forked from ShuriZma/suyu
1
0
Fork 0

Merge pull request #279 from bunnei/tegra-progress-3

Tegra progress 3
This commit is contained in:
bunnei 2018-03-26 22:30:03 -04:00 committed by GitHub
commit b4bf099793
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 922 additions and 455 deletions

View File

@ -15,6 +15,7 @@
#include "core/core.h" #include "core/core.h"
#include "core/hle/kernel/memory.h" #include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h" #include "core/hle/kernel/process.h"
#include "core/hle/lock.h"
#include "core/memory.h" #include "core/memory.h"
#include "core/memory_setup.h" #include "core/memory_setup.h"
#include "video_core/renderer_base.h" #include "video_core/renderer_base.h"
@ -115,91 +116,120 @@ static std::set<MemoryHookPointer> GetSpecialHandlers(VAddr vaddr, u64 size) {
return GetSpecialHandlers(page_table, vaddr, size); return GetSpecialHandlers(page_table, vaddr, size);
} }
template <typename T> /**
boost::optional<T> ReadSpecial(VAddr addr); * Gets a pointer to the exact memory at the virtual address (i.e. not page aligned)
* using a VMA from the current process
*/
static u8* GetPointerFromVMA(const Kernel::Process& process, VAddr vaddr) {
u8* direct_pointer = nullptr;
auto& vm_manager = process.vm_manager;
auto it = vm_manager.FindVMA(vaddr);
ASSERT(it != vm_manager.vma_map.end());
auto& vma = it->second;
switch (vma.type) {
case Kernel::VMAType::AllocatedMemoryBlock:
direct_pointer = vma.backing_block->data() + vma.offset;
break;
case Kernel::VMAType::BackingMemory:
direct_pointer = vma.backing_memory;
break;
case Kernel::VMAType::Free:
return nullptr;
default:
UNREACHABLE();
}
return direct_pointer + (vaddr - vma.base);
}
/**
* Gets a pointer to the exact memory at the virtual address (i.e. not page aligned)
* using a VMA from the current process.
*/
static u8* GetPointerFromVMA(VAddr vaddr) {
return GetPointerFromVMA(*Core::CurrentProcess(), vaddr);
}
template <typename T> template <typename T>
T Read(const VAddr vaddr) { T Read(const VAddr vaddr) {
if ((vaddr >> PAGE_BITS) >= PAGE_TABLE_NUM_ENTRIES) { const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
LOG_ERROR(HW_Memory, "Read%lu after page table @ 0x%016" PRIX64, sizeof(T) * 8, vaddr); if (page_pointer) {
return 0; // NOTE: Avoid adding any extra logic to this fast-path block
}
const PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Read%zu @ 0x%016" PRIX64, sizeof(T) * 8, vaddr);
return 0;
case PageType::Special: {
if (auto result = ReadSpecial<T>(vaddr))
return *result;
[[fallthrough]];
}
case PageType::Memory: {
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
ASSERT_MSG(page_pointer, "Mapped memory page without a pointer @ %016" PRIX64, vaddr);
T value; T value;
std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T)); std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T));
return value; return value;
} }
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%08X", sizeof(T) * 8, vaddr);
return 0;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
break;
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Flush);
T value;
std::memcpy(&value, GetPointerFromVMA(vaddr), sizeof(T));
return value;
}
default:
UNREACHABLE();
} }
UNREACHABLE();
return 0;
} }
template <typename T>
bool WriteSpecial(VAddr addr, const T data);
template <typename T> template <typename T>
void Write(const VAddr vaddr, const T data) { void Write(const VAddr vaddr, const T data) {
if ((vaddr >> PAGE_BITS) >= PAGE_TABLE_NUM_ENTRIES) { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
LOG_ERROR(HW_Memory, "Write%lu after page table 0x%08X @ 0x%016" PRIX64, sizeof(data) * 8, if (page_pointer) {
(u32)data, vaddr); // NOTE: Avoid adding any extra logic to this fast-path block
return;
}
const PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Write%zu 0x%08X @ 0x%016" PRIX64, sizeof(data) * 8,
static_cast<u32>(data), vaddr);
return;
case PageType::Special: {
if (WriteSpecial<T>(vaddr, data))
return;
[[fallthrough]];
}
case PageType::Memory: {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
ASSERT_MSG(page_pointer, "Mapped memory page without a pointer @ %016" PRIX64, vaddr);
std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T)); std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T));
return; return;
} }
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data,
vaddr);
return;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
break;
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate);
std::memcpy(GetPointerFromVMA(vaddr), &data, sizeof(T));
break;
}
default:
UNREACHABLE();
} }
UNREACHABLE();
} }
bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) { bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) {
auto& page_table = process.vm_manager.page_table; auto& page_table = process.vm_manager.page_table;
if ((vaddr >> PAGE_BITS) >= PAGE_TABLE_NUM_ENTRIES) const u8* page_pointer = page_table.pointers[vaddr >> PAGE_BITS];
if (page_pointer)
return true;
if (page_table.attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory)
return true;
if (page_table.attributes[vaddr >> PAGE_BITS] != PageType::Special)
return false; return false;
const PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
return false;
case PageType::Memory:
return true;
case PageType::Special: {
for (auto handler : GetSpecialHandlers(page_table, vaddr, 1))
if (auto result = handler->IsValidAddress(vaddr))
return *result;
return current_page_table->pointers[vaddr >> PAGE_BITS] != nullptr;
}
}
UNREACHABLE();
return false; return false;
} }
@ -217,7 +247,11 @@ u8* GetPointer(const VAddr vaddr) {
return page_pointer + (vaddr & PAGE_MASK); return page_pointer + (vaddr & PAGE_MASK);
} }
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%016" PRIx64, vaddr); if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) {
return GetPointerFromVMA(vaddr);
}
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr);
return nullptr; return nullptr;
} }
@ -291,6 +325,58 @@ u8* GetPhysicalPointer(PAddr address) {
return target_pointer; return target_pointer;
} }
void RasterizerMarkRegionCached(VAddr start, u64 size, bool cached) {
if (start == 0) {
return;
}
u64 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1;
VAddr vaddr = start;
for (unsigned i = 0; i < num_pages; ++i, vaddr += PAGE_SIZE) {
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
if (cached) {
// Switch page type to cached if now cached
switch (page_type) {
case PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case PageType::Memory:
page_type = PageType::RasterizerCachedMemory;
current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr;
break;
default:
UNREACHABLE();
}
} else {
// Switch page type to uncached if now uncached
switch (page_type) {
case PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case PageType::RasterizerCachedMemory: {
u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK);
if (pointer == nullptr) {
// It's possible that this function has been called while updating the pagetable
// after unmapping a VMA. In that case the underlying VMA will no longer exist,
// and we should just leave the pagetable entry blank.
page_type = PageType::Unmapped;
} else {
page_type = PageType::Memory;
current_page_table->pointers[vaddr >> PAGE_BITS] = pointer;
}
break;
}
default:
UNREACHABLE();
}
}
}
}
void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode) { void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode) {
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be // Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
// null here // null here
@ -344,17 +430,6 @@ u64 Read64(const VAddr addr) {
return Read<u64_le>(addr); return Read<u64_le>(addr);
} }
static bool ReadSpecialBlock(const Kernel::Process& process, const VAddr src_addr,
void* dest_buffer, const size_t size) {
auto& page_table = process.vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, src_addr, size)) {
if (handler->ReadBlock(src_addr, dest_buffer, size)) {
return true;
}
}
return false;
}
void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer,
const size_t size) { const size_t size) {
auto& page_table = process.vm_manager.page_table; auto& page_table = process.vm_manager.page_table;
@ -364,21 +439,16 @@ void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_
size_t page_offset = src_addr & PAGE_MASK; size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) { while (remaining_size > 0) {
const size_t copy_amount = std::min<size_t>(PAGE_SIZE - page_offset, remaining_size); const size_t copy_amount =
std::min(static_cast<size_t>(PAGE_SIZE) - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) { switch (page_table.attributes[page_index]) {
case PageType::Unmapped: case PageType::Unmapped: {
LOG_ERROR(HW_Memory, LOG_ERROR(HW_Memory, "unmapped ReadBlock @ 0x%08X (start address = 0x%08X, size = %zu)",
"unmapped ReadBlock @ 0x%016" PRIX64 " (start address = 0x%" PRIx64
", size = %zu)",
current_vaddr, src_addr, size); current_vaddr, src_addr, size);
std::memset(dest_buffer, 0, copy_amount); std::memset(dest_buffer, 0, copy_amount);
break; break;
case PageType::Special: {
if (ReadSpecialBlock(process, current_vaddr, dest_buffer, copy_amount))
break;
[[fallthrough]];
} }
case PageType::Memory: { case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]); DEBUG_ASSERT(page_table.pointers[page_index]);
@ -387,6 +457,12 @@ void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_
std::memcpy(dest_buffer, src_ptr, copy_amount); std::memcpy(dest_buffer, src_ptr, copy_amount);
break; break;
} }
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
std::memcpy(dest_buffer, GetPointerFromVMA(process, current_vaddr), copy_amount);
break;
}
default: default:
UNREACHABLE(); UNREACHABLE();
} }
@ -418,17 +494,6 @@ void Write64(const VAddr addr, const u64 data) {
Write<u64_le>(addr, data); Write<u64_le>(addr, data);
} }
static bool WriteSpecialBlock(const Kernel::Process& process, const VAddr dest_addr,
const void* src_buffer, const size_t size) {
auto& page_table = process.vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, dest_addr, size)) {
if (handler->WriteBlock(dest_addr, src_buffer, size)) {
return true;
}
}
return false;
}
void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer, void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer,
const size_t size) { const size_t size) {
auto& page_table = process.vm_manager.page_table; auto& page_table = process.vm_manager.page_table;
@ -437,20 +502,17 @@ void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const voi
size_t page_offset = dest_addr & PAGE_MASK; size_t page_offset = dest_addr & PAGE_MASK;
while (remaining_size > 0) { while (remaining_size > 0) {
const size_t copy_amount = std::min<size_t>(PAGE_SIZE - page_offset, remaining_size); const size_t copy_amount =
std::min(static_cast<size_t>(PAGE_SIZE) - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) { switch (page_table.attributes[page_index]) {
case PageType::Unmapped: case PageType::Unmapped: {
LOG_ERROR(HW_Memory, LOG_ERROR(HW_Memory,
"unmapped WriteBlock @ 0x%016" PRIX64 " (start address = 0x%016" PRIX64 "unmapped WriteBlock @ 0x%08X (start address = 0x%08X, size = %zu)",
", size = %zu)",
current_vaddr, dest_addr, size); current_vaddr, dest_addr, size);
break; break;
case PageType::Special: }
if (WriteSpecialBlock(process, current_vaddr, src_buffer, copy_amount))
break;
[[fallthrough]];
case PageType::Memory: { case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]); DEBUG_ASSERT(page_table.pointers[page_index]);
@ -458,6 +520,12 @@ void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const voi
std::memcpy(dest_ptr, src_buffer, copy_amount); std::memcpy(dest_ptr, src_buffer, copy_amount);
break; break;
} }
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Invalidate);
std::memcpy(GetPointerFromVMA(process, current_vaddr), src_buffer, copy_amount);
break;
}
default: default:
UNREACHABLE(); UNREACHABLE();
} }
@ -473,9 +541,8 @@ void WriteBlock(const VAddr dest_addr, const void* src_buffer, const size_t size
WriteBlock(*Core::CurrentProcess(), dest_addr, src_buffer, size); WriteBlock(*Core::CurrentProcess(), dest_addr, src_buffer, size);
} }
void ZeroBlock(const VAddr dest_addr, const size_t size) { void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const size_t size) {
const auto& process = *Core::CurrentProcess(); auto& page_table = process.vm_manager.page_table;
size_t remaining_size = size; size_t remaining_size = size;
size_t page_index = dest_addr >> PAGE_BITS; size_t page_index = dest_addr >> PAGE_BITS;
size_t page_offset = dest_addr & PAGE_MASK; size_t page_offset = dest_addr & PAGE_MASK;
@ -483,27 +550,29 @@ void ZeroBlock(const VAddr dest_addr, const size_t size) {
static const std::array<u8, PAGE_SIZE> zeros = {}; static const std::array<u8, PAGE_SIZE> zeros = {};
while (remaining_size > 0) { while (remaining_size > 0) {
const size_t copy_amount = std::min<size_t>(PAGE_SIZE - page_offset, remaining_size); const size_t copy_amount =
std::min(static_cast<size_t>(PAGE_SIZE) - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (current_page_table->attributes[page_index]) { switch (page_table.attributes[page_index]) {
case PageType::Unmapped: case PageType::Unmapped: {
LOG_ERROR(HW_Memory, LOG_ERROR(HW_Memory, "unmapped ZeroBlock @ 0x%08X (start address = 0x%08X, size = %zu)",
"unmapped ZeroBlock @ 0x%016" PRIX64 " (start address = 0x%016" PRIX64
", size = %zu)",
current_vaddr, dest_addr, size); current_vaddr, dest_addr, size);
break; break;
case PageType::Special: }
if (WriteSpecialBlock(process, current_vaddr, zeros.data(), copy_amount))
break;
[[fallthrough]];
case PageType::Memory: { case PageType::Memory: {
DEBUG_ASSERT(current_page_table->pointers[page_index]); DEBUG_ASSERT(page_table.pointers[page_index]);
u8* dest_ptr = current_page_table->pointers[page_index] + page_offset; u8* dest_ptr = page_table.pointers[page_index] + page_offset;
std::memset(dest_ptr, 0, copy_amount); std::memset(dest_ptr, 0, copy_amount);
break; break;
} }
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Invalidate);
std::memset(GetPointerFromVMA(process, current_vaddr), 0, copy_amount);
break;
}
default: default:
UNREACHABLE(); UNREACHABLE();
} }
@ -514,37 +583,34 @@ void ZeroBlock(const VAddr dest_addr, const size_t size) {
} }
} }
void CopyBlock(VAddr dest_addr, VAddr src_addr, const size_t size) { void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr, const size_t size) {
const auto& process = *Core::CurrentProcess(); auto& page_table = process.vm_manager.page_table;
size_t remaining_size = size; size_t remaining_size = size;
size_t page_index = src_addr >> PAGE_BITS; size_t page_index = src_addr >> PAGE_BITS;
size_t page_offset = src_addr & PAGE_MASK; size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) { while (remaining_size > 0) {
const size_t copy_amount = std::min<size_t>(PAGE_SIZE - page_offset, remaining_size); const size_t copy_amount =
std::min(static_cast<size_t>(PAGE_SIZE) - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (current_page_table->attributes[page_index]) { switch (page_table.attributes[page_index]) {
case PageType::Unmapped: case PageType::Unmapped: {
LOG_ERROR(HW_Memory, LOG_ERROR(HW_Memory, "unmapped CopyBlock @ 0x%08X (start address = 0x%08X, size = %zu)",
"unmapped CopyBlock @ 0x%016" PRIX64 " (start address = 0x%016" PRIX64
", size = %zu)",
current_vaddr, src_addr, size); current_vaddr, src_addr, size);
ZeroBlock(dest_addr, copy_amount); ZeroBlock(process, dest_addr, copy_amount);
break; break;
case PageType::Special: {
std::vector<u8> buffer(copy_amount);
if (ReadSpecialBlock(process, current_vaddr, buffer.data(), buffer.size())) {
WriteBlock(dest_addr, buffer.data(), buffer.size());
break;
}
[[fallthrough]];
} }
case PageType::Memory: { case PageType::Memory: {
DEBUG_ASSERT(current_page_table->pointers[page_index]); DEBUG_ASSERT(page_table.pointers[page_index]);
const u8* src_ptr = current_page_table->pointers[page_index] + page_offset; const u8* src_ptr = page_table.pointers[page_index] + page_offset;
WriteBlock(dest_addr, src_ptr, copy_amount); WriteBlock(process, dest_addr, src_ptr, copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
WriteBlock(process, dest_addr, GetPointerFromVMA(process, current_vaddr), copy_amount);
break; break;
} }
default: default:
@ -559,78 +625,6 @@ void CopyBlock(VAddr dest_addr, VAddr src_addr, const size_t size) {
} }
} }
template <>
boost::optional<u8> ReadSpecial<u8>(VAddr addr) {
const PageTable& page_table = Core::CurrentProcess()->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u8)))
if (auto result = handler->Read8(addr))
return *result;
return {};
}
template <>
boost::optional<u16> ReadSpecial<u16>(VAddr addr) {
const PageTable& page_table = Core::CurrentProcess()->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u16)))
if (auto result = handler->Read16(addr))
return *result;
return {};
}
template <>
boost::optional<u32> ReadSpecial<u32>(VAddr addr) {
const PageTable& page_table = Core::CurrentProcess()->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u32)))
if (auto result = handler->Read32(addr))
return *result;
return {};
}
template <>
boost::optional<u64> ReadSpecial<u64>(VAddr addr) {
const PageTable& page_table = Core::CurrentProcess()->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u64)))
if (auto result = handler->Read64(addr))
return *result;
return {};
}
template <>
bool WriteSpecial<u8>(VAddr addr, const u8 data) {
const PageTable& page_table = Core::CurrentProcess()->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u8)))
if (handler->Write8(addr, data))
return true;
return false;
}
template <>
bool WriteSpecial<u16>(VAddr addr, const u16 data) {
const PageTable& page_table = Core::CurrentProcess()->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u16)))
if (handler->Write16(addr, data))
return true;
return false;
}
template <>
bool WriteSpecial<u32>(VAddr addr, const u32 data) {
const PageTable& page_table = Core::CurrentProcess()->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u32)))
if (handler->Write32(addr, data))
return true;
return false;
}
template <>
bool WriteSpecial<u64>(VAddr addr, const u64 data) {
const PageTable& page_table = Core::CurrentProcess()->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u64)))
if (handler->Write64(addr, data))
return true;
return false;
}
boost::optional<PAddr> TryVirtualToPhysicalAddress(const VAddr addr) { boost::optional<PAddr> TryVirtualToPhysicalAddress(const VAddr addr) {
if (addr == 0) { if (addr == 0) {
return 0; return 0;

View File

@ -254,6 +254,11 @@ enum class FlushMode {
FlushAndInvalidate, FlushAndInvalidate,
}; };
/**
* Mark each page touching the region as cached.
*/
void RasterizerMarkRegionCached(VAddr start, u64 size, bool cached);
/** /**
* Flushes and invalidates any externally cached rasterizer resources touching the given virtual * Flushes and invalidates any externally cached rasterizer resources touching the given virtual
* address region. * address region.

View File

@ -31,6 +31,7 @@ add_library(video_core STATIC
renderer_opengl/gl_state.h renderer_opengl/gl_state.h
renderer_opengl/gl_stream_buffer.cpp renderer_opengl/gl_stream_buffer.cpp
renderer_opengl/gl_stream_buffer.h renderer_opengl/gl_stream_buffer.h
renderer_opengl/maxwell_to_gl.h
renderer_opengl/renderer_opengl.cpp renderer_opengl/renderer_opengl.cpp
renderer_opengl/renderer_opengl.h renderer_opengl/renderer_opengl.h
textures/decoders.cpp textures/decoders.cpp

View File

@ -7,8 +7,11 @@
#include "core/core.h" #include "core/core.h"
#include "video_core/debug_utils/debug_utils.h" #include "video_core/debug_utils/debug_utils.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_base.h"
#include "video_core/textures/decoders.h" #include "video_core/textures/decoders.h"
#include "video_core/textures/texture.h" #include "video_core/textures/texture.h"
#include "video_core/video_core.h"
namespace Tegra { namespace Tegra {
namespace Engines { namespace Engines {
@ -174,7 +177,9 @@ void Maxwell3D::ProcessQueryGet() {
} }
void Maxwell3D::DrawArrays() { void Maxwell3D::DrawArrays() {
LOG_WARNING(HW_GPU, "Game requested a DrawArrays, ignoring"); LOG_DEBUG(HW_GPU, "called, topology=%d, count=%d", regs.draw.topology.Value(),
regs.vertex_buffer.count);
auto debug_context = Core::System::GetInstance().GetGPUDebugContext(); auto debug_context = Core::System::GetInstance().GetGPUDebugContext();
if (debug_context) { if (debug_context) {
@ -184,6 +189,8 @@ void Maxwell3D::DrawArrays() {
if (debug_context) { if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::FinishedPrimitiveBatch, nullptr); debug_context->OnEvent(Tegra::DebugContext::Event::FinishedPrimitiveBatch, nullptr);
} }
VideoCore::g_renderer->Rasterizer()->AccelerateDrawBatch(false /*is_indexed*/);
} }
void Maxwell3D::BindTextureInfoBuffer(const std::vector<u32>& parameters) { void Maxwell3D::BindTextureInfoBuffer(const std::vector<u32>& parameters) {

View File

@ -11,6 +11,8 @@
#include "common/bit_field.h" #include "common/bit_field.h"
#include "common/common_funcs.h" #include "common/common_funcs.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/math_util.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h" #include "video_core/memory_manager.h"
#include "video_core/textures/texture.h" #include "video_core/textures/texture.h"
@ -59,88 +61,173 @@ public:
Fragment = 4, Fragment = 4,
}; };
enum class VertexSize : u32 { struct VertexAttribute {
Size_32_32_32_32 = 0x01, enum class Size : u32 {
Size_32_32_32 = 0x02, Size_32_32_32_32 = 0x01,
Size_16_16_16_16 = 0x03, Size_32_32_32 = 0x02,
Size_32_32 = 0x04, Size_16_16_16_16 = 0x03,
Size_16_16_16 = 0x05, Size_32_32 = 0x04,
Size_8_8_8_8 = 0x0a, Size_16_16_16 = 0x05,
Size_16_16 = 0x0f, Size_8_8_8_8 = 0x0a,
Size_32 = 0x12, Size_16_16 = 0x0f,
Size_8_8_8 = 0x13, Size_32 = 0x12,
Size_8_8 = 0x18, Size_8_8_8 = 0x13,
Size_16 = 0x1b, Size_8_8 = 0x18,
Size_8 = 0x1d, Size_16 = 0x1b,
Size_10_10_10_2 = 0x30, Size_8 = 0x1d,
Size_11_11_10 = 0x31, Size_10_10_10_2 = 0x30,
}; Size_11_11_10 = 0x31,
};
static std::string VertexSizeToString(VertexSize vertex_size) { enum class Type : u32 {
switch (vertex_size) { SignedNorm = 1,
case VertexSize::Size_32_32_32_32: UnsignedNorm = 2,
return "32_32_32_32"; SignedInt = 3,
case VertexSize::Size_32_32_32: UnsignedInt = 4,
return "32_32_32"; UnsignedScaled = 5,
case VertexSize::Size_16_16_16_16: SignedScaled = 6,
return "16_16_16_16"; Float = 7,
case VertexSize::Size_32_32: };
return "32_32";
case VertexSize::Size_16_16_16: union {
return "16_16_16"; BitField<0, 5, u32> buffer;
case VertexSize::Size_8_8_8_8: BitField<6, 1, u32> constant;
return "8_8_8_8"; BitField<7, 14, u32> offset;
case VertexSize::Size_16_16: BitField<21, 6, Size> size;
return "16_16"; BitField<27, 3, Type> type;
case VertexSize::Size_32: BitField<31, 1, u32> bgra;
return "32"; };
case VertexSize::Size_8_8_8:
return "8_8_8"; u32 ComponentCount() const {
case VertexSize::Size_8_8: switch (size) {
return "8_8"; case Size::Size_32_32_32_32:
case VertexSize::Size_16: return 4;
return "16"; case Size::Size_32_32_32:
case VertexSize::Size_8: return 3;
return "8"; case Size::Size_16_16_16_16:
case VertexSize::Size_10_10_10_2: return 4;
return "10_10_10_2"; case Size::Size_32_32:
case VertexSize::Size_11_11_10: return 2;
return "11_11_10"; case Size::Size_16_16_16:
return 3;
case Size::Size_8_8_8_8:
return 4;
case Size::Size_16_16:
return 2;
case Size::Size_32:
return 1;
case Size::Size_8_8_8:
return 3;
case Size::Size_8_8:
return 2;
case Size::Size_16:
return 1;
case Size::Size_8:
return 1;
case Size::Size_10_10_10_2:
return 4;
case Size::Size_11_11_10:
return 3;
default:
UNREACHABLE();
}
} }
UNIMPLEMENTED();
return {};
}
enum class VertexType : u32 { u32 SizeInBytes() const {
SignedNorm = 1, switch (size) {
UnsignedNorm = 2, case Size::Size_32_32_32_32:
SignedInt = 3, return 16;
UnsignedInt = 4, case Size::Size_32_32_32:
UnsignedScaled = 5, return 12;
SignedScaled = 6, case Size::Size_16_16_16_16:
Float = 7, return 8;
}; case Size::Size_32_32:
return 8;
static std::string VertexTypeToString(VertexType vertex_type) { case Size::Size_16_16_16:
switch (vertex_type) { return 6;
case VertexType::SignedNorm: case Size::Size_8_8_8_8:
return "SignedNorm"; return 4;
case VertexType::UnsignedNorm: case Size::Size_16_16:
return "UnsignedNorm"; return 4;
case VertexType::SignedInt: case Size::Size_32:
return "SignedInt"; return 4;
case VertexType::UnsignedInt: case Size::Size_8_8_8:
return "UnsignedInt"; return 3;
case VertexType::UnsignedScaled: case Size::Size_8_8:
return "UnsignedScaled"; return 2;
case VertexType::SignedScaled: case Size::Size_16:
return "SignedScaled"; return 2;
case VertexType::Float: case Size::Size_8:
return "Float"; return 1;
case Size::Size_10_10_10_2:
return 4;
case Size::Size_11_11_10:
return 4;
default:
UNREACHABLE();
}
} }
UNIMPLEMENTED();
return {}; std::string SizeString() const {
} switch (size) {
case Size::Size_32_32_32_32:
return "32_32_32_32";
case Size::Size_32_32_32:
return "32_32_32";
case Size::Size_16_16_16_16:
return "16_16_16_16";
case Size::Size_32_32:
return "32_32";
case Size::Size_16_16_16:
return "16_16_16";
case Size::Size_8_8_8_8:
return "8_8_8_8";
case Size::Size_16_16:
return "16_16";
case Size::Size_32:
return "32";
case Size::Size_8_8_8:
return "8_8_8";
case Size::Size_8_8:
return "8_8";
case Size::Size_16:
return "16";
case Size::Size_8:
return "8";
case Size::Size_10_10_10_2:
return "10_10_10_2";
case Size::Size_11_11_10:
return "11_11_10";
}
UNREACHABLE();
return {};
}
std::string TypeString() const {
switch (type) {
case Type::SignedNorm:
return "SNORM";
case Type::UnsignedNorm:
return "UNORM";
case Type::SignedInt:
return "SINT";
case Type::UnsignedInt:
return "UINT";
case Type::UnsignedScaled:
return "USCALED";
case Type::SignedScaled:
return "SSCALED";
case Type::Float:
return "FLOAT";
}
UNREACHABLE();
return {};
}
bool IsNormalized() const {
return (type == Type::SignedNorm) || (type == Type::UnsignedNorm);
}
};
enum class PrimitiveTopology : u32 { enum class PrimitiveTopology : u32 {
Points = 0x0, Points = 0x0,
@ -167,9 +254,9 @@ public:
struct { struct {
u32 address_high; u32 address_high;
u32 address_low; u32 address_low;
u32 horiz; u32 width;
u32 vert; u32 height;
u32 format; Tegra::RenderTargetFormat format;
u32 block_dimensions; u32 block_dimensions;
u32 array_mode; u32 array_mode;
u32 layer_stride; u32 layer_stride;
@ -195,6 +282,15 @@ public:
}; };
float depth_range_near; float depth_range_near;
float depth_range_far; float depth_range_far;
MathUtil::Rectangle<s32> GetRect() const {
return {
static_cast<s32>(x), // left
static_cast<s32>(y + height), // top
static_cast<s32>(x + width), // right
static_cast<s32>(y) // bottom
};
};
} viewport[NumViewports]; } viewport[NumViewports];
INSERT_PADDING_WORDS(0x1D); INSERT_PADDING_WORDS(0x1D);
@ -221,14 +317,7 @@ public:
INSERT_PADDING_WORDS(0x5B); INSERT_PADDING_WORDS(0x5B);
union { VertexAttribute vertex_attrib_format[NumVertexAttributes];
BitField<0, 5, u32> buffer;
BitField<6, 1, u32> constant;
BitField<7, 14, u32> offset;
BitField<21, 6, VertexSize> size;
BitField<27, 3, VertexType> type;
BitField<31, 1, u32> bgra;
} vertex_attrib_format[NumVertexAttributes];
INSERT_PADDING_WORDS(0xF); INSERT_PADDING_WORDS(0xF);

View File

@ -13,7 +13,8 @@
namespace Tegra { namespace Tegra {
enum class RenderTargetFormat { enum class RenderTargetFormat : u32 {
NONE = 0x0,
RGBA8_UNORM = 0xD5, RGBA8_UNORM = 0xD5,
}; };

View File

@ -15,8 +15,8 @@ class RasterizerInterface {
public: public:
virtual ~RasterizerInterface() {} virtual ~RasterizerInterface() {}
/// Draw the current batch of triangles /// Draw the current batch of vertex arrays
virtual void DrawTriangles() = 0; virtual void DrawArrays() = 0;
/// Notify rasterizer that the specified Maxwell register has been changed /// Notify rasterizer that the specified Maxwell register has been changed
virtual void NotifyMaxwellRegisterChanged(u32 id) = 0; virtual void NotifyMaxwellRegisterChanged(u32 id) = 0;

View File

@ -14,11 +14,16 @@
#include "common/microprofile.h" #include "common/microprofile.h"
#include "common/scope_exit.h" #include "common/scope_exit.h"
#include "common/vector_math.h" #include "common/vector_math.h"
#include "core/core.h"
#include "core/hle/kernel/process.h"
#include "core/settings.h" #include "core/settings.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_opengl/gl_rasterizer.h" #include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_gen.h" #include "video_core/renderer_opengl/gl_shader_gen.h"
#include "video_core/renderer_opengl/maxwell_to_gl.h"
#include "video_core/renderer_opengl/renderer_opengl.h" #include "video_core/renderer_opengl/renderer_opengl.h"
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using PixelFormat = SurfaceParams::PixelFormat; using PixelFormat = SurfaceParams::PixelFormat;
using SurfaceType = SurfaceParams::SurfaceType; using SurfaceType = SurfaceParams::SurfaceType;
@ -120,14 +125,14 @@ RasterizerOpenGL::RasterizerOpenGL() {
glBufferData(GL_UNIFORM_BUFFER, sizeof(VSUniformData), nullptr, GL_STREAM_COPY); glBufferData(GL_UNIFORM_BUFFER, sizeof(VSUniformData), nullptr, GL_STREAM_COPY);
glBindBufferBase(GL_UNIFORM_BUFFER, 1, vs_uniform_buffer.handle); glBindBufferBase(GL_UNIFORM_BUFFER, 1, vs_uniform_buffer.handle);
} else { } else {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
} }
accelerate_draw = AccelDraw::Disabled; accelerate_draw = AccelDraw::Disabled;
glEnable(GL_BLEND); glEnable(GL_BLEND);
LOG_WARNING(HW_GPU, "Sync fixed function OpenGL state here when ready"); LOG_CRITICAL(Render_OpenGL, "Sync fixed function OpenGL state here!");
} }
RasterizerOpenGL::~RasterizerOpenGL() { RasterizerOpenGL::~RasterizerOpenGL() {
@ -138,47 +143,235 @@ RasterizerOpenGL::~RasterizerOpenGL() {
} }
} }
static constexpr std::array<GLenum, 4> vs_attrib_types{
GL_BYTE, // VertexAttributeFormat::BYTE
GL_UNSIGNED_BYTE, // VertexAttributeFormat::UBYTE
GL_SHORT, // VertexAttributeFormat::SHORT
GL_FLOAT // VertexAttributeFormat::FLOAT
};
void RasterizerOpenGL::AnalyzeVertexArray(bool is_indexed) { void RasterizerOpenGL::AnalyzeVertexArray(bool is_indexed) {
UNIMPLEMENTED(); const auto& regs = Core::System().GetInstance().GPU().Maxwell3D().regs;
if (is_indexed) {
UNREACHABLE();
}
// TODO(bunnei): Add support for 1+ vertex arrays
vs_input_size = regs.vertex_buffer.count * regs.vertex_array[0].stride;
} }
void RasterizerOpenGL::SetupVertexArray(u8* array_ptr, GLintptr buffer_offset) { void RasterizerOpenGL::SetupVertexArray(u8* array_ptr, GLintptr buffer_offset) {
MICROPROFILE_SCOPE(OpenGL_VAO); MICROPROFILE_SCOPE(OpenGL_VAO);
UNIMPLEMENTED(); const auto& regs = Core::System().GetInstance().GPU().Maxwell3D().regs;
const auto& memory_manager = Core::System().GetInstance().GPU().memory_manager;
state.draw.vertex_array = hw_vao.handle;
state.draw.vertex_buffer = stream_buffer->GetHandle();
state.Apply();
// TODO(bunnei): Add support for 1+ vertex arrays
const auto& vertex_array{regs.vertex_array[0]};
ASSERT_MSG(vertex_array.enable, "vertex array 0 is disabled?");
ASSERT_MSG(!vertex_array.divisor, "vertex array 0 divisor is unimplemented!");
for (unsigned index = 1; index < Maxwell::NumVertexArrays; ++index) {
ASSERT_MSG(!regs.vertex_array[index].enable, "vertex array %d is unimplemented!", index);
}
// Use the vertex array as-is, assumes that the data is formatted correctly for OpenGL.
// Enables the first 16 vertex attributes always, as we don't know which ones are actually used
// until shader time. Note, Tegra technically supports 32, but we're cappinig this to 16 for now
// to avoid OpenGL errors.
for (unsigned index = 0; index < 16; ++index) {
auto& attrib = regs.vertex_attrib_format[index];
glVertexAttribPointer(index, attrib.ComponentCount(), MaxwellToGL::VertexType(attrib),
attrib.IsNormalized() ? GL_TRUE : GL_FALSE, vertex_array.stride,
reinterpret_cast<GLvoid*>(buffer_offset + attrib.offset));
glEnableVertexAttribArray(index);
hw_vao_enabled_attributes[index] = true;
}
// Copy vertex array data
const u32 data_size{vertex_array.stride * regs.vertex_buffer.count};
const VAddr data_addr{memory_manager->PhysicalToVirtualAddress(vertex_array.StartAddress())};
res_cache.FlushRegion(data_addr, data_size, nullptr);
Memory::ReadBlock(data_addr, array_ptr, data_size);
array_ptr += data_size;
buffer_offset += data_size;
} }
void RasterizerOpenGL::SetupVertexShader(VSUniformData* ub_ptr, GLintptr buffer_offset) { void RasterizerOpenGL::SetupVertexShader(VSUniformData* ub_ptr, GLintptr buffer_offset) {
MICROPROFILE_SCOPE(OpenGL_VS); MICROPROFILE_SCOPE(OpenGL_VS);
UNIMPLEMENTED(); LOG_CRITICAL(Render_OpenGL, "Emulated shaders are not supported! Using a passthrough shader.");
glUseProgramStages(pipeline.handle, GL_VERTEX_SHADER_BIT, current_shader->shader.handle);
} }
void RasterizerOpenGL::SetupFragmentShader(FSUniformData* ub_ptr, GLintptr buffer_offset) { void RasterizerOpenGL::SetupFragmentShader(FSUniformData* ub_ptr, GLintptr buffer_offset) {
MICROPROFILE_SCOPE(OpenGL_FS); MICROPROFILE_SCOPE(OpenGL_FS);
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
} }
bool RasterizerOpenGL::AccelerateDrawBatch(bool is_indexed) { bool RasterizerOpenGL::AccelerateDrawBatch(bool is_indexed) {
if (!has_ARB_separate_shader_objects) { if (!has_ARB_separate_shader_objects) {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
return false; return false;
} }
accelerate_draw = is_indexed ? AccelDraw::Indexed : AccelDraw::Arrays; accelerate_draw = is_indexed ? AccelDraw::Indexed : AccelDraw::Arrays;
DrawTriangles(); DrawArrays();
return true; return true;
} }
void RasterizerOpenGL::DrawTriangles() { void RasterizerOpenGL::DrawArrays() {
if (accelerate_draw == AccelDraw::Disabled)
return;
MICROPROFILE_SCOPE(OpenGL_Drawing); MICROPROFILE_SCOPE(OpenGL_Drawing);
UNIMPLEMENTED(); const auto& regs = Core::System().GetInstance().GPU().Maxwell3D().regs;
// TODO(bunnei): Implement these
const bool has_stencil = false;
const bool using_color_fb = true;
const bool using_depth_fb = false;
const MathUtil::Rectangle<s32> viewport_rect{regs.viewport[0].GetRect()};
const bool write_color_fb =
state.color_mask.red_enabled == GL_TRUE || state.color_mask.green_enabled == GL_TRUE ||
state.color_mask.blue_enabled == GL_TRUE || state.color_mask.alpha_enabled == GL_TRUE;
const bool write_depth_fb =
(state.depth.test_enabled && state.depth.write_mask == GL_TRUE) ||
(has_stencil && state.stencil.test_enabled && state.stencil.write_mask != 0);
Surface color_surface;
Surface depth_surface;
MathUtil::Rectangle<u32> surfaces_rect;
std::tie(color_surface, depth_surface, surfaces_rect) =
res_cache.GetFramebufferSurfaces(using_color_fb, using_depth_fb, viewport_rect);
const u16 res_scale = color_surface != nullptr
? color_surface->res_scale
: (depth_surface == nullptr ? 1u : depth_surface->res_scale);
MathUtil::Rectangle<u32> draw_rect{
static_cast<u32>(MathUtil::Clamp<s32>(static_cast<s32>(surfaces_rect.left) +
viewport_rect.left * res_scale,
surfaces_rect.left, surfaces_rect.right)), // Left
static_cast<u32>(MathUtil::Clamp<s32>(static_cast<s32>(surfaces_rect.bottom) +
viewport_rect.top * res_scale,
surfaces_rect.bottom, surfaces_rect.top)), // Top
static_cast<u32>(MathUtil::Clamp<s32>(static_cast<s32>(surfaces_rect.left) +
viewport_rect.right * res_scale,
surfaces_rect.left, surfaces_rect.right)), // Right
static_cast<u32>(MathUtil::Clamp<s32>(static_cast<s32>(surfaces_rect.bottom) +
viewport_rect.bottom * res_scale,
surfaces_rect.bottom, surfaces_rect.top))}; // Bottom
// Bind the framebuffer surfaces
BindFramebufferSurfaces(color_surface, depth_surface, has_stencil);
// Sync the viewport
SyncViewport(surfaces_rect, res_scale);
// TODO(bunnei): Sync framebuffer_scale uniform here
// TODO(bunnei): Sync scissorbox uniform(s) here
// TODO(bunnei): Sync and bind the texture surfaces
// Sync and bind the shader
if (shader_dirty) {
SetShader();
shader_dirty = false;
}
// Sync the uniform data
if (uniform_block_data.dirty) {
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(UniformData), &uniform_block_data.data);
uniform_block_data.dirty = false;
}
// Viewport can have negative offsets or larger dimensions than our framebuffer sub-rect. Enable
// scissor test to prevent drawing outside of the framebuffer region
state.scissor.enabled = true;
state.scissor.x = draw_rect.left;
state.scissor.y = draw_rect.bottom;
state.scissor.width = draw_rect.GetWidth();
state.scissor.height = draw_rect.GetHeight();
state.Apply();
// Draw the vertex batch
const bool is_indexed = accelerate_draw == AccelDraw::Indexed;
AnalyzeVertexArray(is_indexed);
state.draw.vertex_buffer = stream_buffer->GetHandle();
state.Apply();
size_t buffer_size = static_cast<size_t>(vs_input_size);
if (is_indexed) {
UNREACHABLE();
}
buffer_size += sizeof(VSUniformData);
size_t ptr_pos = 0;
u8* buffer_ptr;
GLintptr buffer_offset;
std::tie(buffer_ptr, buffer_offset) =
stream_buffer->Map(static_cast<GLsizeiptr>(buffer_size), 4);
SetupVertexArray(buffer_ptr, buffer_offset);
ptr_pos += vs_input_size;
GLintptr index_buffer_offset = 0;
if (is_indexed) {
UNREACHABLE();
}
SetupVertexShader(reinterpret_cast<VSUniformData*>(&buffer_ptr[ptr_pos]),
buffer_offset + static_cast<GLintptr>(ptr_pos));
const GLintptr vs_ubo_offset = buffer_offset + static_cast<GLintptr>(ptr_pos);
ptr_pos += sizeof(VSUniformData);
stream_buffer->Unmap();
const auto copy_buffer = [&](GLuint handle, GLintptr offset, GLsizeiptr size) {
if (has_ARB_direct_state_access) {
glCopyNamedBufferSubData(stream_buffer->GetHandle(), handle, offset, 0, size);
} else {
glBindBuffer(GL_COPY_WRITE_BUFFER, handle);
glCopyBufferSubData(GL_ARRAY_BUFFER, GL_COPY_WRITE_BUFFER, offset, 0, size);
}
};
copy_buffer(vs_uniform_buffer.handle, vs_ubo_offset, sizeof(VSUniformData));
glUseProgramStages(pipeline.handle, GL_FRAGMENT_SHADER_BIT, current_shader->shader.handle);
if (is_indexed) {
UNREACHABLE();
} else {
glDrawArrays(MaxwellToGL::PrimitiveTopology(regs.draw.topology), 0,
regs.vertex_buffer.count);
}
// Disable scissor test
state.scissor.enabled = false;
accelerate_draw = AccelDraw::Disabled;
// Unbind textures for potential future use as framebuffer attachments
for (auto& texture_unit : state.texture_units) {
texture_unit.texture_2d = 0;
}
state.Apply();
// Mark framebuffer surfaces as dirty
MathUtil::Rectangle<u32> draw_rect_unscaled{
draw_rect.left / res_scale, draw_rect.top / res_scale, draw_rect.right / res_scale,
draw_rect.bottom / res_scale};
if (color_surface != nullptr && write_color_fb) {
auto interval = color_surface->GetSubRectInterval(draw_rect_unscaled);
res_cache.InvalidateRegion(boost::icl::first(interval), boost::icl::length(interval),
color_surface);
}
if (depth_surface != nullptr && write_depth_fb) {
auto interval = depth_surface->GetSubRectInterval(draw_rect_unscaled);
res_cache.InvalidateRegion(boost::icl::first(interval), boost::icl::length(interval),
depth_surface);
}
} }
void RasterizerOpenGL::NotifyMaxwellRegisterChanged(u32 id) {} void RasterizerOpenGL::NotifyMaxwellRegisterChanged(u32 id) {}
@ -206,17 +399,17 @@ void RasterizerOpenGL::FlushAndInvalidateRegion(VAddr addr, u64 size) {
bool RasterizerOpenGL::AccelerateDisplayTransfer(const void* config) { bool RasterizerOpenGL::AccelerateDisplayTransfer(const void* config) {
MICROPROFILE_SCOPE(OpenGL_Blits); MICROPROFILE_SCOPE(OpenGL_Blits);
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
return true; return true;
} }
bool RasterizerOpenGL::AccelerateTextureCopy(const void* config) { bool RasterizerOpenGL::AccelerateTextureCopy(const void* config) {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
return true; return true;
} }
bool RasterizerOpenGL::AccelerateFill(const void* config) { bool RasterizerOpenGL::AccelerateFill(const void* config) {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
return true; return true;
} }
@ -297,14 +490,14 @@ void main() {
return; return;
} }
LOG_ERROR(HW_GPU, "Emulated shaders are not supported! Using a passthrough shader."); LOG_CRITICAL(Render_OpenGL, "Emulated shaders are not supported! Using a passthrough shader.");
current_shader = &test_shader; current_shader = &test_shader;
if (has_ARB_separate_shader_objects) { if (has_ARB_separate_shader_objects) {
test_shader.shader.Create(vertex_shader, nullptr, fragment_shader, {}, true); test_shader.shader.Create(vertex_shader, nullptr, fragment_shader, {}, true);
glActiveShaderProgram(pipeline.handle, test_shader.shader.handle); glActiveShaderProgram(pipeline.handle, test_shader.shader.handle);
} else { } else {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
} }
state.draw.shader_program = test_shader.shader.handle; state.draw.shader_program = test_shader.shader.handle;
@ -316,34 +509,70 @@ void main() {
} }
} }
void RasterizerOpenGL::BindFramebufferSurfaces(const Surface& color_surface,
const Surface& depth_surface, bool has_stencil) {
state.draw.draw_framebuffer = framebuffer.handle;
state.Apply();
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
color_surface != nullptr ? color_surface->texture.handle : 0, 0);
if (depth_surface != nullptr) {
if (has_stencil) {
// attach both depth and stencil
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
depth_surface->texture.handle, 0);
} else {
// attach depth
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
depth_surface->texture.handle, 0);
// clear stencil attachment
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
}
} else {
// clear both depth and stencil attachment
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
0);
}
}
void RasterizerOpenGL::SyncViewport(const MathUtil::Rectangle<u32>& surfaces_rect, u16 res_scale) {
const auto& regs = Core::System().GetInstance().GPU().Maxwell3D().regs;
const MathUtil::Rectangle<s32> viewport_rect{regs.viewport[0].GetRect()};
state.viewport.x = static_cast<GLint>(surfaces_rect.left) + viewport_rect.left * res_scale;
state.viewport.y = static_cast<GLint>(surfaces_rect.bottom) + viewport_rect.bottom * res_scale;
state.viewport.width = static_cast<GLsizei>(viewport_rect.GetWidth() * res_scale);
state.viewport.height = static_cast<GLsizei>(viewport_rect.GetHeight() * res_scale);
}
void RasterizerOpenGL::SyncClipEnabled() { void RasterizerOpenGL::SyncClipEnabled() {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
} }
void RasterizerOpenGL::SyncClipCoef() { void RasterizerOpenGL::SyncClipCoef() {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
} }
void RasterizerOpenGL::SyncCullMode() { void RasterizerOpenGL::SyncCullMode() {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
} }
void RasterizerOpenGL::SyncDepthScale() { void RasterizerOpenGL::SyncDepthScale() {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
} }
void RasterizerOpenGL::SyncDepthOffset() { void RasterizerOpenGL::SyncDepthOffset() {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
} }
void RasterizerOpenGL::SyncBlendEnabled() { void RasterizerOpenGL::SyncBlendEnabled() {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
} }
void RasterizerOpenGL::SyncBlendFuncs() { void RasterizerOpenGL::SyncBlendFuncs() {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
} }
void RasterizerOpenGL::SyncBlendColor() { void RasterizerOpenGL::SyncBlendColor() {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
} }

View File

@ -29,7 +29,7 @@ public:
RasterizerOpenGL(); RasterizerOpenGL();
~RasterizerOpenGL() override; ~RasterizerOpenGL() override;
void DrawTriangles() override; void DrawArrays() override;
void NotifyMaxwellRegisterChanged(u32 id) override; void NotifyMaxwellRegisterChanged(u32 id) override;
void FlushAll() override; void FlushAll() override;
void FlushRegion(VAddr addr, u64 size) override; void FlushRegion(VAddr addr, u64 size) override;
@ -87,6 +87,13 @@ public:
private: private:
struct SamplerInfo {}; struct SamplerInfo {};
/// Binds the framebuffer color and depth surface
void BindFramebufferSurfaces(const Surface& color_surface, const Surface& depth_surface,
bool has_stencil);
/// Syncs the viewport to match the guest state
void SyncViewport(const MathUtil::Rectangle<u32>& surfaces_rect, u16 res_scale);
/// Syncs the clip enabled status to match the guest state /// Syncs the clip enabled status to match the guest state
void SyncClipEnabled(); void SyncClipEnabled();
@ -139,7 +146,7 @@ private:
OGLVertexArray hw_vao; OGLVertexArray hw_vao;
std::array<bool, 16> hw_vao_enabled_attributes; std::array<bool, 16> hw_vao_enabled_attributes;
std::array<SamplerInfo, 3> texture_samplers; std::array<SamplerInfo, 32> texture_samplers;
static constexpr size_t VERTEX_BUFFER_SIZE = 128 * 1024 * 1024; static constexpr size_t VERTEX_BUFFER_SIZE = 128 * 1024 * 1024;
std::unique_ptr<OGLStreamBuffer> vertex_buffer; std::unique_ptr<OGLStreamBuffer> vertex_buffer;
OGLBuffer uniform_buffer; OGLBuffer uniform_buffer;

View File

@ -21,10 +21,13 @@
#include "common/microprofile.h" #include "common/microprofile.h"
#include "common/scope_exit.h" #include "common/scope_exit.h"
#include "common/vector_math.h" #include "common/vector_math.h"
#include "core/core.h"
#include "core/frontend/emu_window.h" #include "core/frontend/emu_window.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/vm_manager.h" #include "core/hle/kernel/vm_manager.h"
#include "core/memory.h" #include "core/memory.h"
#include "core/settings.h" #include "core/settings.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_opengl/gl_rasterizer_cache.h" #include "video_core/renderer_opengl/gl_rasterizer_cache.h"
#include "video_core/renderer_opengl/gl_state.h" #include "video_core/renderer_opengl/gl_state.h"
#include "video_core/utils.h" #include "video_core/utils.h"
@ -110,65 +113,26 @@ static void MortonCopyTile(u32 stride, u8* tile_buffer, u8* gl_buffer) {
template <bool morton_to_gl, PixelFormat format> template <bool morton_to_gl, PixelFormat format>
static void MortonCopy(u32 stride, u32 height, u8* gl_buffer, VAddr base, VAddr start, VAddr end) { static void MortonCopy(u32 stride, u32 height, u8* gl_buffer, VAddr base, VAddr start, VAddr end) {
constexpr u32 bytes_per_pixel = SurfaceParams::GetFormatBpp(format) / 8; constexpr u32 bytes_per_pixel = SurfaceParams::GetFormatBpp(format) / 8;
constexpr u32 tile_size = bytes_per_pixel * 64;
constexpr u32 gl_bytes_per_pixel = CachedSurface::GetGLBytesPerPixel(format); constexpr u32 gl_bytes_per_pixel = CachedSurface::GetGLBytesPerPixel(format);
static_assert(gl_bytes_per_pixel >= bytes_per_pixel, "");
gl_buffer += gl_bytes_per_pixel - bytes_per_pixel;
const VAddr aligned_down_start = base + Common::AlignDown(start - base, tile_size); // TODO(bunnei): Assumes the default rendering GOB size of 16 (128 lines). We should check the
const VAddr aligned_start = base + Common::AlignUp(start - base, tile_size); // configuration for this and perform more generic un/swizzle
const VAddr aligned_end = base + Common::AlignDown(end - base, tile_size); LOG_WARNING(Render_OpenGL, "need to use correct swizzle/GOB parameters!");
VideoCore::MortonCopyPixels128(stride, height, bytes_per_pixel, gl_bytes_per_pixel,
ASSERT(!morton_to_gl || (aligned_start == start && aligned_end == end)); Memory::GetPointer(base), gl_buffer, morton_to_gl);
const u64 begin_pixel_index = (aligned_down_start - base) / bytes_per_pixel;
u32 x = static_cast<u32>((begin_pixel_index % (stride * 8)) / 8);
u32 y = static_cast<u32>((begin_pixel_index / (stride * 8)) * 8);
gl_buffer += ((height - 8 - y) * stride + x) * gl_bytes_per_pixel;
auto glbuf_next_tile = [&] {
x = (x + 8) % stride;
gl_buffer += 8 * gl_bytes_per_pixel;
if (!x) {
y += 8;
gl_buffer -= stride * 9 * gl_bytes_per_pixel;
}
};
u8* tile_buffer = Memory::GetPointer(start);
if (start < aligned_start && !morton_to_gl) {
std::array<u8, tile_size> tmp_buf;
MortonCopyTile<morton_to_gl, format>(stride, &tmp_buf[0], gl_buffer);
std::memcpy(tile_buffer, &tmp_buf[start - aligned_down_start],
std::min(aligned_start, end) - start);
tile_buffer += aligned_start - start;
glbuf_next_tile();
}
const u8* const buffer_end = tile_buffer + aligned_end - aligned_start;
while (tile_buffer < buffer_end) {
MortonCopyTile<morton_to_gl, format>(stride, tile_buffer, gl_buffer);
tile_buffer += tile_size;
glbuf_next_tile();
}
if (end > std::max(aligned_start, aligned_end) && !morton_to_gl) {
std::array<u8, tile_size> tmp_buf;
MortonCopyTile<morton_to_gl, format>(stride, &tmp_buf[0], gl_buffer);
std::memcpy(tile_buffer, &tmp_buf[0], end - aligned_end);
}
} }
static constexpr std::array<void (*)(u32, u32, u8*, VAddr, VAddr, VAddr), 18> morton_to_gl_fns = { static constexpr std::array<void (*)(u32, u32, u8*, VAddr, VAddr, VAddr), 18> morton_to_gl_fns = {
MortonCopy<true, PixelFormat::RGBA8>, // 0 MortonCopy<true, PixelFormat::RGBA8>,
MortonCopy<true, PixelFormat::RGB8>, // 1 nullptr,
MortonCopy<true, PixelFormat::RGB5A1>, // 2 nullptr,
MortonCopy<true, PixelFormat::RGB565>, // 3 nullptr,
MortonCopy<true, PixelFormat::RGBA4>, // 4 nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr, nullptr,
nullptr, nullptr,
nullptr, nullptr,
@ -177,19 +141,19 @@ static constexpr std::array<void (*)(u32, u32, u8*, VAddr, VAddr, VAddr), 18> mo
nullptr, nullptr,
nullptr, nullptr,
nullptr, nullptr,
nullptr, // 5 - 13
MortonCopy<true, PixelFormat::D16>, // 14
nullptr, // 15
MortonCopy<true, PixelFormat::D24>, // 16
MortonCopy<true, PixelFormat::D24S8> // 17
}; };
static constexpr std::array<void (*)(u32, u32, u8*, VAddr, VAddr, VAddr), 18> gl_to_morton_fns = { static constexpr std::array<void (*)(u32, u32, u8*, VAddr, VAddr, VAddr), 18> gl_to_morton_fns = {
MortonCopy<false, PixelFormat::RGBA8>, // 0 MortonCopy<false, PixelFormat::RGBA8>,
MortonCopy<false, PixelFormat::RGB8>, // 1 nullptr,
MortonCopy<false, PixelFormat::RGB5A1>, // 2 nullptr,
MortonCopy<false, PixelFormat::RGB565>, // 3 nullptr,
MortonCopy<false, PixelFormat::RGBA4>, // 4 nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr, nullptr,
nullptr, nullptr,
nullptr, nullptr,
@ -198,11 +162,6 @@ static constexpr std::array<void (*)(u32, u32, u8*, VAddr, VAddr, VAddr), 18> gl
nullptr, nullptr,
nullptr, nullptr,
nullptr, nullptr,
nullptr, // 5 - 13
MortonCopy<false, PixelFormat::D16>, // 14
nullptr, // 15
MortonCopy<false, PixelFormat::D24>, // 16
MortonCopy<false, PixelFormat::D24S8> // 17
}; };
// Allocate an uninitialized texture of appropriate size and format for the surface // Allocate an uninitialized texture of appropriate size and format for the surface
@ -291,8 +250,8 @@ static bool BlitTextures(GLuint src_tex, const MathUtil::Rectangle<u32>& src_rec
static bool FillSurface(const Surface& surface, const u8* fill_data, static bool FillSurface(const Surface& surface, const u8* fill_data,
const MathUtil::Rectangle<u32>& fill_rect, GLuint draw_fb_handle) { const MathUtil::Rectangle<u32>& fill_rect, GLuint draw_fb_handle) {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
return true; return {};
} }
SurfaceParams SurfaceParams::FromInterval(SurfaceInterval interval) const { SurfaceParams SurfaceParams::FromInterval(SurfaceInterval interval) const {
@ -531,7 +490,7 @@ MICROPROFILE_DEFINE(OpenGL_SurfaceLoad, "OpenGL", "Surface Load", MP_RGB(128, 64
void CachedSurface::LoadGLBuffer(VAddr load_start, VAddr load_end) { void CachedSurface::LoadGLBuffer(VAddr load_start, VAddr load_end) {
ASSERT(type != SurfaceType::Fill); ASSERT(type != SurfaceType::Fill);
u8* texture_src_data = Memory::GetPointer(addr); u8* const texture_src_data = Memory::GetPointer(addr);
if (texture_src_data == nullptr) if (texture_src_data == nullptr)
return; return;
@ -548,11 +507,16 @@ void CachedSurface::LoadGLBuffer(VAddr load_start, VAddr load_end) {
if (!is_tiled) { if (!is_tiled) {
ASSERT(type == SurfaceType::Color); ASSERT(type == SurfaceType::Color);
const u32 bytes_per_pixel{GetFormatBpp() >> 3}; const u32 bytes_per_pixel{GetFormatBpp() >> 3};
// TODO(bunnei): Assumes the default rendering GOB size of 16 (128 lines). We should check
// the configuration for this and perform more generic un/swizzle
LOG_WARNING(Render_OpenGL, "need to use correct swizzle/GOB parameters!");
VideoCore::MortonCopyPixels128(width, height, bytes_per_pixel, 4, VideoCore::MortonCopyPixels128(width, height, bytes_per_pixel, 4,
texture_src_data + start_offset, &gl_buffer[start_offset], texture_src_data + start_offset, &gl_buffer[start_offset],
true); true);
} else { } else {
ASSERT_MSG(false, "Unimplemented"); morton_to_gl_fns[static_cast<size_t>(pixel_format)](stride, height, &gl_buffer[0], addr,
load_start, load_end);
} }
} }
@ -1093,18 +1057,106 @@ SurfaceRect_Tuple RasterizerCacheOpenGL::GetSurfaceSubRect(const SurfaceParams&
} }
Surface RasterizerCacheOpenGL::GetTextureSurface(const void* config) { Surface RasterizerCacheOpenGL::GetTextureSurface(const void* config) {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
return {}; return {};
} }
SurfaceSurfaceRect_Tuple RasterizerCacheOpenGL::GetFramebufferSurfaces( SurfaceSurfaceRect_Tuple RasterizerCacheOpenGL::GetFramebufferSurfaces(
bool using_color_fb, bool using_depth_fb, const MathUtil::Rectangle<s32>& viewport_rect) { bool using_color_fb, bool using_depth_fb, const MathUtil::Rectangle<s32>& viewport) {
UNIMPLEMENTED(); const auto& regs = Core::System().GetInstance().GPU().Maxwell3D().regs;
return {}; const auto& memory_manager = Core::System().GetInstance().GPU().memory_manager;
const auto& config = regs.rt[0];
// TODO(bunnei): This is hard corded to use just the first render buffer
LOG_WARNING(Render_OpenGL, "hard-coded for render target 0!");
// update resolution_scale_factor and reset cache if changed
// TODO (bunnei): This code was ported as-is from Citra, and is technically not thread-safe. We
// need to fix this before making the renderer multi-threaded.
static u16 resolution_scale_factor = GetResolutionScaleFactor();
if (resolution_scale_factor != GetResolutionScaleFactor()) {
resolution_scale_factor = GetResolutionScaleFactor();
FlushAll();
while (!surface_cache.empty())
UnregisterSurface(*surface_cache.begin()->second.begin());
}
MathUtil::Rectangle<u32> viewport_clamped{
static_cast<u32>(MathUtil::Clamp(viewport.left, 0, static_cast<s32>(config.width))),
static_cast<u32>(MathUtil::Clamp(viewport.top, 0, static_cast<s32>(config.height))),
static_cast<u32>(MathUtil::Clamp(viewport.right, 0, static_cast<s32>(config.width))),
static_cast<u32>(MathUtil::Clamp(viewport.bottom, 0, static_cast<s32>(config.height)))};
// get color and depth surfaces
SurfaceParams color_params;
color_params.is_tiled = true;
color_params.res_scale = resolution_scale_factor;
color_params.width = config.width;
color_params.height = config.height;
SurfaceParams depth_params = color_params;
color_params.addr = memory_manager->PhysicalToVirtualAddress(config.Address());
color_params.pixel_format = SurfaceParams::PixelFormatFromRenderTargetFormat(config.format);
color_params.UpdateParams();
ASSERT_MSG(!using_depth_fb, "depth buffer is unimplemented");
// depth_params.addr = config.GetDepthBufferPhysicalAddress();
// depth_params.pixel_format = SurfaceParams::PixelFormatFromDepthFormat(config.depth_format);
// depth_params.UpdateParams();
auto color_vp_interval = color_params.GetSubRectInterval(viewport_clamped);
auto depth_vp_interval = depth_params.GetSubRectInterval(viewport_clamped);
// Make sure that framebuffers don't overlap if both color and depth are being used
if (using_color_fb && using_depth_fb &&
boost::icl::length(color_vp_interval & depth_vp_interval)) {
LOG_CRITICAL(Render_OpenGL, "Color and depth framebuffer memory regions overlap; "
"overlapping framebuffers not supported!");
using_depth_fb = false;
}
MathUtil::Rectangle<u32> color_rect{};
Surface color_surface = nullptr;
if (using_color_fb)
std::tie(color_surface, color_rect) =
GetSurfaceSubRect(color_params, ScaleMatch::Exact, false);
MathUtil::Rectangle<u32> depth_rect{};
Surface depth_surface = nullptr;
if (using_depth_fb)
std::tie(depth_surface, depth_rect) =
GetSurfaceSubRect(depth_params, ScaleMatch::Exact, false);
MathUtil::Rectangle<u32> fb_rect{};
if (color_surface != nullptr && depth_surface != nullptr) {
fb_rect = color_rect;
// Color and Depth surfaces must have the same dimensions and offsets
if (color_rect.bottom != depth_rect.bottom || color_rect.top != depth_rect.top ||
color_rect.left != depth_rect.left || color_rect.right != depth_rect.right) {
color_surface = GetSurface(color_params, ScaleMatch::Exact, false);
depth_surface = GetSurface(depth_params, ScaleMatch::Exact, false);
fb_rect = color_surface->GetScaledRect();
}
} else if (color_surface != nullptr) {
fb_rect = color_rect;
} else if (depth_surface != nullptr) {
fb_rect = depth_rect;
}
if (color_surface != nullptr) {
ValidateSurface(color_surface, boost::icl::first(color_vp_interval),
boost::icl::length(color_vp_interval));
}
if (depth_surface != nullptr) {
ValidateSurface(depth_surface, boost::icl::first(depth_vp_interval),
boost::icl::length(depth_vp_interval));
}
return std::make_tuple(color_surface, depth_surface, fb_rect);
} }
Surface RasterizerCacheOpenGL::GetFillSurface(const void* config) { Surface RasterizerCacheOpenGL::GetFillSurface(const void* config) {
ASSERT_MSG(false, "Unimplemented"); UNREACHABLE();
return {}; return {};
} }
@ -1348,5 +1400,33 @@ void RasterizerCacheOpenGL::UnregisterSurface(const Surface& surface) {
} }
void RasterizerCacheOpenGL::UpdatePagesCachedCount(VAddr addr, u64 size, int delta) { void RasterizerCacheOpenGL::UpdatePagesCachedCount(VAddr addr, u64 size, int delta) {
// ASSERT_MSG(false, "Unimplemented"); const u64 num_pages =
((addr + size - 1) >> Memory::PAGE_BITS) - (addr >> Memory::PAGE_BITS) + 1;
const u64 page_start = addr >> Memory::PAGE_BITS;
const u64 page_end = page_start + num_pages;
// Interval maps will erase segments if count reaches 0, so if delta is negative we have to
// subtract after iterating
const auto pages_interval = PageMap::interval_type::right_open(page_start, page_end);
if (delta > 0)
cached_pages.add({pages_interval, delta});
for (const auto& pair : RangeFromInterval(cached_pages, pages_interval)) {
const auto interval = pair.first & pages_interval;
const int count = pair.second;
const VAddr interval_start_addr = boost::icl::first(interval) << Memory::PAGE_BITS;
const VAddr interval_end_addr = boost::icl::last_next(interval) << Memory::PAGE_BITS;
const u64 interval_size = interval_end_addr - interval_start_addr;
if (delta > 0 && count == delta)
Memory::RasterizerMarkRegionCached(interval_start_addr, interval_size, true);
else if (delta < 0 && count == -delta)
Memory::RasterizerMarkRegionCached(interval_start_addr, interval_size, false);
else
ASSERT(count >= 0);
}
if (delta < 0)
cached_pages.add({pages_interval, delta});
} }

View File

@ -41,7 +41,7 @@ static_assert(std::is_same<SurfaceRegions::interval_type, SurfaceCache::interval
using SurfaceRect_Tuple = std::tuple<Surface, MathUtil::Rectangle<u32>>; using SurfaceRect_Tuple = std::tuple<Surface, MathUtil::Rectangle<u32>>;
using SurfaceSurfaceRect_Tuple = std::tuple<Surface, Surface, MathUtil::Rectangle<u32>>; using SurfaceSurfaceRect_Tuple = std::tuple<Surface, Surface, MathUtil::Rectangle<u32>>;
using PageMap = boost::icl::interval_map<u32, int>; using PageMap = boost::icl::interval_map<u64, int>;
enum class ScaleMatch { enum class ScaleMatch {
Exact, // only accept same res scale Exact, // only accept same res scale
@ -116,6 +116,15 @@ struct SurfaceParams {
return GetFormatBpp(pixel_format); return GetFormatBpp(pixel_format);
} }
static PixelFormat PixelFormatFromRenderTargetFormat(Tegra::RenderTargetFormat format) {
switch (format) {
case Tegra::RenderTargetFormat::RGBA8_UNORM:
return PixelFormat::RGBA8;
default:
UNREACHABLE();
}
}
static PixelFormat PixelFormatFromGPUPixelFormat(Tegra::FramebufferConfig::PixelFormat format) { static PixelFormat PixelFormatFromGPUPixelFormat(Tegra::FramebufferConfig::PixelFormat format) {
switch (format) { switch (format) {
case Tegra::FramebufferConfig::PixelFormat::ABGR8: case Tegra::FramebufferConfig::PixelFormat::ABGR8:
@ -308,7 +317,7 @@ public:
/// Get the color and depth surfaces based on the framebuffer configuration /// Get the color and depth surfaces based on the framebuffer configuration
SurfaceSurfaceRect_Tuple GetFramebufferSurfaces(bool using_color_fb, bool using_depth_fb, SurfaceSurfaceRect_Tuple GetFramebufferSurfaces(bool using_color_fb, bool using_depth_fb,
const MathUtil::Rectangle<s32>& viewport_rect); const MathUtil::Rectangle<s32>& viewport);
/// Get a surface that matches the fill config /// Get a surface that matches the fill config
Surface GetFillSurface(const void* config); Surface GetFillSurface(const void* config);

View File

@ -26,7 +26,7 @@ public:
sanitize_mul(sanitize_mul), emit_cb(emit_cb), setemit_cb(setemit_cb) {} sanitize_mul(sanitize_mul), emit_cb(emit_cb), setemit_cb(setemit_cb) {}
std::string Decompile() { std::string Decompile() {
UNIMPLEMENTED(); UNREACHABLE();
return {}; return {};
} }

View File

@ -8,12 +8,12 @@
namespace GLShader { namespace GLShader {
std::string GenerateVertexShader(const MaxwellVSConfig& config) { std::string GenerateVertexShader(const MaxwellVSConfig& config) {
UNIMPLEMENTED(); UNREACHABLE();
return {}; return {};
} }
std::string GenerateFragmentShader(const MaxwellFSConfig& config) { std::string GenerateFragmentShader(const MaxwellFSConfig& config) {
UNIMPLEMENTED(); UNREACHABLE();
return {}; return {};
} }

View File

@ -38,8 +38,8 @@ GLuint LoadProgram(const char* vertex_shader, const char* geometry_shader,
if (result == GL_TRUE) { if (result == GL_TRUE) {
LOG_DEBUG(Render_OpenGL, "%s", &vertex_shader_error[0]); LOG_DEBUG(Render_OpenGL, "%s", &vertex_shader_error[0]);
} else { } else {
LOG_ERROR(Render_OpenGL, "Error compiling vertex shader:\n%s", LOG_CRITICAL(Render_OpenGL, "Error compiling vertex shader:\n%s",
&vertex_shader_error[0]); &vertex_shader_error[0]);
} }
} }
} }
@ -62,8 +62,8 @@ GLuint LoadProgram(const char* vertex_shader, const char* geometry_shader,
if (result == GL_TRUE) { if (result == GL_TRUE) {
LOG_DEBUG(Render_OpenGL, "%s", &geometry_shader_error[0]); LOG_DEBUG(Render_OpenGL, "%s", &geometry_shader_error[0]);
} else { } else {
LOG_ERROR(Render_OpenGL, "Error compiling geometry shader:\n%s", LOG_CRITICAL(Render_OpenGL, "Error compiling geometry shader:\n%s",
&geometry_shader_error[0]); &geometry_shader_error[0]);
} }
} }
} }
@ -86,8 +86,8 @@ GLuint LoadProgram(const char* vertex_shader, const char* geometry_shader,
if (result == GL_TRUE) { if (result == GL_TRUE) {
LOG_DEBUG(Render_OpenGL, "%s", &fragment_shader_error[0]); LOG_DEBUG(Render_OpenGL, "%s", &fragment_shader_error[0]);
} else { } else {
LOG_ERROR(Render_OpenGL, "Error compiling fragment shader:\n%s", LOG_CRITICAL(Render_OpenGL, "Error compiling fragment shader:\n%s",
&fragment_shader_error[0]); &fragment_shader_error[0]);
} }
} }
} }
@ -128,20 +128,20 @@ GLuint LoadProgram(const char* vertex_shader, const char* geometry_shader,
if (result == GL_TRUE) { if (result == GL_TRUE) {
LOG_DEBUG(Render_OpenGL, "%s", &program_error[0]); LOG_DEBUG(Render_OpenGL, "%s", &program_error[0]);
} else { } else {
LOG_ERROR(Render_OpenGL, "Error linking shader:\n%s", &program_error[0]); LOG_CRITICAL(Render_OpenGL, "Error linking shader:\n%s", &program_error[0]);
} }
} }
// If the program linking failed at least one of the shaders was probably bad // If the program linking failed at least one of the shaders was probably bad
if (result == GL_FALSE) { if (result == GL_FALSE) {
if (vertex_shader) { if (vertex_shader) {
LOG_ERROR(Render_OpenGL, "Vertex shader:\n%s", vertex_shader); LOG_CRITICAL(Render_OpenGL, "Vertex shader:\n%s", vertex_shader);
} }
if (geometry_shader) { if (geometry_shader) {
LOG_ERROR(Render_OpenGL, "Geometry shader:\n%s", geometry_shader); LOG_CRITICAL(Render_OpenGL, "Geometry shader:\n%s", geometry_shader);
} }
if (fragment_shader) { if (fragment_shader) {
LOG_ERROR(Render_OpenGL, "Fragment shader:\n%s", fragment_shader); LOG_CRITICAL(Render_OpenGL, "Fragment shader:\n%s", fragment_shader);
} }
} }
ASSERT_MSG(result == GL_TRUE, "Shader not linked"); ASSERT_MSG(result == GL_TRUE, "Shader not linked");

View File

@ -85,7 +85,7 @@ public:
struct { struct {
GLuint texture_2d; // GL_TEXTURE_BINDING_2D GLuint texture_2d; // GL_TEXTURE_BINDING_2D
GLuint sampler; // GL_SAMPLER_BINDING GLuint sampler; // GL_SAMPLER_BINDING
} texture_units[3]; } texture_units[32];
struct { struct {
GLuint texture_buffer; // GL_TEXTURE_BINDING_BUFFER GLuint texture_buffer; // GL_TEXTURE_BINDING_BUFFER

View File

@ -0,0 +1,50 @@
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <glad/glad.h>
#include "common/common_types.h"
#include "common/logging/log.h"
#include "video_core/engines/maxwell_3d.h"
namespace MaxwellToGL {
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
inline GLenum VertexType(Maxwell::VertexAttribute attrib) {
switch (attrib.type) {
case Maxwell::VertexAttribute::Type::UnsignedNorm: {
switch (attrib.size) {
case Maxwell::VertexAttribute::Size::Size_8_8_8_8:
return GL_UNSIGNED_BYTE;
}
LOG_CRITICAL(Render_OpenGL, "Unimplemented vertex size=%s", attrib.SizeString().c_str());
UNREACHABLE();
return {};
}
case Maxwell::VertexAttribute::Type::Float:
return GL_FLOAT;
}
LOG_CRITICAL(Render_OpenGL, "Unimplemented vertex type=%s", attrib.TypeString().c_str());
UNREACHABLE();
return {};
}
inline GLenum PrimitiveTopology(Maxwell::PrimitiveTopology topology) {
switch (topology) {
case Maxwell::PrimitiveTopology::TriangleStrip:
return GL_TRIANGLE_STRIP;
}
LOG_CRITICAL(Render_OpenGL, "Unimplemented primitive topology=%d", topology);
UNREACHABLE();
return {};
}
} // namespace MaxwellToGL

View File

@ -100,6 +100,8 @@ RendererOpenGL::~RendererOpenGL() = default;
/// Swap buffers (render frame) /// Swap buffers (render frame)
void RendererOpenGL::SwapBuffers(boost::optional<const Tegra::FramebufferConfig&> framebuffer) { void RendererOpenGL::SwapBuffers(boost::optional<const Tegra::FramebufferConfig&> framebuffer) {
Core::System::GetInstance().perf_stats.EndSystemFrame();
// Maintain the rasterizer's state as a priority // Maintain the rasterizer's state as a priority
OpenGLState prev_state = OpenGLState::GetCurState(); OpenGLState prev_state = OpenGLState::GetCurState();
state.Apply(); state.Apply();
@ -114,20 +116,19 @@ void RendererOpenGL::SwapBuffers(boost::optional<const Tegra::FramebufferConfig&
// performance problem. // performance problem.
ConfigureFramebufferTexture(screen_info.texture, *framebuffer); ConfigureFramebufferTexture(screen_info.texture, *framebuffer);
} }
// Load the framebuffer from memory, draw it to the screen, and swap buffers
LoadFBToScreenInfo(*framebuffer, screen_info); LoadFBToScreenInfo(*framebuffer, screen_info);
DrawScreen();
render_window->SwapBuffers();
} }
DrawScreens();
Core::System::GetInstance().perf_stats.EndSystemFrame();
// Swap buffers
render_window->PollEvents(); render_window->PollEvents();
render_window->SwapBuffers();
Core::System::GetInstance().frame_limiter.DoFrameLimiting(CoreTiming::GetGlobalTimeUs()); Core::System::GetInstance().frame_limiter.DoFrameLimiting(CoreTiming::GetGlobalTimeUs());
Core::System::GetInstance().perf_stats.BeginSystemFrame(); Core::System::GetInstance().perf_stats.BeginSystemFrame();
// Restore the rasterizer state
prev_state.Apply(); prev_state.Apply();
RefreshRasterizerSetting(); RefreshRasterizerSetting();
} }
@ -141,11 +142,6 @@ void RendererOpenGL::LoadFBToScreenInfo(const Tegra::FramebufferConfig& framebuf
const u64 size_in_bytes{framebuffer.stride * framebuffer.height * bytes_per_pixel}; const u64 size_in_bytes{framebuffer.stride * framebuffer.height * bytes_per_pixel};
const VAddr framebuffer_addr{framebuffer.address + framebuffer.offset}; const VAddr framebuffer_addr{framebuffer.address + framebuffer.offset};
// TODO(bunnei): The framebuffer region should only be invalidated if it is written to, not
// every frame. When we find the right place for this, the below line can be removed.
Memory::RasterizerFlushVirtualRegion(framebuffer_addr, size_in_bytes,
Memory::FlushMode::Invalidate);
// Framebuffer orientation handling // Framebuffer orientation handling
framebuffer_transform_flags = framebuffer.transform_flags; framebuffer_transform_flags = framebuffer.transform_flags;
@ -283,7 +279,7 @@ void RendererOpenGL::ConfigureFramebufferTexture(TextureInfo& texture,
gl_framebuffer_data.resize(texture.width * texture.height * 4); gl_framebuffer_data.resize(texture.width * texture.height * 4);
break; break;
default: default:
UNIMPLEMENTED(); UNREACHABLE();
} }
state.texture_units[0].texture_2d = texture.resource.handle; state.texture_units[0].texture_2d = texture.resource.handle;
@ -297,8 +293,8 @@ void RendererOpenGL::ConfigureFramebufferTexture(TextureInfo& texture,
state.Apply(); state.Apply();
} }
void RendererOpenGL::DrawSingleScreen(const ScreenInfo& screen_info, float x, float y, float w, void RendererOpenGL::DrawScreenTriangles(const ScreenInfo& screen_info, float x, float y, float w,
float h) { float h) {
const auto& texcoords = screen_info.display_texcoords; const auto& texcoords = screen_info.display_texcoords;
auto left = texcoords.left; auto left = texcoords.left;
auto right = texcoords.right; auto right = texcoords.right;
@ -309,7 +305,7 @@ void RendererOpenGL::DrawSingleScreen(const ScreenInfo& screen_info, float x, fl
right = texcoords.left; right = texcoords.left;
} else { } else {
// Other transformations are unsupported // Other transformations are unsupported
LOG_CRITICAL(HW_GPU, "unsupported framebuffer_transform_flags=%d", LOG_CRITICAL(Render_OpenGL, "Unsupported framebuffer_transform_flags=%d",
framebuffer_transform_flags); framebuffer_transform_flags);
UNIMPLEMENTED(); UNIMPLEMENTED();
} }
@ -334,7 +330,7 @@ void RendererOpenGL::DrawSingleScreen(const ScreenInfo& screen_info, float x, fl
/** /**
* Draws the emulated screens to the emulator window. * Draws the emulated screens to the emulator window.
*/ */
void RendererOpenGL::DrawScreens() { void RendererOpenGL::DrawScreen() {
const auto& layout = render_window->GetFramebufferLayout(); const auto& layout = render_window->GetFramebufferLayout();
const auto& screen = layout.screen; const auto& screen = layout.screen;
@ -350,8 +346,8 @@ void RendererOpenGL::DrawScreens() {
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0);
glUniform1i(uniform_color_texture, 0); glUniform1i(uniform_color_texture, 0);
DrawSingleScreen(screen_info, (float)screen.left, (float)screen.top, (float)screen.GetWidth(), DrawScreenTriangles(screen_info, (float)screen.left, (float)screen.top,
(float)screen.GetHeight()); (float)screen.GetWidth(), (float)screen.GetHeight());
m_current_frame++; m_current_frame++;
} }

View File

@ -55,8 +55,8 @@ private:
void InitOpenGLObjects(); void InitOpenGLObjects();
void ConfigureFramebufferTexture(TextureInfo& texture, void ConfigureFramebufferTexture(TextureInfo& texture,
const Tegra::FramebufferConfig& framebuffer); const Tegra::FramebufferConfig& framebuffer);
void DrawScreens(); void DrawScreen();
void DrawSingleScreen(const ScreenInfo& screen_info, float x, float y, float w, float h); void DrawScreenTriangles(const ScreenInfo& screen_info, float x, float y, float w, float h);
void UpdateFramerate(); void UpdateFramerate();
// Loads framebuffer from emulated memory into the display information structure // Loads framebuffer from emulated memory into the display information structure

View File

@ -26,7 +26,7 @@ bool Init(EmuWindow* emu_window) {
if (g_renderer->Init()) { if (g_renderer->Init()) {
LOG_DEBUG(Render, "initialized OK"); LOG_DEBUG(Render, "initialized OK");
} else { } else {
LOG_ERROR(Render, "initialization failed !"); LOG_CRITICAL(Render, "initialization failed !");
return false; return false;
} }
return true; return true;

View File

@ -339,11 +339,10 @@ void GraphicsSurfaceWidget::OnUpdate() {
static_cast<size_t>(Source::RenderTarget0)]; static_cast<size_t>(Source::RenderTarget0)];
surface_address = rt.Address(); surface_address = rt.Address();
surface_width = rt.horiz; surface_width = rt.width;
surface_height = rt.vert; surface_height = rt.height;
if (rt.format != 0) { if (rt.format != Tegra::RenderTargetFormat::NONE) {
surface_format = surface_format = ConvertToTextureFormat(rt.format);
ConvertToTextureFormat(static_cast<Tegra::RenderTargetFormat>(rt.format));
} }
break; break;