadyClockTimePoint& out_time_point) {
R_TRY(GetCurrentTimePointImpl(out_time_point));
auto one_second_ns{
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(1)).count()};
out_time_point.time_point += GetTestOffsetImpl() / one_second_ns;
out_time_point.time_point += GetInternalOffsetImpl() / one_second_ns;
R_SUCCEED();
}
s64 GetTestOffset() const {
return GetTestOffsetImpl();
}
void SetTestOffset(s64 offset) {
SetTestOffsetImpl(offset);
}
s64 GetInternalOffset() const {
return GetInternalOffsetImpl();
}
s64 GetRawTime() {
return GetCurrentRawTimePointImpl() + GetTestOffsetImpl() + GetInternalOffsetImpl();
}
Result GetRtcValue(s64& out_value) {
R_RETURN(GetRtcValueImpl(out_value));
}
Result GetSetupResultValue() {
R_RETURN(GetSetupResultValueImpl());
}
private:
virtual Result GetCurrentTimePointImpl(SteadyClockTimePoint& out_time_point) = 0;
virtual s64 GetCurrentRawTimePointImpl() = 0;
virtual s64 GetTestOffsetImpl() const = 0;
virtual void SetTestOffsetImpl(s64 offset) = 0;
virtual s64 GetInternalOffsetImpl() const = 0;
virtual void SetInternalOffsetImpl(s64 offset) = 0;
virtual Result GetRtcValueImpl(s64& out_value) = 0;
virtual Result GetSetupResultValueImpl() = 0;
bool m_initialized{};
bool m_reset_detected{};
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,75 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/hle/service/psc/time/clocks/context_writers.h"
#include "core/hle/service/psc/time/clocks/system_clock_core.h"
namespace Service::PSC::Time {
bool SystemClockCore::CheckClockSourceMatches() {
SystemClockContext context{};
if (GetContext(context) != ResultSuccess) {
return false;
}
SteadyClockTimePoint time_point{};
if (m_steady_clock.GetCurrentTimePoint(time_point) != ResultSuccess) {
return false;
}
return context.steady_time_point.IdMatches(time_point);
}
Result SystemClockCore::GetCurrentTime(s64* out_time) const {
R_UNLESS(out_time != nullptr, ResultInvalidArgument);
SystemClockContext context{};
SteadyClockTimePoint time_point{};
R_TRY(m_steady_clock.GetCurrentTimePoint(time_point));
R_TRY(GetContext(context));
R_UNLESS(context.steady_time_point.IdMatches(time_point), ResultClockMismatch);
*out_time = context.offset + time_point.time_point;
R_SUCCEED();
}
Result SystemClockCore::SetCurrentTime(s64 time) {
SteadyClockTimePoint time_point{};
R_TRY(m_steady_clock.GetCurrentTimePoint(time_point));
SystemClockContext context{
.offset = time - time_point.time_point,
.steady_time_point = time_point,
};
R_RETURN(SetContextAndWrite(context));
}
Result SystemClockCore::GetContext(SystemClockContext& out_context) const {
out_context = m_context;
R_SUCCEED();
}
Result SystemClockCore::SetContext(SystemClockContext& context) {
m_context = context;
R_SUCCEED();
}
Result SystemClockCore::SetContextAndWrite(SystemClockContext& context) {
R_TRY(SetContext(context));
if (m_context_writer) {
R_RETURN(m_context_writer->Write(context));
}
R_SUCCEED();
}
void SystemClockCore::LinkOperationEvent(OperationEvent& operation_event) {
if (m_context_writer) {
m_context_writer->Link(operation_event);
}
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,55 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/result.h"
#include "core/hle/service/psc/time/clocks/steady_clock_core.h"
#include "core/hle/service/psc/time/common.h"
namespace Service::PSC::Time {
class ContextWriter;
class SystemClockCore {
public:
explicit SystemClockCore(SteadyClockCore& steady_clock) : m_steady_clock{steady_clock} {}
virtual ~SystemClockCore() = default;
SteadyClockCore& GetSteadyClock() {
return m_steady_clock;
}
bool IsInitialized() const {
return m_initialized;
}
void SetInitialized() {
m_initialized = true;
}
void SetContextWriter(ContextWriter& context_writer) {
m_context_writer = &context_writer;
}
bool CheckClockSourceMatches();
Result GetCurrentTime(s64* out_time) const;
Result SetCurrentTime(s64 time);
Result GetCurrentTimePoint(SteadyClockTimePoint& out_time_point) {
R_RETURN(m_steady_clock.GetCurrentTimePoint(out_time_point));
}
virtual Result GetContext(SystemClockContext& out_context) const;
virtual Result SetContext(SystemClockContext& context);
Result SetContextAndWrite(SystemClockContext& context);
void LinkOperationEvent(OperationEvent& operation_event);
private:
bool m_initialized{};
ContextWriter* m_context_writer{};
SteadyClockCore& m_steady_clock;
SystemClockContext m_context{};
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,43 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <chrono>
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/service/psc/time/clocks/tick_based_steady_clock_core.h"
namespace Service::PSC::Time {
Result TickBasedSteadyClockCore::GetCurrentTimePointImpl(SteadyClockTimePoint& out_time_point) {
auto ticks{m_system.CoreTiming().GetClockTicks()};
auto current_time_s =
std::chrono::duration_cast<std::chrono::seconds>(ConvertToTimeSpan(ticks)).count();
out_time_point.time_point = current_time_s;
out_time_point.clock_source_id = m_clock_source_id;
R_SUCCEED();
}
s64 TickBasedSteadyClockCore::GetCurrentRawTimePointImpl() {
SteadyClockTimePoint time_point{};
if (GetCurrentTimePointImpl(time_point) != ResultSuccess) {
LOG_ERROR(Service_Time, "Failed to GetCurrentTimePoint!");
}
return std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::seconds(time_point.time_point))
.count();
}
s64 TickBasedSteadyClockCore::GetTestOffsetImpl() const {
return 0;
}
void TickBasedSteadyClockCore::SetTestOffsetImpl(s64 offset) {}
s64 TickBasedSteadyClockCore::GetInternalOffsetImpl() const {
return 0;
}
void TickBasedSteadyClockCore::SetInternalOffsetImpl(s64 offset) {}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,41 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <mutex>
#include "common/uuid.h"
#include "core/hle/service/psc/time/clocks/steady_clock_core.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
class TickBasedSteadyClockCore : public SteadyClockCore {
public:
explicit TickBasedSteadyClockCore(Core::System& system) : m_system{system} {}
~TickBasedSteadyClockCore() override = default;
Result GetCurrentTimePointImpl(SteadyClockTimePoint& out_time_point) override;
s64 GetCurrentRawTimePointImpl() override;
s64 GetTestOffsetImpl() const override;
void SetTestOffsetImpl(s64 offset) override;
s64 GetInternalOffsetImpl() const override;
void SetInternalOffsetImpl(s64 offset) override;
Result GetRtcValueImpl(s64& out_value) override {
R_RETURN(ResultNotImplemented);
}
Result GetSetupResultValueImpl() override {
R_SUCCEED();
}
private:
Core::System& m_system;
ClockSourceId m_clock_source_id{Common::UUID::MakeRandom()};
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,16 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/service/psc/time/common.h"
namespace Service::PSC::Time {
OperationEvent::OperationEvent(Core::System& system)
: m_ctx{system, "Time:OperationEvent"}, m_event{
m_ctx.CreateEvent("Time:OperationEvent:Event")} {}
OperationEvent::~OperationEvent() {
m_ctx.CloseEvent(m_event);
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,168 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <chrono>
#include "common/common_types.h"
#include "common/intrusive_list.h"
#include "common/uuid.h"
#include "common/wall_clock.h"
#include "core/hle/kernel/k_event.h"
#include "core/hle/service/kernel_helpers.h"
#include "core/hle/service/psc/time/errors.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
using ClockSourceId = Common::UUID;
struct SteadyClockTimePoint {
constexpr bool IdMatches(SteadyClockTimePoint& other) {
return clock_source_id == other.clock_source_id;
}
bool operator==(const SteadyClockTimePoint& other) const = default;
s64 time_point;
ClockSourceId clock_source_id;
};
static_assert(sizeof(SteadyClockTimePoint) == 0x18, "SteadyClockTimePoint has the wrong size!");
static_assert(std::is_trivial_v<ClockSourceId>);
struct SystemClockContext {
bool operator==(const SystemClockContext& other) const = default;
s64 offset;
SteadyClockTimePoint steady_time_point;
};
static_assert(sizeof(SystemClockContext) == 0x20, "SystemClockContext has the wrong size!");
static_assert(std::is_trivial_v<SystemClockContext>);
enum class TimeType : u8 {
UserSystemClock,
NetworkSystemClock,
LocalSystemClock,
};
struct CalendarTime {
s16 year;
s8 month;
s8 day;
s8 hour;
s8 minute;
s8 second;
};
static_assert(sizeof(CalendarTime) == 0x8, "CalendarTime has the wrong size!");
struct CalendarAdditionalInfo {
s32 day_of_week;
s32 day_of_year;
std::array<char, 8> name;
s32 is_dst;
s32 ut_offset;
};
static_assert(sizeof(CalendarAdditionalInfo) == 0x18, "CalendarAdditionalInfo has the wrong size!");
struct LocationName {
std::array<char, 36> name;
};
static_assert(sizeof(LocationName) == 0x24, "LocationName has the wrong size!");
struct RuleVersion {
std::array<char, 16> version;
};
static_assert(sizeof(RuleVersion) == 0x10, "RuleVersion has the wrong size!");
struct ClockSnapshot {
SystemClockContext user_context;
SystemClockContext network_context;
s64 user_time;
s64 network_time;
CalendarTime user_calendar_time;
CalendarTime network_calendar_time;
CalendarAdditionalInfo user_calendar_additional_time;
CalendarAdditionalInfo network_calendar_additional_time;
SteadyClockTimePoint steady_clock_time_point;
LocationName location_name;
bool is_automatic_correction_enabled;
TimeType type;
u16 unk_CE;
};
static_assert(sizeof(ClockSnapshot) == 0xD0, "ClockSnapshot has the wrong size!");
static_assert(std::is_trivial_v<ClockSnapshot>);
struct ContinuousAdjustmentTimePoint {
s64 rtc_offset;
s64 diff_scale;
s64 shift_amount;
s64 lower;
s64 upper;
ClockSourceId clock_source_id;
};
static_assert(sizeof(ContinuousAdjustmentTimePoint) == 0x38,
"ContinuousAdjustmentTimePoint has the wrong size!");
static_assert(std::is_trivial_v<ContinuousAdjustmentTimePoint>);
struct AlarmInfo {
s64 alert_time;
u32 priority;
};
static_assert(sizeof(AlarmInfo) == 0x10, "AlarmInfo has the wrong size!");
struct StaticServiceSetupInfo {
bool can_write_local_clock;
bool can_write_user_clock;
bool can_write_network_clock;
bool can_write_timezone_device_location;
bool can_write_steady_clock;
bool can_write_uninitialized_clock;
};
static_assert(sizeof(StaticServiceSetupInfo) == 0x6, "StaticServiceSetupInfo has the wrong size!");
struct OperationEvent : public Common::IntrusiveListBaseNode<OperationEvent> {
using OperationEventList = Common::IntrusiveListBaseTraits<OperationEvent>::ListType;
OperationEvent(Core::System& system);
~OperationEvent();
KernelHelpers::ServiceContext m_ctx;
Kernel::KEvent* m_event{};
};
constexpr inline std::chrono::nanoseconds ConvertToTimeSpan(s64 ticks) {
constexpr auto one_second_ns{
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(1)).count()};
constexpr s64 max{Common::WallClock::CNTFRQ *
(std::numeric_limits<s64>::max() / one_second_ns)};
if (ticks > max) {
return std::chrono::nanoseconds(std::numeric_limits<s64>::max());
} else if (ticks < -max) {
return std::chrono::nanoseconds(std::numeric_limits<s64>::min());
}
auto a{ticks / Common::WallClock::CNTFRQ * one_second_ns};
auto b{((ticks % Common::WallClock::CNTFRQ) * one_second_ns) / Common::WallClock::CNTFRQ};
return std::chrono::nanoseconds(a + b);
}
constexpr inline Result GetSpanBetweenTimePoints(s64* out_seconds, SteadyClockTimePoint& a,
SteadyClockTimePoint& b) {
R_UNLESS(out_seconds, ResultInvalidArgument);
R_UNLESS(a.IdMatches(b), ResultInvalidArgument);
R_UNLESS(a.time_point >= 0 || b.time_point <= a.time_point + std::numeric_limits<s64>::max(),
ResultOverflow);
R_UNLESS(a.time_point < 0 || b.time_point >= a.time_point + std::numeric_limits<s64>::min(),
ResultOverflow);
*out_seconds = b.time_point - a.time_point;
R_SUCCEED();
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,24 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/result.h"
namespace Service::PSC::Time {
constexpr Result ResultPermissionDenied{ErrorModule::Time, 1};
constexpr Result ResultClockMismatch{ErrorModule::Time, 102};
constexpr Result ResultClockUninitialized{ErrorModule::Time, 103};
constexpr Result ResultTimeNotFound{ErrorModule::Time, 200};
constexpr Result ResultOverflow{ErrorModule::Time, 201};
constexpr Result ResultFailed{ErrorModule::Time, 801};
constexpr Result ResultInvalidArgument{ErrorModule::Time, 901};
constexpr Result ResultTimeZoneOutOfRange{ErrorModule::Time, 902};
constexpr Result ResultTimeZoneParseFailed{ErrorModule::Time, 903};
constexpr Result ResultRtcTimeout{ErrorModule::Time, 988};
constexpr Result ResultTimeZoneNotFound{ErrorModule::Time, 989};
constexpr Result ResultNotImplemented{ErrorModule::Time, 990};
constexpr Result ResultAlarmNotRegistered{ErrorModule::Time, 1502};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,56 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/service/psc/time/alarms.h"
#include "core/hle/service/psc/time/clocks/context_writers.h"
#include "core/hle/service/psc/time/clocks/ephemeral_network_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_local_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_network_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_steady_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_user_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/tick_based_steady_clock_core.h"
#include "core/hle/service/psc/time/power_state_request_manager.h"
#include "core/hle/service/psc/time/shared_memory.h"
#include "core/hle/service/psc/time/time_zone.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
class TimeManager {
public:
explicit TimeManager(Core::System& system)
: m_system{system}, m_standard_steady_clock{system}, m_tick_based_steady_clock{m_system},
m_standard_local_system_clock{m_standard_steady_clock},
m_standard_network_system_clock{m_standard_steady_clock},
m_standard_user_system_clock{m_system, m_standard_local_system_clock,
m_standard_network_system_clock},
m_ephemeral_network_clock{m_tick_based_steady_clock}, m_shared_memory{m_system},
m_power_state_request_manager{m_system}, m_alarms{m_system, m_standard_steady_clock,
m_power_state_request_manager},
m_local_system_clock_context_writer{m_system, m_shared_memory},
m_network_system_clock_context_writer{m_system, m_shared_memory,
m_standard_user_system_clock},
m_ephemeral_network_clock_context_writer{m_system} {}
Core::System& m_system;
StandardSteadyClockCore m_standard_steady_clock;
TickBasedSteadyClockCore m_tick_based_steady_clock;
StandardLocalSystemClockCore m_standard_local_system_clock;
StandardNetworkSystemClockCore m_standard_network_system_clock;
StandardUserSystemClockCore m_standard_user_system_clock;
EphemeralNetworkSystemClockCore m_ephemeral_network_clock;
TimeZone m_time_zone;
SharedMemory m_shared_memory;
PowerStateRequestManager m_power_state_request_manager;
Alarms m_alarms;
LocalSystemClockContextWriter m_local_system_clock_context_writer;
NetworkSystemClockContextWriter m_network_system_clock_context_writer;
EphemeralNetworkSystemClockContextWriter m_ephemeral_network_clock_context_writer;
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,50 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/service/psc/time/power_state_request_manager.h"
namespace Service::PSC::Time {
PowerStateRequestManager::PowerStateRequestManager(Core::System& system)
: m_system{system}, m_ctx{system, "Psc:PowerStateRequestManager"},
m_event{m_ctx.CreateEvent("Psc:PowerStateRequestManager:Event")} {}
PowerStateRequestManager::~PowerStateRequestManager() {
m_ctx.CloseEvent(m_event);
}
void PowerStateRequestManager::UpdatePendingPowerStateRequestPriority(u32 priority) {
std::scoped_lock l{m_mutex};
if (m_has_pending_request) {
m_pending_request_priority = std::max(m_pending_request_priority, priority);
} else {
m_pending_request_priority = priority;
m_has_pending_request = true;
}
}
void PowerStateRequestManager::SignalPowerStateRequestAvailability() {
std::scoped_lock l{m_mutex};
if (m_has_pending_request) {
if (!m_has_available_request) {
m_has_available_request = true;
}
m_has_pending_request = false;
m_available_request_priority = m_pending_request_priority;
m_event->Signal();
}
}
bool PowerStateRequestManager::GetAndClearPowerStateRequest(u32& out_priority) {
std::scoped_lock l{m_mutex};
auto had_request{m_has_available_request};
if (m_has_available_request) {
out_priority = m_available_request_priority;
m_has_available_request = false;
m_event->Clear();
}
return had_request;
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,42 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <mutex>
#include "core/hle/kernel/k_event.h"
#include "core/hle/service/kernel_helpers.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
class PowerStateRequestManager {
public:
explicit PowerStateRequestManager(Core::System& system);
~PowerStateRequestManager();
Kernel::KReadableEvent& GetReadableEvent() {
return m_event->GetReadableEvent();
}
void UpdatePendingPowerStateRequestPriority(u32 priority);
void SignalPowerStateRequestAvailability();
bool GetAndClearPowerStateRequest(u32& out_priority);
private:
Core::System& m_system;
KernelHelpers::ServiceContext m_ctx;
Kernel::KEvent* m_event{};
bool m_has_pending_request{};
u32 m_pending_request_priority{};
bool m_has_available_request{};
u32 m_available_request_priority{};
std::mutex m_mutex;
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,49 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/hle/service/psc/time/power_state_service.h"
namespace Service::PSC::Time {
IPowerStateRequestHandler::IPowerStateRequestHandler(
Core::System& system_, PowerStateRequestManager& power_state_request_manager)
: ServiceFramework{system_, "time:p"}, m_system{system}, m_power_state_request_manager{
power_state_request_manager} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &IPowerStateRequestHandler::GetPowerStateRequestEventReadableHandle, "GetPowerStateRequestEventReadableHandle"},
{1, &IPowerStateRequestHandler::GetAndClearPowerStateRequest, "GetAndClearPowerStateRequest"},
};
// clang-format on
RegisterHandlers(functions);
}
void IPowerStateRequestHandler::GetPowerStateRequestEventReadableHandle(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(ResultSuccess);
rb.PushCopyObjects(m_power_state_request_manager.GetReadableEvent());
}
void IPowerStateRequestHandler::GetAndClearPowerStateRequest(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
u32 priority{};
auto cleared = m_power_state_request_manager.GetAndClearPowerStateRequest(priority);
if (cleared) {
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(ResultSuccess);
rb.Push(priority);
rb.Push(cleared);
return;
}
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(ResultSuccess);
rb.Push(cleared);
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,32 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/power_state_request_manager.h"
#include "core/hle/service/server_manager.h"
#include "core/hle/service/service.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
class IPowerStateRequestHandler final : public ServiceFramework<IPowerStateRequestHandler> {
public:
explicit IPowerStateRequestHandler(Core::System& system,
PowerStateRequestManager& power_state_request_manager);
~IPowerStateRequestHandler() override = default;
private:
void GetPowerStateRequestEventReadableHandle(HLERequestContext& ctx);
void GetAndClearPowerStateRequest(HLERequestContext& ctx);
Core::System& m_system;
PowerStateRequestManager& m_power_state_request_manager;
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,494 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/service/psc/time/power_state_service.h"
#include "core/hle/service/psc/time/service_manager.h"
#include "core/hle/service/psc/time/static.h"
namespace Service::PSC::Time {
ServiceManager::ServiceManager(Core::System& system_, std::shared_ptr<TimeManager> time,
ServerManager* server_manager)
: ServiceFramework{system_, "time:m"}, m_system{system}, m_time{std::move(time)},
m_server_manager{*server_manager},
m_local_system_clock{m_time->m_standard_local_system_clock},
m_user_system_clock{m_time->m_standard_user_system_clock},
m_network_system_clock{m_time->m_standard_network_system_clock},
m_steady_clock{m_time->m_standard_steady_clock}, m_time_zone{m_time->m_time_zone},
m_ephemeral_network_clock{m_time->m_ephemeral_network_clock},
m_shared_memory{m_time->m_shared_memory}, m_alarms{m_time->m_alarms},
m_local_system_context_writer{m_time->m_local_system_clock_context_writer},
m_network_system_context_writer{m_time->m_network_system_clock_context_writer},
m_ephemeral_system_context_writer{m_time->m_ephemeral_network_clock_context_writer},
m_local_operation{m_system}, m_network_operation{m_system}, m_ephemeral_operation{m_system} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &ServiceManager::Handle_GetStaticServiceAsUser, "GetStaticServiceAsUser"},
{5, &ServiceManager::Handle_GetStaticServiceAsAdmin, "GetStaticServiceAsAdmin"},
{6, &ServiceManager::Handle_GetStaticServiceAsRepair, "GetStaticServiceAsRepair"},
{9, &ServiceManager::Handle_GetStaticServiceAsServiceManager, "GetStaticServiceAsServiceManager"},
{10, &ServiceManager::Handle_SetupStandardSteadyClockCore, "SetupStandardSteadyClockCore"},
{11, &ServiceManager::Handle_SetupStandardLocalSystemClockCore, "SetupStandardLocalSystemClockCore"},
{12, &ServiceManager::Handle_SetupStandardNetworkSystemClockCore, "SetupStandardNetworkSystemClockCore"},
{13, &ServiceManager::Handle_SetupStandardUserSystemClockCore, "SetupStandardUserSystemClockCore"},
{14, &ServiceManager::Handle_SetupTimeZoneServiceCore, "SetupTimeZoneServiceCore"},
{15, &ServiceManager::Handle_SetupEphemeralNetworkSystemClockCore, "SetupEphemeralNetworkSystemClockCore"},
{50, &ServiceManager::Handle_GetStandardLocalClockOperationEvent, "GetStandardLocalClockOperationEvent"},
{51, &ServiceManager::Handle_GetStandardNetworkClockOperationEventForServiceManager, "GetStandardNetworkClockOperationEventForServiceManager"},
{52, &ServiceManager::Handle_GetEphemeralNetworkClockOperationEventForServiceManager, "GetEphemeralNetworkClockOperationEventForServiceManager"},
{60, &ServiceManager::Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent, "GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent"},
{100, &ServiceManager::Handle_SetStandardSteadyClockBaseTime, "SetStandardSteadyClockBaseTime"},
{200, &ServiceManager::Handle_GetClosestAlarmUpdatedEvent, "GetClosestAlarmUpdatedEvent"},
{201, &ServiceManager::Handle_CheckAndSignalAlarms, "CheckAndSignalAlarms"},
{202, &ServiceManager::Handle_GetClosestAlarmInfo, "GetClosestAlarmInfo "},
};
// clang-format on
RegisterHandlers(functions);
m_local_system_context_writer.Link(m_local_operation);
m_network_system_context_writer.Link(m_network_operation);
m_ephemeral_system_context_writer.Link(m_ephemeral_operation);
}
void ServiceManager::SetupSAndP() {
if (!m_is_s_and_p_setup) {
m_is_s_and_p_setup = true;
m_server_manager.RegisterNamedService(
"time:s", std::make_shared<StaticService>(
m_system, StaticServiceSetupInfo{0, 0, 1, 0, 0, 0}, m_time, "time:s"));
m_server_manager.RegisterNamedService("time:p",
std::make_shared<IPowerStateRequestHandler>(
m_system, m_time->m_power_state_request_manager));
}
}
void ServiceManager::CheckAndSetupServicesSAndP() {
if (m_local_system_clock.IsInitialized() && m_user_system_clock.IsInitialized() &&
m_network_system_clock.IsInitialized() && m_steady_clock.IsInitialized() &&
m_time_zone.IsInitialized() && m_ephemeral_network_clock.IsInitialized()) {
SetupSAndP();
}
}
void ServiceManager::Handle_GetStaticServiceAsUser(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<StaticService> service{};
auto res = GetStaticServiceAsUser(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<StaticService>(std::move(service));
}
void ServiceManager::Handle_GetStaticServiceAsAdmin(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<StaticService> service{};
auto res = GetStaticServiceAsAdmin(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<StaticService>(std::move(service));
}
void ServiceManager::Handle_GetStaticServiceAsRepair(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<StaticService> service{};
auto res = GetStaticServiceAsRepair(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<StaticService>(std::move(service));
}
void ServiceManager::Handle_GetStaticServiceAsServiceManager(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<StaticService> service{};
auto res = GetStaticServiceAsServiceManager(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<StaticService>(std::move(service));
}
void ServiceManager::Handle_SetupStandardSteadyClockCore(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
struct Parameters {
bool reset_detected;
Common::UUID clock_source_id;
s64 rtc_offset;
s64 internal_offset;
s64 test_offset;
};
static_assert(sizeof(Parameters) == 0x30);
IPC::RequestParser rp{ctx};
auto params{rp.PopRaw<Parameters>()};
auto res = SetupStandardSteadyClockCore(params.clock_source_id, params.rtc_offset,
params.internal_offset, params.test_offset,
params.reset_detected);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_SetupStandardLocalSystemClockCore(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto context{rp.PopRaw<SystemClockContext>()};
auto time{rp.Pop<s64>()};
auto res = SetupStandardLocalSystemClockCore(context, time);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_SetupStandardNetworkSystemClockCore(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto context{rp.PopRaw<SystemClockContext>()};
auto accuracy{rp.Pop<s64>()};
auto res = SetupStandardNetworkSystemClockCore(context, accuracy);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_SetupStandardUserSystemClockCore(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
struct Parameters {
bool automatic_correction;
SteadyClockTimePoint time_point;
};
static_assert(sizeof(Parameters) == 0x20);
IPC::RequestParser rp{ctx};
auto params{rp.PopRaw<Parameters>()};
auto res = SetupStandardUserSystemClockCore(params.time_point, params.automatic_correction);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_SetupTimeZoneServiceCore(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
struct Parameters {
u32 location_count;
LocationName name;
SteadyClockTimePoint time_point;
RuleVersion rule_version;
};
static_assert(sizeof(Parameters) == 0x50);
IPC::RequestParser rp{ctx};
auto params{rp.PopRaw<Parameters>()};
auto rule_buffer{ctx.ReadBuffer()};
auto res = SetupTimeZoneServiceCore(params.name, params.time_point, params.rule_version,
params.location_count, rule_buffer);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_SetupEphemeralNetworkSystemClockCore(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
auto res = SetupEphemeralNetworkSystemClockCore();
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_GetStandardLocalClockOperationEvent(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetStandardLocalClockOperationEvent(&event);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(event->GetReadableEvent());
}
void ServiceManager::Handle_GetStandardNetworkClockOperationEventForServiceManager(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetStandardNetworkClockOperationEventForServiceManager(&event);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(event);
}
void ServiceManager::Handle_GetEphemeralNetworkClockOperationEventForServiceManager(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetEphemeralNetworkClockOperationEventForServiceManager(&event);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(event);
}
void ServiceManager::Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent(&event);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(event);
}
void ServiceManager::Handle_SetStandardSteadyClockBaseTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto base_time{rp.Pop<s64>()};
auto res = SetStandardSteadyClockBaseTime(base_time);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_GetClosestAlarmUpdatedEvent(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetClosestAlarmUpdatedEvent(&event);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.PushCopyObjects(event->GetReadableEvent());
}
void ServiceManager::Handle_CheckAndSignalAlarms(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
auto res = CheckAndSignalAlarms();
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void ServiceManager::Handle_GetClosestAlarmInfo(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
AlarmInfo alarm_info{};
bool is_valid{};
s64 time{};
auto res = GetClosestAlarmInfo(is_valid, alarm_info, time);
struct OutParameters {
bool is_valid;
AlarmInfo alarm_info;
s64 time;
};
static_assert(sizeof(OutParameters) == 0x20);
OutParameters out_params{
.is_valid = is_valid,
.alarm_info = alarm_info,
.time = time,
};
IPC::ResponseBuilder rb{ctx, 2 + sizeof(OutParameters) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<OutParameters>(out_params);
}
// =============================== Implementations ===========================
Result ServiceManager::GetStaticService(std::shared_ptr<StaticService>& out_service,
StaticServiceSetupInfo setup_info, const char* name) {
out_service = std::make_shared<StaticService>(m_system, setup_info, m_time, name);
R_SUCCEED();
}
Result ServiceManager::GetStaticServiceAsUser(std::shared_ptr<StaticService>& out_service) {
R_RETURN(GetStaticService(out_service, StaticServiceSetupInfo{0, 0, 0, 0, 0, 0}, "time:u"));
}
Result ServiceManager::GetStaticServiceAsAdmin(std::shared_ptr<StaticService>& out_service) {
R_RETURN(GetStaticService(out_service, StaticServiceSetupInfo{1, 1, 0, 1, 0, 0}, "time:a"));
}
Result ServiceManager::GetStaticServiceAsRepair(std::shared_ptr<StaticService>& out_service) {
R_RETURN(GetStaticService(out_service, StaticServiceSetupInfo{0, 0, 0, 0, 1, 0}, "time:r"));
}
Result ServiceManager::GetStaticServiceAsServiceManager(
std::shared_ptr<StaticService>& out_service) {
R_RETURN(GetStaticService(out_service, StaticServiceSetupInfo{1, 1, 1, 1, 1, 0}, "time:sm"));
}
Result ServiceManager::SetupStandardSteadyClockCore(Common::UUID& clock_source_id, s64 rtc_offset,
s64 internal_offset, s64 test_offset,
bool is_rtc_reset_detected) {
m_steady_clock.Initialize(clock_source_id, rtc_offset, internal_offset, test_offset,
is_rtc_reset_detected);
auto time = m_steady_clock.GetRawTime();
auto ticks = m_system.CoreTiming().GetClockTicks();
auto boot_time = time - ConvertToTimeSpan(ticks).count();
m_shared_memory.SetSteadyClockTimePoint(clock_source_id, boot_time);
m_steady_clock.SetContinuousAdjustment(clock_source_id, boot_time);
ContinuousAdjustmentTimePoint time_point{};
m_steady_clock.GetContinuousAdjustment(time_point);
m_shared_memory.SetContinuousAdjustment(time_point);
CheckAndSetupServicesSAndP();
R_SUCCEED();
}
Result ServiceManager::SetupStandardLocalSystemClockCore(SystemClockContext& context, s64 time) {
m_local_system_clock.SetContextWriter(m_local_system_context_writer);
m_local_system_clock.Initialize(context, time);
CheckAndSetupServicesSAndP();
R_SUCCEED();
}
Result ServiceManager::SetupStandardNetworkSystemClockCore(SystemClockContext& context,
s64 accuracy) {
// TODO this is a hack! The network clock should be updated independently, from the ntc service
// and maybe elsewhere. We do not do that, so fix the clock to the local clock on first boot
// to avoid it being stuck at 0.
if (context == Service::PSC::Time::SystemClockContext{}) {
m_local_system_clock.GetContext(context);
}
m_network_system_clock.SetContextWriter(m_network_system_context_writer);
m_network_system_clock.Initialize(context, accuracy);
CheckAndSetupServicesSAndP();
R_SUCCEED();
}
Result ServiceManager::SetupStandardUserSystemClockCore(SteadyClockTimePoint& time_point,
bool automatic_correction) {
// TODO this is a hack! The user clock should be updated independently, from the ntc service
// and maybe elsewhere. We do not do that, so fix the clock to the local clock on first boot
// to avoid it being stuck at 0.
if (time_point == Service::PSC::Time::SteadyClockTimePoint{}) {
m_local_system_clock.GetCurrentTimePoint(time_point);
}
m_user_system_clock.SetAutomaticCorrection(automatic_correction);
m_user_system_clock.SetTimePointAndSignal(time_point);
m_user_system_clock.SetInitialized();
m_shared_memory.SetAutomaticCorrection(automatic_correction);
CheckAndSetupServicesSAndP();
R_SUCCEED();
}
Result ServiceManager::SetupTimeZoneServiceCore(LocationName& name,
SteadyClockTimePoint& time_point,
RuleVersion& rule_version, u32 location_count,
std::span<const u8> rule_buffer) {
if (m_time_zone.ParseBinary(name, rule_buffer) != ResultSuccess) {
LOG_ERROR(Service_Time, "Failed to parse time zone binary!");
}
m_time_zone.SetTimePoint(time_point);
m_time_zone.SetTotalLocationNameCount(location_count);
m_time_zone.SetRuleVersion(rule_version);
m_time_zone.SetInitialized();
CheckAndSetupServicesSAndP();
R_SUCCEED();
}
Result ServiceManager::SetupEphemeralNetworkSystemClockCore() {
m_ephemeral_network_clock.SetContextWriter(m_ephemeral_system_context_writer);
m_ephemeral_network_clock.SetInitialized();
CheckAndSetupServicesSAndP();
R_SUCCEED();
}
Result ServiceManager::GetStandardLocalClockOperationEvent(Kernel::KEvent** out_event) {
*out_event = m_local_operation.m_event;
R_SUCCEED();
}
Result ServiceManager::GetStandardNetworkClockOperationEventForServiceManager(
Kernel::KEvent** out_event) {
*out_event = m_network_operation.m_event;
R_SUCCEED();
}
Result ServiceManager::GetEphemeralNetworkClockOperationEventForServiceManager(
Kernel::KEvent** out_event) {
*out_event = m_ephemeral_operation.m_event;
R_SUCCEED();
}
Result ServiceManager::GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent(
Kernel::KEvent** out_event) {
*out_event = &m_user_system_clock.GetEvent();
R_SUCCEED();
}
Result ServiceManager::SetStandardSteadyClockBaseTime(s64 base_time) {
m_steady_clock.SetRtcOffset(base_time);
auto time = m_steady_clock.GetRawTime();
auto ticks = m_system.CoreTiming().GetClockTicks();
auto diff = time - ConvertToTimeSpan(ticks).count();
m_shared_memory.UpdateBaseTime(diff);
m_steady_clock.UpdateContinuousAdjustmentTime(diff);
ContinuousAdjustmentTimePoint time_point{};
m_steady_clock.GetContinuousAdjustment(time_point);
m_shared_memory.SetContinuousAdjustment(time_point);
R_SUCCEED();
}
Result ServiceManager::GetClosestAlarmUpdatedEvent(Kernel::KEvent** out_event) {
*out_event = &m_alarms.GetEvent();
R_SUCCEED();
}
Result ServiceManager::CheckAndSignalAlarms() {
m_alarms.CheckAndSignal();
R_SUCCEED();
}
Result ServiceManager::GetClosestAlarmInfo(bool& out_is_valid, AlarmInfo& out_info, s64& out_time) {
Alarm* alarm{nullptr};
out_is_valid = m_alarms.GetClosestAlarm(&alarm);
if (out_is_valid) {
out_info = {
.alert_time = alarm->GetAlertTime(),
.priority = alarm->GetPriority(),
};
out_time = m_alarms.GetRawTime();
}
R_SUCCEED();
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,101 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <list>
#include <memory>
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/psc/time/manager.h"
#include "core/hle/service/server_manager.h"
#include "core/hle/service/service.h"
namespace Core {
class System;
}
namespace Kernel {
class KReadableEvent;
}
namespace Service::PSC::Time {
class StaticService;
class ServiceManager final : public ServiceFramework<ServiceManager> {
public:
explicit ServiceManager(Core::System& system, std::shared_ptr<TimeManager> time,
ServerManager* server_manager);
~ServiceManager() override = default;
Result GetStaticServiceAsUser(std::shared_ptr<StaticService>& out_service);
Result GetStaticServiceAsAdmin(std::shared_ptr<StaticService>& out_service);
Result GetStaticServiceAsRepair(std::shared_ptr<StaticService>& out_service);
Result GetStaticServiceAsServiceManager(std::shared_ptr<StaticService>& out_service);
Result SetupStandardSteadyClockCore(Common::UUID& clock_source_id, s64 rtc_offset,
s64 internal_offset, s64 test_offset,
bool is_rtc_reset_detected);
Result SetupStandardLocalSystemClockCore(SystemClockContext& context, s64 time);
Result SetupStandardNetworkSystemClockCore(SystemClockContext& context, s64 accuracy);
Result SetupStandardUserSystemClockCore(SteadyClockTimePoint& time_point,
bool automatic_correction);
Result SetupTimeZoneServiceCore(LocationName& name, SteadyClockTimePoint& time_point,
RuleVersion& rule_version, u32 location_count,
std::span<const u8> rule_buffer);
Result SetupEphemeralNetworkSystemClockCore();
Result GetStandardLocalClockOperationEvent(Kernel::KEvent** out_event);
Result GetStandardNetworkClockOperationEventForServiceManager(Kernel::KEvent** out_event);
Result GetEphemeralNetworkClockOperationEventForServiceManager(Kernel::KEvent** out_event);
Result GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent(Kernel::KEvent** out_event);
Result SetStandardSteadyClockBaseTime(s64 base_time);
Result GetClosestAlarmUpdatedEvent(Kernel::KEvent** out_event);
Result CheckAndSignalAlarms();
Result GetClosestAlarmInfo(bool& out_is_valid, AlarmInfo& out_info, s64& out_time);
private:
void CheckAndSetupServicesSAndP();
void SetupSAndP();
Result GetStaticService(std::shared_ptr<StaticService>& out_service,
StaticServiceSetupInfo setup_info, const char* name);
void Handle_GetStaticServiceAsUser(HLERequestContext& ctx);
void Handle_GetStaticServiceAsAdmin(HLERequestContext& ctx);
void Handle_GetStaticServiceAsRepair(HLERequestContext& ctx);
void Handle_GetStaticServiceAsServiceManager(HLERequestContext& ctx);
void Handle_SetupStandardSteadyClockCore(HLERequestContext& ctx);
void Handle_SetupStandardLocalSystemClockCore(HLERequestContext& ctx);
void Handle_SetupStandardNetworkSystemClockCore(HLERequestContext& ctx);
void Handle_SetupStandardUserSystemClockCore(HLERequestContext& ctx);
void Handle_SetupTimeZoneServiceCore(HLERequestContext& ctx);
void Handle_SetupEphemeralNetworkSystemClockCore(HLERequestContext& ctx);
void Handle_GetStandardLocalClockOperationEvent(HLERequestContext& ctx);
void Handle_GetStandardNetworkClockOperationEventForServiceManager(HLERequestContext& ctx);
void Handle_GetEphemeralNetworkClockOperationEventForServiceManager(HLERequestContext& ctx);
void Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedEvent(HLERequestContext& ctx);
void Handle_SetStandardSteadyClockBaseTime(HLERequestContext& ctx);
void Handle_GetClosestAlarmUpdatedEvent(HLERequestContext& ctx);
void Handle_CheckAndSignalAlarms(HLERequestContext& ctx);
void Handle_GetClosestAlarmInfo(HLERequestContext& ctx);
Core::System& m_system;
std::shared_ptr<TimeManager> m_time;
ServerManager& m_server_manager;
bool m_is_s_and_p_setup{};
StandardLocalSystemClockCore& m_local_system_clock;
StandardUserSystemClockCore& m_user_system_clock;
StandardNetworkSystemClockCore& m_network_system_clock;
StandardSteadyClockCore& m_steady_clock;
TimeZone& m_time_zone;
EphemeralNetworkSystemClockCore& m_ephemeral_network_clock;
SharedMemory& m_shared_memory;
Alarms& m_alarms;
LocalSystemClockContextWriter& m_local_system_context_writer;
NetworkSystemClockContextWriter& m_network_system_context_writer;
EphemeralNetworkSystemClockContextWriter& m_ephemeral_system_context_writer;
OperationEvent m_local_operation;
OperationEvent m_network_operation;
OperationEvent m_ephemeral_operation;
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,84 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/kernel/k_shared_memory.h"
#include "core/hle/service/psc/time/shared_memory.h"
namespace Service::PSC::Time {
namespace {
template <typename T>
constexpr inline T ReadFromLockFreeAtomicType(const LockFreeAtomicType<T>* p) {
while (true) {
// Get the counter.
auto counter = p->m_counter;
// Get the value.
auto value = p->m_value[counter % 2];
// Fence memory.
std::atomic_thread_fence(std::memory_order_acquire);
// Check that the counter matches.
if (counter == p->m_counter) {
return value;
}
}
}
template <typename T>
constexpr inline void WriteToLockFreeAtomicType(LockFreeAtomicType<T>* p, const T& value) {
// Get the current counter.
auto counter = p->m_counter;
// Increment the counter.
++counter;
// Store the updated value.
p->m_value[counter % 2] = value;
// Fence memory.
std::atomic_thread_fence(std::memory_order_release);
// Set the updated counter.
p->m_counter = counter;
}
} // namespace
SharedMemory::SharedMemory(Core::System& system)
: m_system{system}, m_k_shared_memory{m_system.Kernel().GetTimeSharedMem()},
m_shared_memory_ptr{reinterpret_cast<SharedMemoryStruct*>(m_k_shared_memory.GetPointer())} {
std::memset(m_shared_memory_ptr, 0, sizeof(*m_shared_memory_ptr));
}
void SharedMemory::SetLocalSystemContext(SystemClockContext& context) {
WriteToLockFreeAtomicType(&m_shared_memory_ptr->local_system_clock_contexts, context);
}
void SharedMemory::SetNetworkSystemContext(SystemClockContext& context) {
WriteToLockFreeAtomicType(&m_shared_memory_ptr->network_system_clock_contexts, context);
}
void SharedMemory::SetSteadyClockTimePoint(ClockSourceId clock_source_id, s64 time_point) {
WriteToLockFreeAtomicType(&m_shared_memory_ptr->steady_time_points,
{time_point, clock_source_id});
}
void SharedMemory::SetContinuousAdjustment(ContinuousAdjustmentTimePoint& time_point) {
WriteToLockFreeAtomicType(&m_shared_memory_ptr->continuous_adjustment_time_points, time_point);
}
void SharedMemory::SetAutomaticCorrection(bool automatic_correction) {
WriteToLockFreeAtomicType(&m_shared_memory_ptr->automatic_corrections, automatic_correction);
}
void SharedMemory::UpdateBaseTime(s64 time) {
SteadyClockTimePoint time_point{
ReadFromLockFreeAtomicType(&m_shared_memory_ptr->steady_time_points)};
time_point.time_point = time;
WriteToLockFreeAtomicType(&m_shared_memory_ptr->steady_time_points, time_point);
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,70 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include "common/common_types.h"
#include "core/hle/service/psc/time/common.h"
namespace Core {
class System;
}
namespace Kernel {
class KSharedMemory;
}
namespace Service::PSC::Time {
template <typename T>
struct LockFreeAtomicType {
u32 m_counter;
std::array<T, 2> m_value;
};
struct SharedMemoryStruct {
LockFreeAtomicType<SteadyClockTimePoint> steady_time_points;
LockFreeAtomicType<SystemClockContext> local_system_clock_contexts;
LockFreeAtomicType<SystemClockContext> network_system_clock_contexts;
LockFreeAtomicType<bool> automatic_corrections;
LockFreeAtomicType<ContinuousAdjustmentTimePoint> continuous_adjustment_time_points;
std::array<char, 0xEB8> pad0148;
};
static_assert(offsetof(SharedMemoryStruct, steady_time_points) == 0x0,
"steady_time_points are in the wrong place!");
static_assert(offsetof(SharedMemoryStruct, local_system_clock_contexts) == 0x38,
"local_system_clock_contexts are in the wrong place!");
static_assert(offsetof(SharedMemoryStruct, network_system_clock_contexts) == 0x80,
"network_system_clock_contexts are in the wrong place!");
static_assert(offsetof(SharedMemoryStruct, automatic_corrections) == 0xC8,
"automatic_corrections are in the wrong place!");
static_assert(offsetof(SharedMemoryStruct, continuous_adjustment_time_points) == 0xD0,
"continuous_adjustment_time_points are in the wrong place!");
static_assert(sizeof(SharedMemoryStruct) == 0x1000,
"Time's SharedMemoryStruct has the wrong size!");
static_assert(std::is_trivial_v<SharedMemoryStruct>);
class SharedMemory {
public:
explicit SharedMemory(Core::System& system);
Kernel::KSharedMemory& GetKSharedMemory() {
return m_k_shared_memory;
}
void SetLocalSystemContext(SystemClockContext& context);
void SetNetworkSystemContext(SystemClockContext& context);
void SetSteadyClockTimePoint(ClockSourceId clock_source_id, s64 time_diff);
void SetContinuousAdjustment(ContinuousAdjustmentTimePoint& time_point);
void SetAutomaticCorrection(bool automatic_correction);
void UpdateBaseTime(s64 time);
private:
Core::System& m_system;
Kernel::KSharedMemory& m_k_shared_memory;
SharedMemoryStruct* m_shared_memory_ptr;
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,500 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/k_shared_memory.h"
#include "core/hle/service/psc/time/clocks/ephemeral_network_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_local_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_network_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_user_system_clock_core.h"
#include "core/hle/service/psc/time/manager.h"
#include "core/hle/service/psc/time/shared_memory.h"
#include "core/hle/service/psc/time/static.h"
#include "core/hle/service/psc/time/steady_clock.h"
#include "core/hle/service/psc/time/system_clock.h"
#include "core/hle/service/psc/time/time_zone.h"
#include "core/hle/service/psc/time/time_zone_service.h"
namespace Service::PSC::Time {
namespace {
constexpr Result GetTimeFromTimePointAndContext(s64* out_time, SteadyClockTimePoint& time_point,
SystemClockContext& context) {
R_UNLESS(out_time != nullptr, ResultInvalidArgument);
R_UNLESS(time_point.IdMatches(context.steady_time_point), ResultClockMismatch);
*out_time = context.offset + time_point.time_point;
R_SUCCEED();
}
} // namespace
StaticService::StaticService(Core::System& system_, StaticServiceSetupInfo setup_info,
std::shared_ptr<TimeManager> time, const char* name)
: ServiceFramework{system_, name}, m_system{system}, m_setup_info{setup_info}, m_time{time},
m_local_system_clock{m_time->m_standard_local_system_clock},
m_user_system_clock{m_time->m_standard_user_system_clock},
m_network_system_clock{m_time->m_standard_network_system_clock},
m_time_zone{m_time->m_time_zone},
m_ephemeral_network_clock{m_time->m_ephemeral_network_clock}, m_shared_memory{
m_time->m_shared_memory} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &StaticService::Handle_GetStandardUserSystemClock, "GetStandardUserSystemClock"},
{1, &StaticService::Handle_GetStandardNetworkSystemClock, "GetStandardNetworkSystemClock"},
{2, &StaticService::Handle_GetStandardSteadyClock, "GetStandardSteadyClock"},
{3, &StaticService::Handle_GetTimeZoneService, "GetTimeZoneService"},
{4, &StaticService::Handle_GetStandardLocalSystemClock, "GetStandardLocalSystemClock"},
{5, &StaticService::Handle_GetEphemeralNetworkSystemClock, "GetEphemeralNetworkSystemClock"},
{20, &StaticService::Handle_GetSharedMemoryNativeHandle, "GetSharedMemoryNativeHandle"},
{50, &StaticService::Handle_SetStandardSteadyClockInternalOffset, "SetStandardSteadyClockInternalOffset"},
{51, &StaticService::Handle_GetStandardSteadyClockRtcValue, "GetStandardSteadyClockRtcValue"},
{100, &StaticService::Handle_IsStandardUserSystemClockAutomaticCorrectionEnabled, "IsStandardUserSystemClockAutomaticCorrectionEnabled"},
{101, &StaticService::Handle_SetStandardUserSystemClockAutomaticCorrectionEnabled, "SetStandardUserSystemClockAutomaticCorrectionEnabled"},
{102, &StaticService::Handle_GetStandardUserSystemClockInitialYear, "GetStandardUserSystemClockInitialYear"},
{200, &StaticService::Handle_IsStandardNetworkSystemClockAccuracySufficient, "IsStandardNetworkSystemClockAccuracySufficient"},
{201, &StaticService::Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedTime, "GetStandardUserSystemClockAutomaticCorrectionUpdatedTime"},
{300, &StaticService::Handle_CalculateMonotonicSystemClockBaseTimePoint, "CalculateMonotonicSystemClockBaseTimePoint"},
{400, &StaticService::Handle_GetClockSnapshot, "GetClockSnapshot"},
{401, &StaticService::Handle_GetClockSnapshotFromSystemClockContext, "GetClockSnapshotFromSystemClockContext"},
{500, &StaticService::Handle_CalculateStandardUserSystemClockDifferenceByUser, "CalculateStandardUserSystemClockDifferenceByUser"},
{501, &StaticService::Handle_CalculateSpanBetween, "CalculateSpanBetween"},
};
// clang-format on
RegisterHandlers(functions);
}
Result StaticService::GetClockSnapshotImpl(ClockSnapshot& out_snapshot,
SystemClockContext& user_context,
SystemClockContext& network_context, TimeType type) {
out_snapshot.user_context = user_context;
out_snapshot.network_context = network_context;
R_TRY(
m_time->m_standard_steady_clock.GetCurrentTimePoint(out_snapshot.steady_clock_time_point));
out_snapshot.is_automatic_correction_enabled = m_user_system_clock.GetAutomaticCorrection();
R_TRY(m_time_zone.GetLocationName(out_snapshot.location_name));
R_TRY(GetTimeFromTimePointAndContext(
&out_snapshot.user_time, out_snapshot.steady_clock_time_point, out_snapshot.user_context));
R_TRY(m_time_zone.ToCalendarTimeWithMyRule(out_snapshot.user_calendar_time,
out_snapshot.user_calendar_additional_time,
out_snapshot.user_time));
if (GetTimeFromTimePointAndContext(&out_snapshot.network_time,
out_snapshot.steady_clock_time_point,
out_snapshot.network_context) != ResultSuccess) {
out_snapshot.network_time = 0;
}
R_TRY(m_time_zone.ToCalendarTimeWithMyRule(out_snapshot.network_calendar_time,
out_snapshot.network_calendar_additional_time,
out_snapshot.network_time));
out_snapshot.type = type;
out_snapshot.unk_CE = 0;
R_SUCCEED();
}
void StaticService::Handle_GetStandardUserSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<SystemClock> service{};
auto res = GetStandardUserSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<SystemClock>(std::move(service));
}
void StaticService::Handle_GetStandardNetworkSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<SystemClock> service{};
auto res = GetStandardNetworkSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<SystemClock>(std::move(service));
}
void StaticService::Handle_GetStandardSteadyClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<SteadyClock> service{};
auto res = GetStandardSteadyClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface(std::move(service));
}
void StaticService::Handle_GetTimeZoneService(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<TimeZoneService> service{};
auto res = GetTimeZoneService(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface(std::move(service));
}
void StaticService::Handle_GetStandardLocalSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<SystemClock> service{};
auto res = GetStandardLocalSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<SystemClock>(std::move(service));
}
void StaticService::Handle_GetEphemeralNetworkSystemClock(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
std::shared_ptr<SystemClock> service{};
auto res = GetEphemeralNetworkSystemClock(service);
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(res);
rb.PushIpcInterface<SystemClock>(std::move(service));
}
void StaticService::Handle_GetSharedMemoryNativeHandle(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KSharedMemory* shared_memory{};
auto res = GetSharedMemoryNativeHandle(&shared_memory);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(shared_memory);
}
void StaticService::Handle_SetStandardSteadyClockInternalOffset(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(m_setup_info.can_write_steady_clock ? ResultNotImplemented : ResultPermissionDenied);
}
void StaticService::Handle_GetStandardSteadyClockRtcValue(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultNotImplemented);
}
void StaticService::Handle_IsStandardUserSystemClockAutomaticCorrectionEnabled(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
bool is_enabled{};
auto res = IsStandardUserSystemClockAutomaticCorrectionEnabled(is_enabled);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push<bool>(is_enabled);
}
void StaticService::Handle_SetStandardUserSystemClockAutomaticCorrectionEnabled(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto automatic_correction{rp.Pop<bool>()};
auto res = SetStandardUserSystemClockAutomaticCorrectionEnabled(automatic_correction);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_GetStandardUserSystemClockInitialYear(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultNotImplemented);
}
void StaticService::Handle_IsStandardNetworkSystemClockAccuracySufficient(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
bool is_sufficient{};
auto res = IsStandardNetworkSystemClockAccuracySufficient(is_sufficient);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push<bool>(is_sufficient);
}
void StaticService::Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
SteadyClockTimePoint time_point{};
auto res = GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(time_point);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(SteadyClockTimePoint) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<SteadyClockTimePoint>(time_point);
}
void StaticService::Handle_CalculateMonotonicSystemClockBaseTimePoint(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto context{rp.PopRaw<SystemClockContext>()};
s64 time{};
auto res = CalculateMonotonicSystemClockBaseTimePoint(time, context);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push<s64>(time);
}
void StaticService::Handle_GetClockSnapshot(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto type{rp.PopEnum<TimeType>()};
ClockSnapshot snapshot{};
auto res = GetClockSnapshot(snapshot, type);
ctx.WriteBuffer(snapshot);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_GetClockSnapshotFromSystemClockContext(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto clock_type{rp.PopEnum<TimeType>()};
[[maybe_unused]] auto alignment{rp.Pop<u32>()};
auto user_context{rp.PopRaw<SystemClockContext>()};
auto network_context{rp.PopRaw<SystemClockContext>()};
ClockSnapshot snapshot{};
auto res =
GetClockSnapshotFromSystemClockContext(snapshot, user_context, network_context, clock_type);
ctx.WriteBuffer(snapshot);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void StaticService::Handle_CalculateStandardUserSystemClockDifferenceByUser(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
ClockSnapshot a{};
ClockSnapshot b{};
auto a_buffer{ctx.ReadBuffer(0)};
auto b_buffer{ctx.ReadBuffer(1)};
std::memcpy(&a, a_buffer.data(), sizeof(ClockSnapshot));
std::memcpy(&b, b_buffer.data(), sizeof(ClockSnapshot));
s64 difference{};
auto res = CalculateStandardUserSystemClockDifferenceByUser(difference, a, b);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(difference);
}
void StaticService::Handle_CalculateSpanBetween(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
ClockSnapshot a{};
ClockSnapshot b{};
auto a_buffer{ctx.ReadBuffer(0)};
auto b_buffer{ctx.ReadBuffer(1)};
std::memcpy(&a, a_buffer.data(), sizeof(ClockSnapshot));
std::memcpy(&b, b_buffer.data(), sizeof(ClockSnapshot));
s64 time{};
auto res = CalculateSpanBetween(time, a, b);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(time);
}
// =============================== Implementations ===========================
Result StaticService::GetStandardUserSystemClock(std::shared_ptr<SystemClock>& out_service) {
out_service = std::make_shared<SystemClock>(m_system, m_user_system_clock,
m_setup_info.can_write_user_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetStandardNetworkSystemClock(std::shared_ptr<SystemClock>& out_service) {
out_service = std::make_shared<SystemClock>(m_system, m_network_system_clock,
m_setup_info.can_write_network_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetStandardSteadyClock(std::shared_ptr<SteadyClock>& out_service) {
out_service =
std::make_shared<SteadyClock>(m_system, m_time, m_setup_info.can_write_steady_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetTimeZoneService(std::shared_ptr<TimeZoneService>& out_service) {
out_service =
std::make_shared<TimeZoneService>(m_system, m_time->m_standard_steady_clock, m_time_zone,
m_setup_info.can_write_timezone_device_location);
R_SUCCEED();
}
Result StaticService::GetStandardLocalSystemClock(std::shared_ptr<SystemClock>& out_service) {
out_service = std::make_shared<SystemClock>(m_system, m_local_system_clock,
m_setup_info.can_write_local_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetEphemeralNetworkSystemClock(std::shared_ptr<SystemClock>& out_service) {
out_service = std::make_shared<SystemClock>(m_system, m_ephemeral_network_clock,
m_setup_info.can_write_network_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetSharedMemoryNativeHandle(Kernel::KSharedMemory** out_shared_memory) {
*out_shared_memory = &m_shared_memory.GetKSharedMemory();
R_SUCCEED();
}
Result StaticService::IsStandardUserSystemClockAutomaticCorrectionEnabled(bool& out_is_enabled) {
R_UNLESS(m_user_system_clock.IsInitialized(), ResultClockUninitialized);
out_is_enabled = m_user_system_clock.GetAutomaticCorrection();
R_SUCCEED();
}
Result StaticService::SetStandardUserSystemClockAutomaticCorrectionEnabled(
bool automatic_correction) {
R_UNLESS(m_user_system_clock.IsInitialized() && m_time->m_standard_steady_clock.IsInitialized(),
ResultClockUninitialized);
R_UNLESS(m_setup_info.can_write_user_clock, ResultPermissionDenied);
R_TRY(m_user_system_clock.SetAutomaticCorrection(automatic_correction));
m_shared_memory.SetAutomaticCorrection(automatic_correction);
SteadyClockTimePoint time_point{};
R_TRY(m_time->m_standard_steady_clock.GetCurrentTimePoint(time_point));
m_user_system_clock.SetTimePointAndSignal(time_point);
m_user_system_clock.GetEvent().Signal();
R_SUCCEED();
}
Result StaticService::IsStandardNetworkSystemClockAccuracySufficient(bool& out_is_sufficient) {
out_is_sufficient = m_network_system_clock.IsAccuracySufficient();
R_SUCCEED();
}
Result StaticService::GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
SteadyClockTimePoint& out_time_point) {
R_UNLESS(m_user_system_clock.IsInitialized(), ResultClockUninitialized);
m_user_system_clock.GetTimePoint(out_time_point);
R_SUCCEED();
}
Result StaticService::CalculateMonotonicSystemClockBaseTimePoint(s64& out_time,
SystemClockContext& context) {
R_UNLESS(m_time->m_standard_steady_clock.IsInitialized(), ResultClockUninitialized);
SteadyClockTimePoint time_point{};
R_TRY(m_time->m_standard_steady_clock.GetCurrentTimePoint(time_point));
R_UNLESS(time_point.IdMatches(context.steady_time_point), ResultClockMismatch);
auto one_second_ns{
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(1)).count()};
auto ticks{m_system.CoreTiming().GetClockTicks()};
auto current_time{ConvertToTimeSpan(ticks).count()};
out_time = ((context.offset + time_point.time_point) - (current_time / one_second_ns));
R_SUCCEED();
}
Result StaticService::GetClockSnapshot(ClockSnapshot& out_snapshot, TimeType type) {
SystemClockContext user_context{};
R_TRY(m_user_system_clock.GetContext(user_context));
SystemClockContext network_context{};
R_TRY(m_network_system_clock.GetContext(network_context));
R_RETURN(GetClockSnapshotImpl(out_snapshot, user_context, network_context, type));
}
Result StaticService::GetClockSnapshotFromSystemClockContext(ClockSnapshot& out_snapshot,
SystemClockContext& user_context,
SystemClockContext& network_context,
TimeType type) {
R_RETURN(GetClockSnapshotImpl(out_snapshot, user_context, network_context, type));
}
Result StaticService::CalculateStandardUserSystemClockDifferenceByUser(s64& out_time,
ClockSnapshot& a,
ClockSnapshot& b) {
auto diff_s =
std::chrono::seconds(b.user_context.offset) - std::chrono::seconds(a.user_context.offset);
if (a.user_context == b.user_context ||
!a.user_context.steady_time_point.IdMatches(b.user_context.steady_time_point)) {
out_time = 0;
R_SUCCEED();
}
if (!a.is_automatic_correction_enabled || !b.is_automatic_correction_enabled) {
out_time = std::chrono::duration_cast<std::chrono::nanoseconds>(diff_s).count();
R_SUCCEED();
}
if (a.network_context.steady_time_point.IdMatches(a.steady_clock_time_point) ||
b.network_context.steady_time_point.IdMatches(b.steady_clock_time_point)) {
out_time = 0;
R_SUCCEED();
}
out_time = std::chrono::duration_cast<std::chrono::nanoseconds>(diff_s).count();
R_SUCCEED();
}
Result StaticService::CalculateSpanBetween(s64& out_time, ClockSnapshot& a, ClockSnapshot& b) {
s64 time_s{};
auto res =
GetSpanBetweenTimePoints(&time_s, a.steady_clock_time_point, b.steady_clock_time_point);
if (res != ResultSuccess) {
R_UNLESS(a.network_time != 0 && b.network_time != 0, ResultTimeNotFound);
time_s = b.network_time - a.network_time;
}
out_time =
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(time_s)).count();
R_SUCCEED();
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,95 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/server_manager.h"
#include "core/hle/service/service.h"
namespace Core {
class System;
}
namespace Kernel {
class KSharedMemory;
}
namespace Service::PSC::Time {
class TimeManager;
class StandardLocalSystemClockCore;
class StandardUserSystemClockCore;
class StandardNetworkSystemClockCore;
class TimeZone;
class SystemClock;
class SteadyClock;
class TimeZoneService;
class EphemeralNetworkSystemClockCore;
class SharedMemory;
class StaticService final : public ServiceFramework<StaticService> {
public:
explicit StaticService(Core::System& system, StaticServiceSetupInfo setup_info,
std::shared_ptr<TimeManager> time, const char* name);
~StaticService() override = default;
Result GetStandardUserSystemClock(std::shared_ptr<SystemClock>& out_service);
Result GetStandardNetworkSystemClock(std::shared_ptr<SystemClock>& out_service);
Result GetStandardSteadyClock(std::shared_ptr<SteadyClock>& out_service);
Result GetTimeZoneService(std::shared_ptr<TimeZoneService>& out_service);
Result GetStandardLocalSystemClock(std::shared_ptr<SystemClock>& out_service);
Result GetEphemeralNetworkSystemClock(std::shared_ptr<SystemClock>& out_service);
Result GetSharedMemoryNativeHandle(Kernel::KSharedMemory** out_shared_memory);
Result IsStandardUserSystemClockAutomaticCorrectionEnabled(bool& out_is_enabled);
Result SetStandardUserSystemClockAutomaticCorrectionEnabled(bool automatic_correction);
Result IsStandardNetworkSystemClockAccuracySufficient(bool& out_is_sufficient);
Result GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
SteadyClockTimePoint& out_time_point);
Result CalculateMonotonicSystemClockBaseTimePoint(s64& out_time, SystemClockContext& context);
Result GetClockSnapshot(ClockSnapshot& out_snapshot, TimeType type);
Result GetClockSnapshotFromSystemClockContext(ClockSnapshot& out_snapshot,
SystemClockContext& user_context,
SystemClockContext& network_context,
TimeType type);
Result CalculateStandardUserSystemClockDifferenceByUser(s64& out_time, ClockSnapshot& a,
ClockSnapshot& b);
Result CalculateSpanBetween(s64& out_time, ClockSnapshot& a, ClockSnapshot& b);
private:
Result GetClockSnapshotImpl(ClockSnapshot& out_snapshot, SystemClockContext& user_context,
SystemClockContext& network_context, TimeType type);
void Handle_GetStandardUserSystemClock(HLERequestContext& ctx);
void Handle_GetStandardNetworkSystemClock(HLERequestContext& ctx);
void Handle_GetStandardSteadyClock(HLERequestContext& ctx);
void Handle_GetTimeZoneService(HLERequestContext& ctx);
void Handle_GetStandardLocalSystemClock(HLERequestContext& ctx);
void Handle_GetEphemeralNetworkSystemClock(HLERequestContext& ctx);
void Handle_GetSharedMemoryNativeHandle(HLERequestContext& ctx);
void Handle_SetStandardSteadyClockInternalOffset(HLERequestContext& ctx);
void Handle_GetStandardSteadyClockRtcValue(HLERequestContext& ctx);
void Handle_IsStandardUserSystemClockAutomaticCorrectionEnabled(HLERequestContext& ctx);
void Handle_SetStandardUserSystemClockAutomaticCorrectionEnabled(HLERequestContext& ctx);
void Handle_GetStandardUserSystemClockInitialYear(HLERequestContext& ctx);
void Handle_IsStandardNetworkSystemClockAccuracySufficient(HLERequestContext& ctx);
void Handle_GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(HLERequestContext& ctx);
void Handle_CalculateMonotonicSystemClockBaseTimePoint(HLERequestContext& ctx);
void Handle_GetClockSnapshot(HLERequestContext& ctx);
void Handle_GetClockSnapshotFromSystemClockContext(HLERequestContext& ctx);
void Handle_CalculateStandardUserSystemClockDifferenceByUser(HLERequestContext& ctx);
void Handle_CalculateSpanBetween(HLERequestContext& ctx);
Core::System& m_system;
StaticServiceSetupInfo m_setup_info;
std::shared_ptr<TimeManager> m_time;
StandardLocalSystemClockCore& m_local_system_clock;
StandardUserSystemClockCore& m_user_system_clock;
StandardNetworkSystemClockCore& m_network_system_clock;
TimeZone& m_time_zone;
EphemeralNetworkSystemClockCore& m_ephemeral_network_clock;
SharedMemory& m_shared_memory;
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,164 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/service/psc/time/steady_clock.h"
namespace Service::PSC::Time {
SteadyClock::SteadyClock(Core::System& system_, std::shared_ptr<TimeManager> manager,
bool can_write_steady_clock, bool can_write_uninitialized_clock)
: ServiceFramework{system_, "ISteadyClock"}, m_system{system},
m_clock_core{manager->m_standard_steady_clock},
m_can_write_steady_clock{can_write_steady_clock}, m_can_write_uninitialized_clock{
can_write_uninitialized_clock} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &SteadyClock::Handle_GetCurrentTimePoint, "GetCurrentTimePoint"},
{2, &SteadyClock::Handle_GetTestOffset, "GetTestOffset"},
{3, &SteadyClock::Handle_SetTestOffset, "SetTestOffset"},
{100, &SteadyClock::Handle_GetRtcValue, "GetRtcValue"},
{101, &SteadyClock::Handle_IsRtcResetDetected, "IsRtcResetDetected"},
{102, &SteadyClock::Handle_GetSetupResultValue, "GetSetupResultValue"},
{200, &SteadyClock::Handle_GetInternalOffset, "GetInternalOffset"},
};
// clang-format on
RegisterHandlers(functions);
}
void SteadyClock::Handle_GetCurrentTimePoint(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
SteadyClockTimePoint time_point{};
auto res = GetCurrentTimePoint(time_point);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(SteadyClockTimePoint) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<SteadyClockTimePoint>(time_point);
}
void SteadyClock::Handle_GetTestOffset(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
s64 test_offset{};
auto res = GetTestOffset(test_offset);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(test_offset);
}
void SteadyClock::Handle_SetTestOffset(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto test_offset{rp.Pop<s64>()};
auto res = SetTestOffset(test_offset);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void SteadyClock::Handle_GetRtcValue(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
s64 rtc_value{};
auto res = GetRtcValue(rtc_value);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(rtc_value);
}
void SteadyClock::Handle_IsRtcResetDetected(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
bool reset_detected{false};
auto res = IsRtcResetDetected(reset_detected);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(reset_detected);
}
void SteadyClock::Handle_GetSetupResultValue(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Result result_value{ResultSuccess};
auto res = GetSetupResultValue(result_value);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(result_value);
}
void SteadyClock::Handle_GetInternalOffset(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
s64 internal_offset{};
auto res = GetInternalOffset(internal_offset);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push(internal_offset);
}
// =============================== Implementations ===========================
Result SteadyClock::GetCurrentTimePoint(SteadyClockTimePoint& out_time_point) {
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
R_RETURN(m_clock_core.GetCurrentTimePoint(out_time_point));
}
Result SteadyClock::GetTestOffset(s64& out_test_offset) {
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
out_test_offset = m_clock_core.GetTestOffset();
R_SUCCEED();
}
Result SteadyClock::SetTestOffset(s64 test_offset) {
R_UNLESS(m_can_write_steady_clock, ResultPermissionDenied);
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
m_clock_core.SetTestOffset(test_offset);
R_SUCCEED();
}
Result SteadyClock::GetRtcValue(s64& out_rtc_value) {
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
R_RETURN(m_clock_core.GetRtcValue(out_rtc_value));
}
Result SteadyClock::IsRtcResetDetected(bool& out_is_detected) {
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
out_is_detected = m_clock_core.IsResetDetected();
R_SUCCEED();
}
Result SteadyClock::GetSetupResultValue(Result& out_result) {
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
out_result = m_clock_core.GetSetupResultValue();
R_SUCCEED();
}
Result SteadyClock::GetInternalOffset(s64& out_internal_offset) {
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
out_internal_offset = m_clock_core.GetInternalOffset();
R_SUCCEED();
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,49 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/psc/time/manager.h"
#include "core/hle/service/server_manager.h"
#include "core/hle/service/service.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
class SteadyClock final : public ServiceFramework<SteadyClock> {
public:
explicit SteadyClock(Core::System& system, std::shared_ptr<TimeManager> manager,
bool can_write_steady_clock, bool can_write_uninitialized_clock);
~SteadyClock() override = default;
Result GetCurrentTimePoint(SteadyClockTimePoint& out_time_point);
Result GetTestOffset(s64& out_test_offset);
Result SetTestOffset(s64 test_offset);
Result GetRtcValue(s64& out_rtc_value);
Result IsRtcResetDetected(bool& out_is_detected);
Result GetSetupResultValue(Result& out_result);
Result GetInternalOffset(s64& out_internal_offset);
private:
void Handle_GetCurrentTimePoint(HLERequestContext& ctx);
void Handle_GetTestOffset(HLERequestContext& ctx);
void Handle_SetTestOffset(HLERequestContext& ctx);
void Handle_GetRtcValue(HLERequestContext& ctx);
void Handle_IsRtcResetDetected(HLERequestContext& ctx);
void Handle_GetSetupResultValue(HLERequestContext& ctx);
void Handle_GetInternalOffset(HLERequestContext& ctx);
Core::System& m_system;
StandardSteadyClockCore& m_clock_core;
bool m_can_write_steady_clock;
bool m_can_write_uninitialized_clock;
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,127 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/core.h"
#include "core/hle/service/psc/time/system_clock.h"
namespace Service::PSC::Time {
SystemClock::SystemClock(Core::System& system_, SystemClockCore& clock_core, bool can_write_clock,
bool can_write_uninitialized_clock)
: ServiceFramework{system_, "ISystemClock"}, m_system{system}, m_clock_core{clock_core},
m_can_write_clock{can_write_clock}, m_can_write_uninitialized_clock{
can_write_uninitialized_clock} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &SystemClock::Handle_GetCurrentTime, "GetCurrentTime"},
{1, &SystemClock::Handle_SetCurrentTime, "SetCurrentTime"},
{2, &SystemClock::Handle_GetSystemClockContext, "GetSystemClockContext"},
{3, &SystemClock::Handle_SetSystemClockContext, "SetSystemClockContext"},
{4, &SystemClock::Handle_GetOperationEventReadableHandle, "GetOperationEventReadableHandle"},
};
// clang-format on
RegisterHandlers(functions);
}
void SystemClock::Handle_GetCurrentTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
s64 time{};
auto res = GetCurrentTime(time);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.Push<s64>(time);
}
void SystemClock::Handle_SetCurrentTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto time{rp.Pop<s64>()};
auto res = SetCurrentTime(time);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void SystemClock::Handle_GetSystemClockContext(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
SystemClockContext context{};
auto res = GetSystemClockContext(context);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(SystemClockContext) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<SystemClockContext>(context);
}
void SystemClock::Handle_SetSystemClockContext(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto context{rp.PopRaw<SystemClockContext>()};
auto res = SetSystemClockContext(context);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void SystemClock::Handle_GetOperationEventReadableHandle(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
Kernel::KEvent* event{};
auto res = GetOperationEventReadableHandle(&event);
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(res);
rb.PushCopyObjects(event->GetReadableEvent());
}
// =============================== Implementations ===========================
Result SystemClock::GetCurrentTime(s64& out_time) {
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
R_RETURN(m_clock_core.GetCurrentTime(&out_time));
}
Result SystemClock::SetCurrentTime(s64 time) {
R_UNLESS(m_can_write_clock, ResultPermissionDenied);
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
R_RETURN(m_clock_core.SetCurrentTime(time));
}
Result SystemClock::GetSystemClockContext(SystemClockContext& out_context) {
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
R_RETURN(m_clock_core.GetContext(out_context));
}
Result SystemClock::SetSystemClockContext(SystemClockContext& context) {
R_UNLESS(m_can_write_clock, ResultPermissionDenied);
R_UNLESS(m_can_write_uninitialized_clock || m_clock_core.IsInitialized(),
ResultClockUninitialized);
R_RETURN(m_clock_core.SetContextAndWrite(context));
}
Result SystemClock::GetOperationEventReadableHandle(Kernel::KEvent** out_event) {
if (!m_operation_event) {
m_operation_event = std::make_unique<OperationEvent>(m_system);
R_UNLESS(m_operation_event != nullptr, ResultFailed);
m_clock_core.LinkOperationEvent(*m_operation_event);
}
*out_event = m_operation_event->m_event;
R_SUCCEED();
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,46 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/psc/time/manager.h"
#include "core/hle/service/server_manager.h"
#include "core/hle/service/service.h"
namespace Core {
class System;
}
namespace Service::PSC::Time {
class SystemClock final : public ServiceFramework<SystemClock> {
public:
explicit SystemClock(Core::System& system, SystemClockCore& system_clock_core,
bool can_write_clock, bool can_write_uninitialized_clock);
~SystemClock() override = default;
Result GetCurrentTime(s64& out_time);
Result SetCurrentTime(s64 time);
Result GetSystemClockContext(SystemClockContext& out_context);
Result SetSystemClockContext(SystemClockContext& context);
Result GetOperationEventReadableHandle(Kernel::KEvent** out_event);
private:
void Handle_GetCurrentTime(HLERequestContext& ctx);
void Handle_SetCurrentTime(HLERequestContext& ctx);
void Handle_GetSystemClockContext(HLERequestContext& ctx);
void Handle_SetSystemClockContext(HLERequestContext& ctx);
void Handle_GetOperationEventReadableHandle(HLERequestContext& ctx);
Core::System& m_system;
SystemClockCore& m_clock_core;
bool m_can_write_clock;
bool m_can_write_uninitialized_clock;
std::unique_ptr<OperationEvent> m_operation_event{};
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,280 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/hle/service/psc/time/time_zone.h"
namespace Service::PSC::Time {
namespace {
constexpr Result ValidateRule(Tz::Rule& rule) {
if (rule.typecnt > static_cast<s32>(Tz::TZ_MAX_TYPES) ||
rule.timecnt > static_cast<s32>(Tz::TZ_MAX_TIMES) ||
rule.charcnt > static_cast<s32>(Tz::TZ_MAX_CHARS)) {
R_RETURN(ResultTimeZoneOutOfRange);
}
for (s32 i = 0; i < rule.timecnt; i++) {
if (rule.types[i] >= rule.typecnt) {
R_RETURN(ResultTimeZoneOutOfRange);
}
}
for (s32 i = 0; i < rule.typecnt; i++) {
if (rule.ttis[i].tt_desigidx >= static_cast<s32>(rule.chars.size())) {
R_RETURN(ResultTimeZoneOutOfRange);
}
}
R_SUCCEED();
}
constexpr bool GetTimeZoneTime(s64& out_time, Tz::Rule& rule, s64 time, s32 index,
s32 index_offset) {
s32 found_idx{};
s32 expected_index{index + index_offset};
s64 time_to_find{time + rule.ttis[rule.types[index]].tt_utoff -
rule.ttis[rule.types[expected_index]].tt_utoff};
if (rule.timecnt > 1 && rule.ats[0] <= time_to_find) {
s32 low{1};
s32 high{rule.timecnt};
while (low < high) {
auto mid{(low + high) / 2};
if (rule.ats[mid] <= time_to_find) {
low = mid + 1;
} else if (rule.ats[mid] > time_to_find) {
high = mid;
}
}
found_idx = low - 1;
}
if (found_idx == expected_index) {
out_time = time_to_find;
}
return found_idx == expected_index;
}
} // namespace
void TimeZone::SetTimePoint(SteadyClockTimePoint& time_point) {
std::scoped_lock l{m_mutex};
m_steady_clock_time_point = time_point;
}
void TimeZone::SetTotalLocationNameCount(u32 count) {
std::scoped_lock l{m_mutex};
m_total_location_name_count = count;
}
void TimeZone::SetRuleVersion(RuleVersion& rule_version) {
std::scoped_lock l{m_mutex};
m_rule_version = rule_version;
}
Result TimeZone::GetLocationName(LocationName& out_name) {
std::scoped_lock l{m_mutex};
R_UNLESS(m_initialized, ResultClockUninitialized);
out_name = m_location;
R_SUCCEED();
}
Result TimeZone::GetTotalLocationCount(u32& out_count) {
std::scoped_lock l{m_mutex};
if (!m_initialized) {
return ResultClockUninitialized;
}
out_count = m_total_location_name_count;
R_SUCCEED();
}
Result TimeZone::GetRuleVersion(RuleVersion& out_rule_version) {
std::scoped_lock l{m_mutex};
if (!m_initialized) {
return ResultClockUninitialized;
}
out_rule_version = m_rule_version;
R_SUCCEED();
}
Result TimeZone::GetTimePoint(SteadyClockTimePoint& out_time_point) {
std::scoped_lock l{m_mutex};
if (!m_initialized) {
return ResultClockUninitialized;
}
out_time_point = m_steady_clock_time_point;
R_SUCCEED();
}
Result TimeZone::ToCalendarTime(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time,
Tz::Rule& rule) {
std::scoped_lock l{m_mutex};
R_RETURN(ToCalendarTimeImpl(out_calendar_time, out_additional_info, time, rule));
}
Result TimeZone::ToCalendarTimeWithMyRule(CalendarTime& calendar_time,
CalendarAdditionalInfo& calendar_additional, s64 time) {
// This is checked outside the mutex. Bug?
if (!m_initialized) {
return ResultClockUninitialized;
}
std::scoped_lock l{m_mutex};
R_RETURN(ToCalendarTimeImpl(calendar_time, calendar_additional, time, m_my_rule));
}
Result TimeZone::ParseBinary(LocationName& name, std::span<const u8> binary) {
std::scoped_lock l{m_mutex};
Tz::Rule tmp_rule{};
R_TRY(ParseBinaryImpl(tmp_rule, binary));
m_my_rule = tmp_rule;
m_location = name;
R_SUCCEED();
}
Result TimeZone::ParseBinaryInto(Tz::Rule& out_rule, std::span<const u8> binary) {
std::scoped_lock l{m_mutex};
R_RETURN(ParseBinaryImpl(out_rule, binary));
}
Result TimeZone::ToPosixTime(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar, Tz::Rule& rule) {
std::scoped_lock l{m_mutex};
auto res = ToPosixTimeImpl(out_count, out_times, out_times_count, calendar, rule, -1);
if (res != ResultSuccess) {
if (res == ResultTimeZoneNotFound) {
res = ResultSuccess;
out_count = 0;
}
} else if (out_count == 2 && out_times[0] > out_times[1]) {
std::swap(out_times[0], out_times[1]);
}
R_RETURN(res);
}
Result TimeZone::ToPosixTimeWithMyRule(u32& out_count, std::span<s64, 2> out_times,
u32 out_times_count, CalendarTime& calendar) {
std::scoped_lock l{m_mutex};
auto res = ToPosixTimeImpl(out_count, out_times, out_times_count, calendar, m_my_rule, -1);
if (res != ResultSuccess) {
if (res == ResultTimeZoneNotFound) {
res = ResultSuccess;
out_count = 0;
}
} else if (out_count == 2 && out_times[0] > out_times[1]) {
std::swap(out_times[0], out_times[1]);
}
R_RETURN(res);
}
Result TimeZone::ParseBinaryImpl(Tz::Rule& out_rule, std::span<const u8> binary) {
if (Tz::ParseTimeZoneBinary(out_rule, binary)) {
R_RETURN(ResultTimeZoneParseFailed);
}
R_SUCCEED();
}
Result TimeZone::ToCalendarTimeImpl(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time,
Tz::Rule& rule) {
R_TRY(ValidateRule(rule));
Tz::CalendarTimeInternal calendar_internal{};
time_t time_tmp{static_cast<time_t>(time)};
if (Tz::localtime_rz(&calendar_internal, &rule, &time_tmp)) {
R_RETURN(ResultOverflow);
}
out_calendar_time.year = static_cast<s16>(calendar_internal.tm_year + 1900);
out_calendar_time.month = static_cast<s8>(calendar_internal.tm_mon + 1);
out_calendar_time.day = static_cast<s8>(calendar_internal.tm_mday);
out_calendar_time.hour = static_cast<s8>(calendar_internal.tm_hour);
out_calendar_time.minute = static_cast<s8>(calendar_internal.tm_min);
out_calendar_time.second = static_cast<s8>(calendar_internal.tm_sec);
out_additional_info.day_of_week = calendar_internal.tm_wday;
out_additional_info.day_of_year = calendar_internal.tm_yday;
std::memcpy(out_additional_info.name.data(), calendar_internal.tm_zone.data(),
out_additional_info.name.size());
out_additional_info.name[out_additional_info.name.size() - 1] = '\0';
out_additional_info.is_dst = calendar_internal.tm_isdst;
out_additional_info.ut_offset = calendar_internal.tm_utoff;
R_SUCCEED();
}
Result TimeZone::ToPosixTimeImpl(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar, Tz::Rule& rule, s32 is_dst) {
R_TRY(ValidateRule(rule));
calendar.month -= 1;
calendar.year -= 1900;
Tz::CalendarTimeInternal internal{
.tm_sec = calendar.second,
.tm_min = calendar.minute,
.tm_hour = calendar.hour,
.tm_mday = calendar.day,
.tm_mon = calendar.month,
.tm_year = calendar.year,
.tm_wday = 0,
.tm_yday = 0,
.tm_isdst = is_dst,
.tm_zone = {},
.tm_utoff = 0,
.time_index = 0,
};
time_t time_tmp{};
auto res = Tz::mktime_tzname(&time_tmp, &rule, &internal);
s64 time = static_cast<s64>(time_tmp);
if (res == 1) {
R_RETURN(ResultOverflow);
} else if (res == 2) {
R_RETURN(ResultTimeZoneNotFound);
}
if (internal.tm_sec != calendar.second || internal.tm_min != calendar.minute ||
internal.tm_hour != calendar.hour || internal.tm_mday != calendar.day ||
internal.tm_mon != calendar.month || internal.tm_year != calendar.year) {
R_RETURN(ResultTimeZoneNotFound);
}
if (res != 0) {
ASSERT(false);
}
out_times[0] = time;
if (out_times_count < 2) {
out_count = 1;
R_SUCCEED();
}
s64 time2{};
if (internal.time_index > 0 && GetTimeZoneTime(time2, rule, time, internal.time_index, -1)) {
out_times[1] = time2;
out_count = 2;
R_SUCCEED();
}
if (((internal.time_index + 1) < rule.timecnt) &&
GetTimeZoneTime(time2, rule, time, internal.time_index, 1)) {
out_times[1] = time2;
out_count = 2;
R_SUCCEED();
}
out_count = 1;
R_SUCCEED();
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,62 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <mutex>
#include <span>
#include <tz/tz.h>
#include "core/hle/service/psc/time/common.h"
namespace Service::PSC::Time {
class TimeZone {
public:
TimeZone() = default;
bool IsInitialized() const {
return m_initialized;
}
void SetInitialized() {
m_initialized = true;
}
void SetTimePoint(SteadyClockTimePoint& time_point);
void SetTotalLocationNameCount(u32 count);
void SetRuleVersion(RuleVersion& rule_version);
Result GetLocationName(LocationName& out_name);
Result GetTotalLocationCount(u32& out_count);
Result GetRuleVersion(RuleVersion& out_rule_version);
Result GetTimePoint(SteadyClockTimePoint& out_time_point);
Result ToCalendarTime(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time, Tz::Rule& rule);
Result ToCalendarTimeWithMyRule(CalendarTime& calendar_time,
CalendarAdditionalInfo& calendar_additional, s64 time);
Result ParseBinary(LocationName& name, std::span<const u8> binary);
Result ParseBinaryInto(Tz::Rule& out_rule, std::span<const u8> binary);
Result ToPosixTime(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar, Tz::Rule& rule);
Result ToPosixTimeWithMyRule(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar);
private:
Result ParseBinaryImpl(Tz::Rule& out_rule, std::span<const u8> binary);
Result ToCalendarTimeImpl(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time,
Tz::Rule& rule);
Result ToPosixTimeImpl(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar, Tz::Rule& rule, s32 is_dst);
bool m_initialized{};
std::recursive_mutex m_mutex;
LocationName m_location{};
Tz::Rule m_my_rule{};
SteadyClockTimePoint m_steady_clock_time_point{};
u32 m_total_location_name_count{};
RuleVersion m_rule_version{};
};
} // namespace Service::PSC::Time

View File

@ -0,0 +1,289 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <tz/tz.h>
#include "core/core.h"
#include "core/hle/service/psc/time/time_zone_service.h"
namespace Service::PSC::Time {
TimeZoneService::TimeZoneService(Core::System& system_, StandardSteadyClockCore& clock_core,
TimeZone& time_zone, bool can_write_timezone_device_location)
: ServiceFramework{system_, "ITimeZoneService"}, m_system{system}, m_clock_core{clock_core},
m_time_zone{time_zone}, m_can_write_timezone_device_location{
can_write_timezone_device_location} {
// clang-format off
static const FunctionInfo functions[] = {
{0, &TimeZoneService::Handle_GetDeviceLocationName, "GetDeviceLocationName"},
{1, &TimeZoneService::Handle_SetDeviceLocationName, "SetDeviceLocationName"},
{2, &TimeZoneService::Handle_GetTotalLocationNameCount, "GetTotalLocationNameCount"},
{3, &TimeZoneService::Handle_LoadLocationNameList, "LoadLocationNameList"},
{4, &TimeZoneService::Handle_LoadTimeZoneRule, "LoadTimeZoneRule"},
{5, &TimeZoneService::Handle_GetTimeZoneRuleVersion, "GetTimeZoneRuleVersion"},
{6, &TimeZoneService::Handle_GetDeviceLocationNameAndUpdatedTime, "GetDeviceLocationNameAndUpdatedTime"},
{7, &TimeZoneService::Handle_SetDeviceLocationNameWithTimeZoneRule, "SetDeviceLocationNameWithTimeZoneRule"},
{8, &TimeZoneService::Handle_ParseTimeZoneBinary, "ParseTimeZoneBinary"},
{20, &TimeZoneService::Handle_GetDeviceLocationNameOperationEventReadableHandle, "GetDeviceLocationNameOperationEventReadableHandle"},
{100, &TimeZoneService::Handle_ToCalendarTime, "ToCalendarTime"},
{101, &TimeZoneService::Handle_ToCalendarTimeWithMyRule, "ToCalendarTimeWithMyRule"},
{201, &TimeZoneService::Handle_ToPosixTime, "ToPosixTime"},
{202, &TimeZoneService::Handle_ToPosixTimeWithMyRule, "ToPosixTimeWithMyRule"},
};
// clang-format on
RegisterHandlers(functions);
}
void TimeZoneService::Handle_GetDeviceLocationName(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
LocationName name{};
auto res = GetDeviceLocationName(name);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(LocationName) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<LocationName>(name);
}
void TimeZoneService::Handle_SetDeviceLocationName(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
[[maybe_unused]] auto name{rp.PopRaw<LocationName>()};
if (!m_can_write_timezone_device_location) {
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultPermissionDenied);
return;
}
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultNotImplemented);
}
void TimeZoneService::Handle_GetTotalLocationNameCount(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
u32 count{};
auto res = GetTotalLocationNameCount(count);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
void TimeZoneService::Handle_LoadLocationNameList(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultNotImplemented);
}
void TimeZoneService::Handle_LoadTimeZoneRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultNotImplemented);
}
void TimeZoneService::Handle_GetTimeZoneRuleVersion(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
RuleVersion rule_version{};
auto res = GetTimeZoneRuleVersion(rule_version);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(RuleVersion) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<RuleVersion>(rule_version);
}
void TimeZoneService::Handle_GetDeviceLocationNameAndUpdatedTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
LocationName name{};
SteadyClockTimePoint time_point{};
auto res = GetDeviceLocationNameAndUpdatedTime(time_point, name);
IPC::ResponseBuilder rb{ctx, 2 + (sizeof(LocationName) / sizeof(u32)) +
(sizeof(SteadyClockTimePoint) / sizeof(u32))};
rb.Push(res);
rb.PushRaw<LocationName>(name);
rb.PushRaw<SteadyClockTimePoint>(time_point);
}
void TimeZoneService::Handle_SetDeviceLocationNameWithTimeZoneRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto name{rp.PopRaw<LocationName>()};
auto binary{ctx.ReadBuffer()};
auto res = SetDeviceLocationNameWithTimeZoneRule(name, binary);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void TimeZoneService::Handle_ParseTimeZoneBinary(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
auto binary{ctx.ReadBuffer()};
Tz::Rule rule{};
auto res = ParseTimeZoneBinary(rule, binary);
ctx.WriteBuffer(rule);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(res);
}
void TimeZoneService::Handle_GetDeviceLocationNameOperationEventReadableHandle(
HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(ResultNotImplemented);
}
void TimeZoneService::Handle_ToCalendarTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto time{rp.Pop<s64>()};
auto rule_buffer{ctx.ReadBuffer()};
Tz::Rule rule{};
std::memcpy(&rule, rule_buffer.data(), sizeof(Tz::Rule));
CalendarTime calendar_time{};
CalendarAdditionalInfo additional_info{};
auto res = ToCalendarTime(calendar_time, additional_info, time, rule);
IPC::ResponseBuilder rb{ctx, 2 + (sizeof(CalendarTime) / sizeof(u32)) +
(sizeof(CalendarAdditionalInfo) / sizeof(u32))};
rb.Push(res);
rb.PushRaw<CalendarTime>(calendar_time);
rb.PushRaw<CalendarAdditionalInfo>(additional_info);
}
void TimeZoneService::Handle_ToCalendarTimeWithMyRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto time{rp.Pop<s64>()};
CalendarTime calendar_time{};
CalendarAdditionalInfo additional_info{};
auto res = ToCalendarTimeWithMyRule(calendar_time, additional_info, time);
IPC::ResponseBuilder rb{ctx, 2 + (sizeof(CalendarTime) / sizeof(u32)) +
(sizeof(CalendarAdditionalInfo) / sizeof(u32))};
rb.Push(res);
rb.PushRaw<CalendarTime>(calendar_time);
rb.PushRaw<CalendarAdditionalInfo>(additional_info);
}
void TimeZoneService::Handle_ToPosixTime(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto calendar{rp.PopRaw<CalendarTime>()};
auto binary{ctx.ReadBuffer()};
Tz::Rule rule{};
std::memcpy(&rule, binary.data(), sizeof(Tz::Rule));
u32 count{};
std::array<s64, 2> times{};
u32 times_count{static_cast<u32>(ctx.GetWriteBufferSize() / sizeof(s64))};
auto res = ToPosixTime(count, times, times_count, calendar, rule);
ctx.WriteBuffer(times);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
void TimeZoneService::Handle_ToPosixTimeWithMyRule(HLERequestContext& ctx) {
LOG_DEBUG(Service_Time, "called.");
IPC::RequestParser rp{ctx};
auto calendar{rp.PopRaw<CalendarTime>()};
u32 count{};
std::array<s64, 2> times{};
u32 times_count{static_cast<u32>(ctx.GetWriteBufferSize() / sizeof(s64))};
auto res = ToPosixTimeWithMyRule(count, times, times_count, calendar);
ctx.WriteBuffer(times);
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(res);
rb.Push(count);
}
// =============================== Implementations ===========================
Result TimeZoneService::GetDeviceLocationName(LocationName& out_location_name) {
R_RETURN(m_time_zone.GetLocationName(out_location_name));
}
Result TimeZoneService::GetTotalLocationNameCount(u32& out_count) {
R_RETURN(m_time_zone.GetTotalLocationCount(out_count));
}
Result TimeZoneService::GetTimeZoneRuleVersion(RuleVersion& out_rule_version) {
R_RETURN(m_time_zone.GetRuleVersion(out_rule_version));
}
Result TimeZoneService::GetDeviceLocationNameAndUpdatedTime(SteadyClockTimePoint& out_time_point,
LocationName& location_name) {
R_TRY(m_time_zone.GetLocationName(location_name));
R_RETURN(m_time_zone.GetTimePoint(out_time_point));
}
Result TimeZoneService::SetDeviceLocationNameWithTimeZoneRule(LocationName& location_name,
std::span<const u8> binary) {
R_UNLESS(m_can_write_timezone_device_location, ResultPermissionDenied);
R_TRY(m_time_zone.ParseBinary(location_name, binary));
SteadyClockTimePoint time_point{};
R_TRY(m_clock_core.GetCurrentTimePoint(time_point));
m_time_zone.SetTimePoint(time_point);
R_SUCCEED();
}
Result TimeZoneService::ParseTimeZoneBinary(Tz::Rule& out_rule, std::span<const u8> binary) {
R_RETURN(m_time_zone.ParseBinaryInto(out_rule, binary));
}
Result TimeZoneService::ToCalendarTime(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time,
Tz::Rule& rule) {
R_RETURN(m_time_zone.ToCalendarTime(out_calendar_time, out_additional_info, time, rule));
}
Result TimeZoneService::ToCalendarTimeWithMyRule(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info,
s64 time) {
R_RETURN(m_time_zone.ToCalendarTimeWithMyRule(out_calendar_time, out_additional_info, time));
}
Result TimeZoneService::ToPosixTime(u32& out_count, std::span<s64, 2> out_times,
u32 out_times_count, CalendarTime& calendar_time,
Tz::Rule& rule) {
R_RETURN(m_time_zone.ToPosixTime(out_count, out_times, out_times_count, calendar_time, rule));
}
Result TimeZoneService::ToPosixTimeWithMyRule(u32& out_count, std::span<s64, 2> out_times,
u32 out_times_count, CalendarTime& calendar_time) {
R_RETURN(
m_time_zone.ToPosixTimeWithMyRule(out_count, out_times, out_times_count, calendar_time));
}
} // namespace Service::PSC::Time

View File

@ -0,0 +1,69 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/psc/time/manager.h"
#include "core/hle/service/server_manager.h"
#include "core/hle/service/service.h"
namespace Core {
class System;
}
namespace Tz {
struct Rule;
}
namespace Service::PSC::Time {
class TimeZoneService final : public ServiceFramework<TimeZoneService> {
public:
explicit TimeZoneService(Core::System& system, StandardSteadyClockCore& clock_core,
TimeZone& time_zone, bool can_write_timezone_device_location);
~TimeZoneService() override = default;
Result GetDeviceLocationName(LocationName& out_location_name);
Result GetTotalLocationNameCount(u32& out_count);
Result GetTimeZoneRuleVersion(RuleVersion& out_rule_version);
Result GetDeviceLocationNameAndUpdatedTime(SteadyClockTimePoint& out_time_point,
LocationName& location_name);
Result SetDeviceLocationNameWithTimeZoneRule(LocationName& location_name,
std::span<const u8> binary);
Result ParseTimeZoneBinary(Tz::Rule& out_rule, std::span<const u8> binary);
Result ToCalendarTime(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time, Tz::Rule& rule);
Result ToCalendarTimeWithMyRule(CalendarTime& out_calendar_time,
CalendarAdditionalInfo& out_additional_info, s64 time);
Result ToPosixTime(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar_time, Tz::Rule& rule);
Result ToPosixTimeWithMyRule(u32& out_count, std::span<s64, 2> out_times, u32 out_times_count,
CalendarTime& calendar_time);
private:
void Handle_GetDeviceLocationName(HLERequestContext& ctx);
void Handle_SetDeviceLocationName(HLERequestContext& ctx);
void Handle_GetTotalLocationNameCount(HLERequestContext& ctx);
void Handle_LoadLocationNameList(HLERequestContext& ctx);
void Handle_LoadTimeZoneRule(HLERequestContext& ctx);
void Handle_GetTimeZoneRuleVersion(HLERequestContext& ctx);
void Handle_GetDeviceLocationNameAndUpdatedTime(HLERequestContext& ctx);
void Handle_SetDeviceLocationNameWithTimeZoneRule(HLERequestContext& ctx);
void Handle_ParseTimeZoneBinary(HLERequestContext& ctx);
void Handle_GetDeviceLocationNameOperationEventReadableHandle(HLERequestContext& ctx);
void Handle_ToCalendarTime(HLERequestContext& ctx);
void Handle_ToCalendarTimeWithMyRule(HLERequestContext& ctx);
void Handle_ToPosixTime(HLERequestContext& ctx);
void Handle_ToPosixTimeWithMyRule(HLERequestContext& ctx);
Core::System& m_system;
StandardSteadyClockCore& m_clock_core;
TimeZone& m_time_zone;
bool m_can_write_timezone_device_location;
};
} // namespace Service::PSC::Time

View File

@ -66,7 +66,6 @@
#include "core/hle/service/sockets/sockets.h"
#include "core/hle/service/spl/spl_module.h"
#include "core/hle/service/ssl/ssl.h"
#include "core/hle/service/time/time.h"
#include "core/hle/service/usb/usb.h"
#include "core/hle/service/vi/vi.h"
#include "core/reporter.h"
@ -246,6 +245,9 @@ Services::Services(std::shared_ptr<SM::ServiceManager>& sm, Core::System& system
kernel.RunOnGuestCoreProcess("fatal", [&] { Fatal::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("fgm", [&] { FGM::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("friends", [&] { Friend::LoopProcess(system); });
// glue depends on settings and psc, so they must come first
kernel.RunOnGuestCoreProcess("settings", [&] { Set::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("psc", [&] { PSC::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("glue", [&] { Glue::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("grc", [&] { GRC::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("hid", [&] { HID::LoopProcess(system); });
@ -269,13 +271,10 @@ Services::Services(std::shared_ptr<SM::ServiceManager>& sm, Core::System& system
kernel.RunOnGuestCoreProcess("pcv", [&] { PCV::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("prepo", [&] { PlayReport::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("ProcessManager", [&] { PM::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("psc", [&] { PSC::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("ptm", [&] { PTM::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("ro", [&] { RO::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("settings", [&] { Set::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("spl", [&] { SPL::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("ssl", [&] { SSL::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("time", [&] { Time::LoopProcess(system); });
kernel.RunOnGuestCoreProcess("usb", [&] { USB::LoopProcess(system); });
// clang-format on
}

View File

@ -0,0 +1,72 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/uuid.h"
#include "core/hle/service/psc/time/common.h"
namespace Service::Set {
/// This is nn::settings::system::InitialLaunchFlag
struct InitialLaunchFlag {
union {
u32 raw{};
BitField<0, 1, u32> InitialLaunchCompletionFlag;
BitField<8, 1, u32> InitialLaunchUserAdditionFlag;
BitField<16, 1, u32> InitialLaunchTimestampFlag;
};
};
static_assert(sizeof(InitialLaunchFlag) == 4, "InitialLaunchFlag is an invalid size");
/// This is nn::settings::system::InitialLaunchSettings
struct InitialLaunchSettings {
InitialLaunchFlag flags;
INSERT_PADDING_BYTES(0x4);
Service::PSC::Time::SteadyClockTimePoint timestamp;
};
static_assert(sizeof(InitialLaunchSettings) == 0x20, "InitialLaunchSettings is incorrect size");
#pragma pack(push, 4)
struct InitialLaunchSettingsPacked {
InitialLaunchFlag flags;
Service::PSC::Time::SteadyClockTimePoint timestamp;
};
#pragma pack(pop)
static_assert(sizeof(InitialLaunchSettingsPacked) == 0x1C,
"InitialLaunchSettingsPacked is incorrect size");
struct PrivateSettings {
std::array<u8, 0x10> reserved_00;
// nn::settings::system::InitialLaunchSettings
InitialLaunchSettings initial_launch_settings;
std::array<u8, 0x20> reserved_30;
Common::UUID external_clock_source_id;
s64 shutdown_rtc_value;
s64 external_steady_clock_internal_offset;
std::array<u8, 0x60> reserved_70;
// nn::settings::system::PlatformRegion
std::array<u8, 0x4> platform_region;
std::array<u8, 0x4> reserved_D4;
};
static_assert(offsetof(PrivateSettings, initial_launch_settings) == 0x10);
static_assert(offsetof(PrivateSettings, external_clock_source_id) == 0x50);
static_assert(offsetof(PrivateSettings, reserved_70) == 0x70);
static_assert(offsetof(PrivateSettings, platform_region) == 0xD0);
static_assert(sizeof(PrivateSettings) == 0xD8, "PrivateSettings has the wrong size!");
PrivateSettings DefaultPrivateSettings();
} // namespace Service::Set

View File

@ -8,7 +8,6 @@
#include "common/common_types.h"
#include "common/uuid.h"
#include "core/hle/service/set/settings_types.h"
#include "core/hle/service/time/clock_types.h"
namespace Service::Set {

View File

@ -45,7 +45,7 @@ SystemSettings DefaultSystemSettings() {
};
settings.device_time_zone_location_name = {"UTC"};
settings.user_system_clock_automatic_correction_enabled = false;
settings.user_system_clock_automatic_correction_enabled = true;
settings.primary_album_storage = PrimaryAlbumStorage::SdCard;
settings.battery_percentage_flag = true;

View File

@ -12,7 +12,6 @@
#include "common/vector_math.h"
#include "core/hle/service/set/setting_formats/private_settings.h"
#include "core/hle/service/set/settings_types.h"
#include "core/hle/service/time/clock_types.h"
namespace Service::Set {
@ -197,12 +196,14 @@ struct SystemSettings {
std::array<u8, 0x2C> backlight_settings_mixed_up;
INSERT_PADDING_BYTES(0x64); // Reserved
Service::Time::Clock::SystemClockContext user_system_clock_context;
Service::Time::Clock::SystemClockContext network_system_clock_context;
// nn::time::SystemClockContext
Service::PSC::Time::SystemClockContext user_system_clock_context;
Service::PSC::Time::SystemClockContext network_system_clock_context;
bool user_system_clock_automatic_correction_enabled;
INSERT_PADDING_BYTES(0x3);
INSERT_PADDING_BYTES(0x4); // Reserved
Service::Time::Clock::SteadyClockTimePoint
// nn::time::SteadyClockTimePoint
Service::PSC::Time::SteadyClockTimePoint
user_system_clock_automatic_correction_updated_time_point;
INSERT_PADDING_BYTES(0x10); // Reserved
@ -280,9 +281,12 @@ struct SystemSettings {
bool requires_run_repair_time_reviser;
INSERT_PADDING_BYTES(0x6B); // Reserved
Service::Time::TimeZone::LocationName device_time_zone_location_name;
// nn::time::LocationName
Service::PSC::Time::LocationName device_time_zone_location_name;
INSERT_PADDING_BYTES(0x4); // Reserved
Service::Time::Clock::SteadyClockTimePoint device_time_zone_location_updated_time;
// nn::time::SteadyClockTimePoint
Service::PSC::Time::SteadyClockTimePoint device_time_zone_location_updated_time;
INSERT_PADDING_BYTES(0xC0); // Reserved
// nn::settings::system::PrimaryAlbumStorage

View File

@ -9,7 +9,7 @@
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/uuid.h"
#include "core/hle/service/time/clock_types.h"
#include "core/hle/service/psc/time/common.h"
namespace Service::Set {
@ -365,7 +365,7 @@ struct EulaVersion {
EulaVersionClockType clock_type;
INSERT_PADDING_BYTES(0x4);
s64 posix_time;
Time::Clock::SteadyClockTimePoint timestamp;
Service::PSC::Time::SteadyClockTimePoint timestamp;
};
static_assert(sizeof(EulaVersion) == 0x30, "EulaVersion is incorrect size");
@ -398,14 +398,14 @@ static_assert(sizeof(HomeMenuScheme) == 0x14, "HomeMenuScheme is incorrect size"
struct InitialLaunchSettings {
InitialLaunchFlag flags;
INSERT_PADDING_BYTES(0x4);
Service::Time::Clock::SteadyClockTimePoint timestamp;
Service::PSC::Time::SteadyClockTimePoint timestamp;
};
static_assert(sizeof(InitialLaunchSettings) == 0x20, "InitialLaunchSettings is incorrect size");
#pragma pack(push, 4)
struct InitialLaunchSettingsPacked {
InitialLaunchFlag flags;
Service::Time::Clock::SteadyClockTimePoint timestamp;
Service::PSC::Time::SteadyClockTimePoint timestamp;
};
#pragma pack(pop)
static_assert(sizeof(InitialLaunchSettingsPacked) == 0x1C,

View File

@ -489,11 +489,10 @@ void ISystemSettingsServer::SetExternalSteadyClockSourceId(HLERequestContext& ct
void ISystemSettingsServer::GetUserSystemClockContext(HLERequestContext& ctx) {
LOG_INFO(Service_SET, "called");
Service::Time::Clock::SystemClockContext context{};
Service::PSC::Time::SystemClockContext context{};
auto res = GetUserSystemClockContext(context);
IPC::ResponseBuilder rb{ctx,
2 + sizeof(Service::Time::Clock::SystemClockContext) / sizeof(u32)};
IPC::ResponseBuilder rb{ctx, 2 + sizeof(Service::PSC::Time::SystemClockContext) / sizeof(u32)};
rb.Push(res);
rb.PushRaw(context);
}
@ -502,7 +501,7 @@ void ISystemSettingsServer::SetUserSystemClockContext(HLERequestContext& ctx) {
LOG_INFO(Service_SET, "called");
IPC::RequestParser rp{ctx};
auto context{rp.PopRaw<Service::Time::Clock::SystemClockContext>()};
auto context{rp.PopRaw<Service::PSC::Time::SystemClockContext>()};
auto res = SetUserSystemClockContext(context);
@ -809,19 +808,19 @@ void ISystemSettingsServer::GetQuestFlag(HLERequestContext& ctx) {
void ISystemSettingsServer::GetDeviceTimeZoneLocationName(HLERequestContext& ctx) {
LOG_INFO(Service_SET, "called");
Service::Time::TimeZone::LocationName name{};
Service::PSC::Time::LocationName name{};
auto res = GetDeviceTimeZoneLocationName(name);
IPC::ResponseBuilder rb{ctx, 2 + sizeof(Service::Time::TimeZone::LocationName) / sizeof(u32)};
IPC::ResponseBuilder rb{ctx, 2 + sizeof(Service::PSC::Time::LocationName) / sizeof(u32)};
rb.Push(res);
rb.PushRaw<Service::Time::TimeZone::LocationName>(name);
rb.PushRaw<Service::PSC::Time::LocationName>(name);
}
void ISystemSettingsServer::SetDeviceTimeZoneLocationName(HLERequestContext& ctx) {
LOG_INFO(Service_SET, "called");
IPC::RequestParser rp{ctx};
auto name{rp.PopRaw<Service::Time::TimeZone::LocationName>()};
auto name{rp.PopRaw<Service::PSC::Time::LocationName>()};
auto res = SetDeviceTimeZoneLocationName(name);
@ -843,11 +842,10 @@ void ISystemSettingsServer::SetRegionCode(HLERequestContext& ctx) {
void ISystemSettingsServer::GetNetworkSystemClockContext(HLERequestContext& ctx) {
LOG_INFO(Service_SET, "called");
Service::Time::Clock::SystemClockContext context{};
Service::PSC::Time::SystemClockContext context{};
auto res = GetNetworkSystemClockContext(context);
IPC::ResponseBuilder rb{ctx,
2 + sizeof(Service::Time::Clock::SystemClockContext) / sizeof(u32)};
IPC::ResponseBuilder rb{ctx, 2 + sizeof(Service::PSC::Time::SystemClockContext) / sizeof(u32)};
rb.Push(res);
rb.PushRaw(context);
}
@ -856,7 +854,7 @@ void ISystemSettingsServer::SetNetworkSystemClockContext(HLERequestContext& ctx)
LOG_INFO(Service_SET, "called");
IPC::RequestParser rp{ctx};
auto context{rp.PopRaw<Service::Time::Clock::SystemClockContext>()};
auto context{rp.PopRaw<Service::PSC::Time::SystemClockContext>()};
auto res = SetNetworkSystemClockContext(context);
@ -1141,19 +1139,19 @@ void ISystemSettingsServer::GetKeyboardLayout(HLERequestContext& ctx) {
void ISystemSettingsServer::GetDeviceTimeZoneLocationUpdatedTime(HLERequestContext& ctx) {
LOG_INFO(Service_SET, "called");
Service::Time::Clock::SteadyClockTimePoint time_point{};
Service::PSC::Time::SteadyClockTimePoint time_point{};
auto res = GetDeviceTimeZoneLocationUpdatedTime(time_point);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.PushRaw<Service::Time::Clock::SteadyClockTimePoint>(time_point);
rb.PushRaw<Service::PSC::Time::SteadyClockTimePoint>(time_point);
}
void ISystemSettingsServer::SetDeviceTimeZoneLocationUpdatedTime(HLERequestContext& ctx) {
LOG_INFO(Service_SET, "called");
IPC::RequestParser rp{ctx};
auto time_point{rp.PopRaw<Service::Time::Clock::SteadyClockTimePoint>()};
auto time_point{rp.PopRaw<Service::PSC::Time::SteadyClockTimePoint>()};
auto res = SetDeviceTimeZoneLocationUpdatedTime(time_point);
@ -1165,12 +1163,12 @@ void ISystemSettingsServer::GetUserSystemClockAutomaticCorrectionUpdatedTime(
HLERequestContext& ctx) {
LOG_INFO(Service_SET, "called");
Service::Time::Clock::SteadyClockTimePoint time_point{};
Service::PSC::Time::SteadyClockTimePoint time_point{};
auto res = GetUserSystemClockAutomaticCorrectionUpdatedTime(time_point);
IPC::ResponseBuilder rb{ctx, 4};
rb.Push(res);
rb.PushRaw<Service::Time::Clock::SteadyClockTimePoint>(time_point);
rb.PushRaw<Service::PSC::Time::SteadyClockTimePoint>(time_point);
}
void ISystemSettingsServer::SetUserSystemClockAutomaticCorrectionUpdatedTime(
@ -1178,7 +1176,7 @@ void ISystemSettingsServer::SetUserSystemClockAutomaticCorrectionUpdatedTime(
LOG_INFO(Service_SET, "called");
IPC::RequestParser rp{ctx};
auto time_point{rp.PopRaw<Service::Time::Clock::SteadyClockTimePoint>()};
auto time_point{rp.PopRaw<Service::PSC::Time::SteadyClockTimePoint>()};
auto res = SetUserSystemClockAutomaticCorrectionUpdatedTime(time_point);
@ -1257,25 +1255,25 @@ void ISystemSettingsServer::StoreSettings() {
auto system_dir =
Common::FS::GetYuzuPath(Common::FS::YuzuPath::NANDDir) / "system/save/8000000000000050";
if (!StoreSettingsFile(system_dir, m_system_settings)) {
LOG_ERROR(HW_GPU, "Failed to store System settings");
LOG_ERROR(Service_SET, "Failed to store System settings");
}
auto private_dir =
Common::FS::GetYuzuPath(Common::FS::YuzuPath::NANDDir) / "system/save/8000000000000052";
if (!StoreSettingsFile(private_dir, m_private_settings)) {
LOG_ERROR(HW_GPU, "Failed to store Private settings");
LOG_ERROR(Service_SET, "Failed to store Private settings");
}
auto device_dir =
Common::FS::GetYuzuPath(Common::FS::YuzuPath::NANDDir) / "system/save/8000000000000053";
if (!StoreSettingsFile(device_dir, m_device_settings)) {
LOG_ERROR(HW_GPU, "Failed to store Device settings");
LOG_ERROR(Service_SET, "Failed to store Device settings");
}
auto appln_dir =
Common::FS::GetYuzuPath(Common::FS::YuzuPath::NANDDir) / "system/save/8000000000000054";
if (!StoreSettingsFile(appln_dir, m_appln_settings)) {
LOG_ERROR(HW_GPU, "Failed to store ApplLn settings");
LOG_ERROR(Service_SET, "Failed to store ApplLn settings");
}
}
@ -1318,39 +1316,39 @@ Result ISystemSettingsServer::SetExternalSteadyClockSourceId(Common::UUID id) {
}
Result ISystemSettingsServer::GetUserSystemClockContext(
Service::Time::Clock::SystemClockContext& out_context) {
Service::PSC::Time::SystemClockContext& out_context) {
out_context = m_system_settings.user_system_clock_context;
R_SUCCEED();
}
Result ISystemSettingsServer::SetUserSystemClockContext(
Service::Time::Clock::SystemClockContext& context) {
Service::PSC::Time::SystemClockContext& context) {
m_system_settings.user_system_clock_context = context;
SetSaveNeeded();
R_SUCCEED();
}
Result ISystemSettingsServer::GetDeviceTimeZoneLocationName(
Service::Time::TimeZone::LocationName& out_name) {
Service::PSC::Time::LocationName& out_name) {
out_name = m_system_settings.device_time_zone_location_name;
R_SUCCEED();
}
Result ISystemSettingsServer::SetDeviceTimeZoneLocationName(
Service::Time::TimeZone::LocationName& name) {
Service::PSC::Time::LocationName& name) {
m_system_settings.device_time_zone_location_name = name;
SetSaveNeeded();
R_SUCCEED();
}
Result ISystemSettingsServer::GetNetworkSystemClockContext(
Service::Time::Clock::SystemClockContext& out_context) {
Service::PSC::Time::SystemClockContext& out_context) {
out_context = m_system_settings.network_system_clock_context;
R_SUCCEED();
}
Result ISystemSettingsServer::SetNetworkSystemClockContext(
Service::Time::Clock::SystemClockContext& context) {
Service::PSC::Time::SystemClockContext& context) {
m_system_settings.network_system_clock_context = context;
SetSaveNeeded();
R_SUCCEED();
@ -1379,26 +1377,26 @@ Result ISystemSettingsServer::GetExternalSteadyClockInternalOffset(s64& out_offs
}
Result ISystemSettingsServer::GetDeviceTimeZoneLocationUpdatedTime(
Service::Time::Clock::SteadyClockTimePoint& out_time_point) {
Service::PSC::Time::SteadyClockTimePoint& out_time_point) {
out_time_point = m_system_settings.device_time_zone_location_updated_time;
R_SUCCEED();
}
Result ISystemSettingsServer::SetDeviceTimeZoneLocationUpdatedTime(
Service::Time::Clock::SteadyClockTimePoint& time_point) {
Service::PSC::Time::SteadyClockTimePoint& time_point) {
m_system_settings.device_time_zone_location_updated_time = time_point;
SetSaveNeeded();
R_SUCCEED();
}
Result ISystemSettingsServer::GetUserSystemClockAutomaticCorrectionUpdatedTime(
Service::Time::Clock::SteadyClockTimePoint& out_time_point) {
Service::PSC::Time::SteadyClockTimePoint& out_time_point) {
out_time_point = m_system_settings.user_system_clock_automatic_correction_updated_time_point;
R_SUCCEED();
}
Result ISystemSettingsServer::SetUserSystemClockAutomaticCorrectionUpdatedTime(
Service::Time::Clock::SteadyClockTimePoint out_time_point) {
Service::PSC::Time::SteadyClockTimePoint out_time_point) {
m_system_settings.user_system_clock_automatic_correction_updated_time_point = out_time_point;
SetSaveNeeded();
R_SUCCEED();

View File

@ -11,14 +11,13 @@
#include "common/polyfill_thread.h"
#include "common/uuid.h"
#include "core/hle/result.h"
#include "core/hle/service/psc/time/common.h"
#include "core/hle/service/service.h"
#include "core/hle/service/set/setting_formats/appln_settings.h"
#include "core/hle/service/set/setting_formats/device_settings.h"
#include "core/hle/service/set/setting_formats/private_settings.h"
#include "core/hle/service/set/setting_formats/system_settings.h"
#include "core/hle/service/set/settings_types.h"
#include "core/hle/service/time/clock_types.h"
#include "core/hle/service/time/time_zone_types.h"
namespace Core {
class System;
@ -51,24 +50,24 @@ public:
Result GetExternalSteadyClockSourceId(Common::UUID& out_id);
Result SetExternalSteadyClockSourceId(Common::UUID id);
Result GetUserSystemClockContext(Service::Time::Clock::SystemClockContext& out_context);
Result SetUserSystemClockContext(Service::Time::Clock::SystemClockContext& context);
Result GetDeviceTimeZoneLocationName(Service::Time::TimeZone::LocationName& out_name);
Result SetDeviceTimeZoneLocationName(Service::Time::TimeZone::LocationName& name);
Result GetNetworkSystemClockContext(Service::Time::Clock::SystemClockContext& out_context);
Result SetNetworkSystemClockContext(Service::Time::Clock::SystemClockContext& context);
Result GetUserSystemClockContext(Service::PSC::Time::SystemClockContext& out_context);
Result SetUserSystemClockContext(Service::PSC::Time::SystemClockContext& context);
Result GetDeviceTimeZoneLocationName(Service::PSC::Time::LocationName& out_name);
Result SetDeviceTimeZoneLocationName(Service::PSC::Time::LocationName& name);
Result GetNetworkSystemClockContext(Service::PSC::Time::SystemClockContext& out_context);
Result SetNetworkSystemClockContext(Service::PSC::Time::SystemClockContext& context);
Result IsUserSystemClockAutomaticCorrectionEnabled(bool& out_enabled);
Result SetUserSystemClockAutomaticCorrectionEnabled(bool enabled);
Result SetExternalSteadyClockInternalOffset(s64 offset);
Result GetExternalSteadyClockInternalOffset(s64& out_offset);
Result GetDeviceTimeZoneLocationUpdatedTime(
Service::Time::Clock::SteadyClockTimePoint& out_time_point);
Service::PSC::Time::SteadyClockTimePoint& out_time_point);
Result SetDeviceTimeZoneLocationUpdatedTime(
Service::Time::Clock::SteadyClockTimePoint& time_point);
Service::PSC::Time::SteadyClockTimePoint& time_point);
Result GetUserSystemClockAutomaticCorrectionUpdatedTime(
Service::Time::Clock::SteadyClockTimePoint& out_time_point);
Service::PSC::Time::SteadyClockTimePoint& out_time_point);
Result SetUserSystemClockAutomaticCorrectionUpdatedTime(
Service::Time::Clock::SteadyClockTimePoint time_point);
Service::PSC::Time::SteadyClockTimePoint time_point);
private:
void SetLanguageCode(HLERequestContext& ctx);
@ -147,8 +146,8 @@ private:
PrivateSettings m_private_settings{};
DeviceSettings m_device_settings{};
ApplnSettings m_appln_settings{};
std::jthread m_save_thread;
std::mutex m_save_needed_mutex;
std::jthread m_save_thread;
bool m_save_needed{false};
};

View File

@ -3,6 +3,7 @@
#pragma once
#include <chrono>
#include <memory>
#include <mutex>
#include <string>
@ -10,6 +11,7 @@
#include "common/concepts.h"
#include "core/hle/kernel/k_port.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/result.h"
#include "core/hle/service/service.h"
@ -62,12 +64,21 @@ public:
Result GetServicePort(Kernel::KClientPort** out_client_port, const std::string& name);
template <Common::DerivedFrom<SessionRequestHandler> T>
std::shared_ptr<T> GetService(const std::string& service_name) const {
std::shared_ptr<T> GetService(const std::string& service_name, bool block = false) const {
auto service = registered_services.find(service_name);
if (service == registered_services.end()) {
if (service == registered_services.end() && !block) {
LOG_DEBUG(Service, "Can't find service: {}", service_name);
return nullptr;
} else if (block) {
using namespace std::literals::chrono_literals;
while (service == registered_services.end()) {
Kernel::Svc::SleepThread(
kernel.System(),
std::chrono::duration_cast<std::chrono::nanoseconds>(100ms).count());
service = registered_services.find(service_name);
}
}
return std::static_pointer_cast<T>(service->second());
}

View File

@ -1,129 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2019 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <ratio>
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/uuid.h"
#include "core/hle/service/time/errors.h"
#include "core/hle/service/time/time_zone_types.h"
// Defined by WinBase.h on Windows
#ifdef GetCurrentTime
#undef GetCurrentTime
#endif
namespace Service::Time::Clock {
enum class TimeType : u8 {
UserSystemClock,
NetworkSystemClock,
LocalSystemClock,
};
/// https://switchbrew.org/wiki/Glue_services#SteadyClockTimePoint
struct SteadyClockTimePoint {
s64 time_point;
Common::UUID clock_source_id;
Result GetSpanBetween(SteadyClockTimePoint other, s64& span) const {
span = 0;
if (clock_source_id != other.clock_source_id) {
return ERROR_TIME_MISMATCH;
}
span = other.time_point - time_point;
return ResultSuccess;
}
static SteadyClockTimePoint GetRandom() {
return {0, Common::UUID::MakeRandom()};
}
};
static_assert(sizeof(SteadyClockTimePoint) == 0x18, "SteadyClockTimePoint is incorrect size");
static_assert(std::is_trivially_copyable_v<SteadyClockTimePoint>,
"SteadyClockTimePoint must be trivially copyable");
struct SteadyClockContext {
u64 internal_offset;
Common::UUID steady_time_point;
};
static_assert(sizeof(SteadyClockContext) == 0x18, "SteadyClockContext is incorrect size");
static_assert(std::is_trivially_copyable_v<SteadyClockContext>,
"SteadyClockContext must be trivially copyable");
using StandardSteadyClockTimePointType = SteadyClockContext;
struct SystemClockContext {
s64 offset;
SteadyClockTimePoint steady_time_point;
};
static_assert(sizeof(SystemClockContext) == 0x20, "SystemClockContext is incorrect size");
static_assert(std::is_trivially_copyable_v<SystemClockContext>,
"SystemClockContext must be trivially copyable");
struct ContinuousAdjustmentTimePoint {
s64 measurement_offset;
s64 diff_scale;
u32 shift_amount;
s64 lower;
s64 upper;
Common::UUID clock_source_id;
};
static_assert(sizeof(ContinuousAdjustmentTimePoint) == 0x38);
static_assert(std::is_trivially_copyable_v<ContinuousAdjustmentTimePoint>,
"ContinuousAdjustmentTimePoint must be trivially copyable");
/// https://switchbrew.org/wiki/Glue_services#TimeSpanType
struct TimeSpanType {
s64 nanoseconds{};
s64 ToSeconds() const {
return nanoseconds / std::nano::den;
}
static TimeSpanType FromSeconds(s64 seconds) {
return {seconds * std::nano::den};
}
template <u64 Frequency>
static TimeSpanType FromTicks(u64 ticks) {
using TicksToNSRatio = std::ratio<std::nano::den, Frequency>;
return {static_cast<s64>(ticks * TicksToNSRatio::num / TicksToNSRatio::den)};
}
};
static_assert(sizeof(TimeSpanType) == 8, "TimeSpanType is incorrect size");
struct ClockSnapshot {
SystemClockContext user_context;
SystemClockContext network_context;
s64 user_time;
s64 network_time;
TimeZone::CalendarTime user_calendar_time;
TimeZone::CalendarTime network_calendar_time;
TimeZone::CalendarAdditionalInfo user_calendar_additional_time;
TimeZone::CalendarAdditionalInfo network_calendar_additional_time;
SteadyClockTimePoint steady_clock_time_point;
TimeZone::LocationName location_name;
u8 is_automatic_correction_enabled;
TimeType type;
INSERT_PADDING_BYTES_NOINIT(0x2);
static Result GetCurrentTime(s64& current_time,
const SteadyClockTimePoint& steady_clock_time_point,
const SystemClockContext& context) {
if (steady_clock_time_point.clock_source_id != context.steady_time_point.clock_source_id) {
current_time = 0;
return ERROR_TIME_MISMATCH;
}
current_time = steady_clock_time_point.time_point + context.offset;
return ResultSuccess;
}
};
static_assert(sizeof(ClockSnapshot) == 0xD0, "ClockSnapshot is incorrect size");
} // namespace Service::Time::Clock

View File

@ -1,15 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2019 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/service/time/system_clock_context_update_callback.h"
namespace Service::Time::Clock {
class EphemeralNetworkSystemClockContextWriter final : public SystemClockContextUpdateCallback {
public:
EphemeralNetworkSystemClockContextWriter() : SystemClockContextUpdateCallback{} {}
};
} // namespace Service::Time::Clock

View File

@ -1,16 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2019 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/service/time/system_clock_core.h"
namespace Service::Time::Clock {
class EphemeralNetworkSystemClockCore final : public SystemClockCore {
public:
explicit EphemeralNetworkSystemClockCore(SteadyClockCore& steady_clock_core_)
: SystemClockCore{steady_clock_core_} {}
};
} // namespace Service::Time::Clock

Some files were not shown because too many files have changed in this diff Show More