forked from ShuriZma/suyu
1
0
Fork 0

hle: kernel: Manage host thread IDs using TLS.

- Avoids the need to have a large map of host to guest thread IDs.
This commit is contained in:
bunnei 2020-12-29 15:55:30 -08:00
parent dfdac7d38a
commit c192da3f82
1 changed files with 31 additions and 46 deletions

View File

@ -104,10 +104,8 @@ struct KernelCore::Impl {
exclusive_monitor.reset(); exclusive_monitor.reset();
num_host_threads = 0; // Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
std::fill(register_host_thread_keys.begin(), register_host_thread_keys.end(), next_host_thread_id = Core::Hardware::NUM_CPU_CORES;
std::thread::id{});
std::fill(register_host_thread_values.begin(), register_host_thread_values.end(), 0);
// Ensures all service threads gracefully shutdown // Ensures all service threads gracefully shutdown
service_threads.clear(); service_threads.clear();
@ -190,52 +188,46 @@ struct KernelCore::Impl {
} }
} }
/// Creates a new host thread ID, should only be called by GetHostThreadId
u32 AllocateHostThreadId(std::optional<std::size_t> core_id) {
if (core_id) {
// The first for slots are reserved for CPU core threads
ASSERT(*core_id < Core::Hardware::NUM_CPU_CORES);
return static_cast<u32>(*core_id);
} else {
return next_host_thread_id++;
}
}
/// Gets the host thread ID for the caller, allocating a new one if this is the first time
u32 GetHostThreadId(std::optional<std::size_t> core_id = std::nullopt) {
const thread_local auto host_thread_id{AllocateHostThreadId(core_id)};
return host_thread_id;
}
/// Registers a CPU core thread by allocating a host thread ID for it
void RegisterCoreThread(std::size_t core_id) { void RegisterCoreThread(std::size_t core_id) {
const std::thread::id this_id = std::this_thread::get_id(); ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
const auto this_id = GetHostThreadId(core_id);
if (!is_multicore) { if (!is_multicore) {
single_core_thread_id = this_id; single_core_thread_id = this_id;
} }
const auto end =
register_host_thread_keys.begin() + static_cast<ptrdiff_t>(num_host_threads);
const auto it = std::find(register_host_thread_keys.begin(), end, this_id);
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
ASSERT(it == end);
InsertHostThread(static_cast<u32>(core_id));
} }
/// Registers a new host thread by allocating a host thread ID for it
void RegisterHostThread() { void RegisterHostThread() {
const std::thread::id this_id = std::this_thread::get_id(); [[maybe_unused]] const auto this_id = GetHostThreadId();
const auto end =
register_host_thread_keys.begin() + static_cast<ptrdiff_t>(num_host_threads);
const auto it = std::find(register_host_thread_keys.begin(), end, this_id);
if (it == end) {
InsertHostThread(registered_thread_ids++);
}
} }
void InsertHostThread(u32 value) { [[nodiscard]] u32 GetCurrentHostThreadID() {
const size_t index = num_host_threads++; const auto this_id = GetHostThreadId();
ASSERT_MSG(index < NUM_REGISTRABLE_HOST_THREADS, "Too many host threads");
register_host_thread_values[index] = value;
register_host_thread_keys[index] = std::this_thread::get_id();
}
[[nodiscard]] u32 GetCurrentHostThreadID() const {
const std::thread::id this_id = std::this_thread::get_id();
if (!is_multicore && single_core_thread_id == this_id) { if (!is_multicore && single_core_thread_id == this_id) {
return static_cast<u32>(system.GetCpuManager().CurrentCore()); return static_cast<u32>(system.GetCpuManager().CurrentCore());
} }
const auto end = return this_id;
register_host_thread_keys.begin() + static_cast<ptrdiff_t>(num_host_threads);
const auto it = std::find(register_host_thread_keys.begin(), end, this_id);
if (it == end) {
return Core::INVALID_HOST_THREAD_ID;
}
return register_host_thread_values[static_cast<size_t>(
std::distance(register_host_thread_keys.begin(), it))];
} }
Core::EmuThreadHandle GetCurrentEmuThreadID() const { [[nodiscard]] Core::EmuThreadHandle GetCurrentEmuThreadID() {
Core::EmuThreadHandle result = Core::EmuThreadHandle::InvalidHandle(); Core::EmuThreadHandle result = Core::EmuThreadHandle::InvalidHandle();
result.host_handle = GetCurrentHostThreadID(); result.host_handle = GetCurrentHostThreadID();
if (result.host_handle >= Core::Hardware::NUM_CPU_CORES) { if (result.host_handle >= Core::Hardware::NUM_CPU_CORES) {
@ -329,15 +321,8 @@ struct KernelCore::Impl {
std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor; std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor;
std::vector<Kernel::PhysicalCore> cores; std::vector<Kernel::PhysicalCore> cores;
// 0-3 IDs represent core threads, >3 represent others // Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
std::atomic<u32> registered_thread_ids{Core::Hardware::NUM_CPU_CORES}; std::atomic<u32> next_host_thread_id{Core::Hardware::NUM_CPU_CORES};
// Number of host threads is a relatively high number to avoid overflowing
static constexpr size_t NUM_REGISTRABLE_HOST_THREADS = 1024;
std::atomic<size_t> num_host_threads{0};
std::array<std::atomic<std::thread::id>, NUM_REGISTRABLE_HOST_THREADS>
register_host_thread_keys{};
std::array<std::atomic<u32>, NUM_REGISTRABLE_HOST_THREADS> register_host_thread_values{};
// Kernel memory management // Kernel memory management
std::unique_ptr<Memory::MemoryManager> memory_manager; std::unique_ptr<Memory::MemoryManager> memory_manager;
@ -357,7 +342,7 @@ struct KernelCore::Impl {
std::array<std::unique_ptr<Kernel::KScheduler>, Core::Hardware::NUM_CPU_CORES> schedulers{}; std::array<std::unique_ptr<Kernel::KScheduler>, Core::Hardware::NUM_CPU_CORES> schedulers{};
bool is_multicore{}; bool is_multicore{};
std::thread::id single_core_thread_id{}; u32 single_core_thread_id{};
std::array<u64, Core::Hardware::NUM_CPU_CORES> svc_ticks{}; std::array<u64, Core::Hardware::NUM_CPU_CORES> svc_ticks{};