forked from ShuriZma/suyu
1
0
Fork 0

Merge pull request #1875 from JayFoxRox/fog

Implement standard fog (fog mode 5)
This commit is contained in:
bunnei 2016-06-15 17:55:36 -04:00 committed by GitHub
commit 7d2d6e5f78
9 changed files with 253 additions and 48 deletions

View File

@ -423,6 +423,20 @@ static void WritePicaReg(u32 id, u32 value, u32 mask) {
break; break;
} }
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[0], 0xe8):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[1], 0xe9):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[2], 0xea):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[3], 0xeb):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[4], 0xec):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[5], 0xed):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[6], 0xee):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[7], 0xef):
{
g_state.fog.lut[regs.fog_lut_offset % 128].raw = value;
regs.fog_lut_offset.Assign(regs.fog_lut_offset + 1);
break;
}
default: default:
break; break;
} }

View File

@ -401,22 +401,47 @@ struct Regs {
TevStageConfig tev_stage3; TevStageConfig tev_stage3;
INSERT_PADDING_WORDS(0x3); INSERT_PADDING_WORDS(0x3);
enum class FogMode : u32 {
None = 0,
Fog = 5,
Gas = 7,
};
union { union {
// Tev stages 0-3 write their output to the combiner buffer if the corresponding bit in BitField<0, 3, FogMode> fog_mode;
// these masks are set BitField<16, 1, u32> fog_flip;
BitField< 8, 4, u32> update_mask_rgb;
BitField<12, 4, u32> update_mask_a;
bool TevStageUpdatesCombinerBufferColor(unsigned stage_index) const { union {
return (stage_index < 4) && (update_mask_rgb & (1 << stage_index)); // Tev stages 0-3 write their output to the combiner buffer if the corresponding bit in
} // these masks are set
BitField< 8, 4, u32> update_mask_rgb;
BitField<12, 4, u32> update_mask_a;
bool TevStageUpdatesCombinerBufferAlpha(unsigned stage_index) const { bool TevStageUpdatesCombinerBufferColor(unsigned stage_index) const {
return (stage_index < 4) && (update_mask_a & (1 << stage_index)); return (stage_index < 4) && (update_mask_rgb & (1 << stage_index));
} }
} tev_combiner_buffer_input;
bool TevStageUpdatesCombinerBufferAlpha(unsigned stage_index) const {
return (stage_index < 4) && (update_mask_a & (1 << stage_index));
}
} tev_combiner_buffer_input;
};
union {
u32 raw;
BitField< 0, 8, u32> r;
BitField< 8, 8, u32> g;
BitField<16, 8, u32> b;
} fog_color;
INSERT_PADDING_WORDS(0x4);
BitField<0, 16, u32> fog_lut_offset;
INSERT_PADDING_WORDS(0x1);
u32 fog_lut_data[8];
INSERT_PADDING_WORDS(0xf);
TevStageConfig tev_stage4; TevStageConfig tev_stage4;
INSERT_PADDING_WORDS(0x3); INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage5; TevStageConfig tev_stage5;
@ -1318,6 +1343,10 @@ ASSERT_REG_POSITION(tev_stage1, 0xc8);
ASSERT_REG_POSITION(tev_stage2, 0xd0); ASSERT_REG_POSITION(tev_stage2, 0xd0);
ASSERT_REG_POSITION(tev_stage3, 0xd8); ASSERT_REG_POSITION(tev_stage3, 0xd8);
ASSERT_REG_POSITION(tev_combiner_buffer_input, 0xe0); ASSERT_REG_POSITION(tev_combiner_buffer_input, 0xe0);
ASSERT_REG_POSITION(fog_mode, 0xe0);
ASSERT_REG_POSITION(fog_color, 0xe1);
ASSERT_REG_POSITION(fog_lut_offset, 0xe6);
ASSERT_REG_POSITION(fog_lut_data, 0xe8);
ASSERT_REG_POSITION(tev_stage4, 0xf0); ASSERT_REG_POSITION(tev_stage4, 0xf0);
ASSERT_REG_POSITION(tev_stage5, 0xf8); ASSERT_REG_POSITION(tev_stage5, 0xf8);
ASSERT_REG_POSITION(tev_combiner_buffer_color, 0xfd); ASSERT_REG_POSITION(tev_combiner_buffer_color, 0xfd);

View File

@ -33,10 +33,10 @@ struct State {
u32 raw; u32 raw;
// LUT value, encoded as 12-bit fixed point, with 12 fraction bits // LUT value, encoded as 12-bit fixed point, with 12 fraction bits
BitField< 0, 12, u32> value; BitField< 0, 12, u32> value; // 0.0.12 fixed point
// Used by HW for efficient interpolation, Citra does not use these // Used by HW for efficient interpolation, Citra does not use these
BitField<12, 12, u32> difference; BitField<12, 12, s32> difference; // 1.0.11 fixed point
float ToFloat() { float ToFloat() {
return static_cast<float>(value) / 4095.f; return static_cast<float>(value) / 4095.f;
@ -46,6 +46,18 @@ struct State {
std::array<std::array<LutEntry, 256>, 24> luts; std::array<std::array<LutEntry, 256>, 24> luts;
} lighting; } lighting;
struct {
union LutEntry {
// Used for raw access
u32 raw;
BitField< 0, 13, s32> difference; // 1.1.11 fixed point
BitField<13, 11, u32> value; // 0.0.11 fixed point
};
std::array<LutEntry, 128> lut;
} fog;
/// Current Pica command list /// Current Pica command list
struct { struct {
const u32* head_ptr; const u32* head_ptr;

View File

@ -398,6 +398,26 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
float24::FromFloat32(static_cast<float>(w2))); float24::FromFloat32(static_cast<float>(w2)));
float24 interpolated_w_inverse = float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates); float24 interpolated_w_inverse = float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates);
// interpolated_z = z / w
float interpolated_z_over_w = (v0.screenpos[2].ToFloat32() * w0 +
v1.screenpos[2].ToFloat32() * w1 +
v2.screenpos[2].ToFloat32() * w2) / wsum;
// Not fully accurate. About 3 bits in precision are missing.
// Z-Buffer (z / w * scale + offset)
float depth_scale = float24::FromRaw(regs.viewport_depth_range).ToFloat32();
float depth_offset = float24::FromRaw(regs.viewport_depth_near_plane).ToFloat32();
float depth = interpolated_z_over_w * depth_scale + depth_offset;
// Potentially switch to W-Buffer
if (regs.depthmap_enable == Pica::Regs::DepthBuffering::WBuffering) {
// W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w)
depth *= interpolated_w_inverse.ToFloat32() * wsum;
}
// Clamp the result
depth = MathUtil::Clamp(depth, 0.0f, 1.0f);
// Perspective correct attribute interpolation: // Perspective correct attribute interpolation:
// Attribute values cannot be calculated by simple linear interpolation since // Attribute values cannot be calculated by simple linear interpolation since
// they are not linear in screen space. For example, when interpolating a // they are not linear in screen space. For example, when interpolating a
@ -833,6 +853,38 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
continue; continue;
} }
// Apply fog combiner
// Not fully accurate. We'd have to know what data type is used to
// store the depth etc. Using float for now until we know more
// about Pica datatypes
if (regs.fog_mode == Regs::FogMode::Fog) {
const Math::Vec3<u8> fog_color = {
static_cast<u8>(regs.fog_color.r.Value()),
static_cast<u8>(regs.fog_color.g.Value()),
static_cast<u8>(regs.fog_color.b.Value()),
};
// Get index into fog LUT
float fog_index;
if (g_state.regs.fog_flip) {
fog_index = (1.0f - depth) * 128.0f;
} else {
fog_index = depth * 128.0f;
}
// Generate clamped fog factor from LUT for given fog index
float fog_i = MathUtil::Clamp(floorf(fog_index), 0.0f, 127.0f);
float fog_f = fog_index - fog_i;
const auto& fog_lut_entry = g_state.fog.lut[static_cast<unsigned int>(fog_i)];
float fog_factor = (fog_lut_entry.value + fog_lut_entry.difference * fog_f) / 2047.0f; // This is signed fixed point 1.11
fog_factor = MathUtil::Clamp(fog_factor, 0.0f, 1.0f);
// Blend the fog
for (unsigned i = 0; i < 3; i++) {
combiner_output[i] = fog_factor * combiner_output[i] + (1.0f - fog_factor) * fog_color[i];
}
}
u8 old_stencil = 0; u8 old_stencil = 0;
auto UpdateStencil = [stencil_test, x, y, &old_stencil](Pica::Regs::StencilAction action) { auto UpdateStencil = [stencil_test, x, y, &old_stencil](Pica::Regs::StencilAction action) {
@ -887,27 +939,6 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
} }
} }
// interpolated_z = z / w
float interpolated_z_over_w = (v0.screenpos[2].ToFloat32() * w0 +
v1.screenpos[2].ToFloat32() * w1 +
v2.screenpos[2].ToFloat32() * w2) / wsum;
// Not fully accurate. About 3 bits in precision are missing.
// Z-Buffer (z / w * scale + offset)
float depth_scale = float24::FromRaw(regs.viewport_depth_range).ToFloat32();
float depth_offset = float24::FromRaw(regs.viewport_depth_near_plane).ToFloat32();
float depth = interpolated_z_over_w * depth_scale + depth_offset;
// Potentially switch to W-Buffer
if (regs.depthmap_enable == Pica::Regs::DepthBuffering::WBuffering) {
// W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w)
depth *= interpolated_w_inverse.ToFloat32() * wsum;
}
// Clamp the result
depth = MathUtil::Clamp(depth, 0.0f, 1.0f);
// Convert float to integer // Convert float to integer
unsigned num_bits = Regs::DepthBitsPerPixel(regs.framebuffer.depth_format); unsigned num_bits = Regs::DepthBitsPerPixel(regs.framebuffer.depth_format);
u32 z = (u32)(depth * ((1 << num_bits) - 1)); u32 z = (u32)(depth * ((1 << num_bits) - 1));

View File

@ -62,6 +62,8 @@ RasterizerOpenGL::RasterizerOpenGL() : shader_dirty(true) {
uniform_block_data.lut_dirty[index] = true; uniform_block_data.lut_dirty[index] = true;
} }
uniform_block_data.fog_lut_dirty = true;
// Set vertex attributes // Set vertex attributes
glVertexAttribPointer(GLShader::ATTRIBUTE_POSITION, 4, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, position)); glVertexAttribPointer(GLShader::ATTRIBUTE_POSITION, 4, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, position));
glEnableVertexAttribArray(GLShader::ATTRIBUTE_POSITION); glEnableVertexAttribArray(GLShader::ATTRIBUTE_POSITION);
@ -102,6 +104,18 @@ RasterizerOpenGL::RasterizerOpenGL() : shader_dirty(true) {
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
} }
// Setup the LUT for the fog
{
fog_lut.Create();
state.fog_lut.texture_1d = fog_lut.handle;
}
state.Apply();
glActiveTexture(GL_TEXTURE9);
glTexImage1D(GL_TEXTURE_1D, 0, GL_R32UI, 128, 0, GL_RED_INTEGER, GL_UNSIGNED_INT, nullptr);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
// Sync fixed function OpenGL state // Sync fixed function OpenGL state
SyncCullMode(); SyncCullMode();
SyncBlendEnabled(); SyncBlendEnabled();
@ -215,6 +229,12 @@ void RasterizerOpenGL::DrawTriangles() {
} }
} }
// Sync the fog lut
if (uniform_block_data.fog_lut_dirty) {
SyncFogLUT();
uniform_block_data.fog_lut_dirty = false;
}
// Sync the uniform data // Sync the uniform data
if (uniform_block_data.dirty) { if (uniform_block_data.dirty) {
glBufferData(GL_UNIFORM_BUFFER, sizeof(UniformData), &uniform_block_data.data, GL_STATIC_DRAW); glBufferData(GL_UNIFORM_BUFFER, sizeof(UniformData), &uniform_block_data.data, GL_STATIC_DRAW);
@ -280,6 +300,21 @@ void RasterizerOpenGL::NotifyPicaRegisterChanged(u32 id) {
SyncBlendColor(); SyncBlendColor();
break; break;
// Fog state
case PICA_REG_INDEX(fog_color):
SyncFogColor();
break;
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[0], 0xe8):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[1], 0xe9):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[2], 0xea):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[3], 0xeb):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[4], 0xec):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[5], 0xed):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[6], 0xee):
case PICA_REG_INDEX_WORKAROUND(fog_lut_data[7], 0xef):
uniform_block_data.fog_lut_dirty = true;
break;
// Alpha test // Alpha test
case PICA_REG_INDEX(output_merger.alpha_test): case PICA_REG_INDEX(output_merger.alpha_test):
SyncAlphaTest(); SyncAlphaTest();
@ -329,6 +364,7 @@ void RasterizerOpenGL::NotifyPicaRegisterChanged(u32 id) {
break; break;
// TEV stages // TEV stages
// (This also syncs fog_mode and fog_flip which are part of tev_combiner_buffer_input)
case PICA_REG_INDEX(tev_stage0.color_source1): case PICA_REG_INDEX(tev_stage0.color_source1):
case PICA_REG_INDEX(tev_stage0.color_modifier1): case PICA_REG_INDEX(tev_stage0.color_modifier1):
case PICA_REG_INDEX(tev_stage0.color_op): case PICA_REG_INDEX(tev_stage0.color_op):
@ -950,9 +986,15 @@ void RasterizerOpenGL::SetShader() {
uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[5]"); uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[5]");
if (uniform_lut != -1) { glUniform1i(uniform_lut, 8); } if (uniform_lut != -1) { glUniform1i(uniform_lut, 8); }
GLuint uniform_fog_lut = glGetUniformLocation(shader->shader.handle, "fog_lut");
if (uniform_fog_lut != -1) { glUniform1i(uniform_fog_lut, 9); }
current_shader = shader_cache.emplace(config, std::move(shader)).first->second.get(); current_shader = shader_cache.emplace(config, std::move(shader)).first->second.get();
unsigned int block_index = glGetUniformBlockIndex(current_shader->shader.handle, "shader_data"); unsigned int block_index = glGetUniformBlockIndex(current_shader->shader.handle, "shader_data");
GLint block_size;
glGetActiveUniformBlockiv(current_shader->shader.handle, block_index, GL_UNIFORM_BLOCK_DATA_SIZE, &block_size);
ASSERT_MSG(block_size == sizeof(UniformData), "Uniform block size did not match!");
glUniformBlockBinding(current_shader->shader.handle, block_index, 0); glUniformBlockBinding(current_shader->shader.handle, block_index, 0);
// Update uniforms // Update uniforms
@ -974,6 +1016,8 @@ void RasterizerOpenGL::SetShader() {
SyncLightDistanceAttenuationBias(light_index); SyncLightDistanceAttenuationBias(light_index);
SyncLightDistanceAttenuationScale(light_index); SyncLightDistanceAttenuationScale(light_index);
} }
SyncFogColor();
} }
} }
@ -1040,6 +1084,30 @@ void RasterizerOpenGL::SyncBlendColor() {
state.blend.color.alpha = blend_color[3]; state.blend.color.alpha = blend_color[3];
} }
void RasterizerOpenGL::SyncFogColor() {
const auto& regs = Pica::g_state.regs;
uniform_block_data.data.fog_color = {
regs.fog_color.r.Value() / 255.0f,
regs.fog_color.g.Value() / 255.0f,
regs.fog_color.b.Value() / 255.0f
};
uniform_block_data.dirty = true;
}
void RasterizerOpenGL::SyncFogLUT() {
std::array<GLuint, 128> new_data;
std::transform(Pica::g_state.fog.lut.begin(), Pica::g_state.fog.lut.end(), new_data.begin(), [](const auto& entry) {
return entry.raw;
});
if (new_data != fog_lut_data) {
fog_lut_data = new_data;
glActiveTexture(GL_TEXTURE9);
glTexSubImage1D(GL_TEXTURE_1D, 0, 0, 128, GL_RED_INTEGER, GL_UNSIGNED_INT, fog_lut_data.data());
}
}
void RasterizerOpenGL::SyncAlphaTest() { void RasterizerOpenGL::SyncAlphaTest() {
const auto& regs = Pica::g_state.regs; const auto& regs = Pica::g_state.regs;
if (regs.output_merger.alpha_test.ref != uniform_block_data.data.alphatest_ref) { if (regs.output_merger.alpha_test.ref != uniform_block_data.data.alphatest_ref) {

View File

@ -76,6 +76,9 @@ union PicaShaderConfig {
state.tev_stages[i].scales_raw = tev_stage.scales_raw; state.tev_stages[i].scales_raw = tev_stage.scales_raw;
} }
state.fog_mode = regs.fog_mode;
state.fog_flip = regs.fog_flip;
state.combiner_buffer_input = state.combiner_buffer_input =
regs.tev_combiner_buffer_input.update_mask_rgb.Value() | regs.tev_combiner_buffer_input.update_mask_rgb.Value() |
regs.tev_combiner_buffer_input.update_mask_a.Value() << 4; regs.tev_combiner_buffer_input.update_mask_a.Value() << 4;
@ -168,13 +171,14 @@ union PicaShaderConfig {
}; };
struct State { struct State {
Pica::Regs::CompareFunc alpha_test_func; Pica::Regs::CompareFunc alpha_test_func;
Pica::Regs::TextureConfig::TextureType texture0_type; Pica::Regs::TextureConfig::TextureType texture0_type;
std::array<TevStageConfigRaw, 6> tev_stages; std::array<TevStageConfigRaw, 6> tev_stages;
u8 combiner_buffer_input; u8 combiner_buffer_input;
Pica::Regs::DepthBuffering depthmap_enable; Pica::Regs::DepthBuffering depthmap_enable;
Pica::Regs::FogMode fog_mode;
bool fog_flip;
struct { struct {
struct { struct {
@ -316,19 +320,22 @@ private:
GLfloat dist_atten_scale; GLfloat dist_atten_scale;
}; };
/// Uniform structure for the Uniform Buffer Object, all members must be 16-byte aligned /// Uniform structure for the Uniform Buffer Object, all vectors must be 16-byte aligned
// NOTE: Always keep a vec4 at the end. The GL spec is not clear wether the alignment at
// the end of a uniform block is included in UNIFORM_BLOCK_DATA_SIZE or not.
// Not following that rule will cause problems on some AMD drivers.
struct UniformData { struct UniformData {
// A vec4 color for each of the six tev stages
GLvec4 const_color[6];
GLvec4 tev_combiner_buffer_color;
GLint alphatest_ref; GLint alphatest_ref;
GLfloat depth_scale; GLfloat depth_scale;
GLfloat depth_offset; GLfloat depth_offset;
alignas(16) GLvec3 fog_color;
alignas(16) GLvec3 lighting_global_ambient; alignas(16) GLvec3 lighting_global_ambient;
LightSrc light_src[8]; LightSrc light_src[8];
alignas(16) GLvec4 const_color[6]; // A vec4 color for each of the six tev stages
alignas(16) GLvec4 tev_combiner_buffer_color;
}; };
static_assert(sizeof(UniformData) == 0x390, "The size of the UniformData structure has changed, update the structure in the shader"); static_assert(sizeof(UniformData) == 0x3A0, "The size of the UniformData structure has changed, update the structure in the shader");
static_assert(sizeof(UniformData) < 16384, "UniformData structure must be less than 16kb as per the OpenGL spec"); static_assert(sizeof(UniformData) < 16384, "UniformData structure must be less than 16kb as per the OpenGL spec");
/// Sets the OpenGL shader in accordance with the current PICA register state /// Sets the OpenGL shader in accordance with the current PICA register state
@ -352,6 +359,10 @@ private:
/// Syncs the blend color to match the PICA register /// Syncs the blend color to match the PICA register
void SyncBlendColor(); void SyncBlendColor();
/// Syncs the fog states to match the PICA register
void SyncFogColor();
void SyncFogLUT();
/// Syncs the alpha test states to match the PICA register /// Syncs the alpha test states to match the PICA register
void SyncAlphaTest(); void SyncAlphaTest();
@ -419,6 +430,7 @@ private:
struct { struct {
UniformData data; UniformData data;
bool lut_dirty[6]; bool lut_dirty[6];
bool fog_lut_dirty;
bool dirty; bool dirty;
} uniform_block_data = {}; } uniform_block_data = {};
@ -430,4 +442,7 @@ private:
std::array<OGLTexture, 6> lighting_luts; std::array<OGLTexture, 6> lighting_luts;
std::array<std::array<GLvec4, 256>, 6> lighting_lut_data{}; std::array<std::array<GLvec4, 256>, 6> lighting_lut_data{};
OGLTexture fog_lut;
std::array<GLuint, 128> fog_lut_data{};
}; };

View File

@ -552,17 +552,19 @@ struct LightSrc {
}; };
layout (std140) uniform shader_data { layout (std140) uniform shader_data {
vec4 const_color[NUM_TEV_STAGES];
vec4 tev_combiner_buffer_color;
int alphatest_ref; int alphatest_ref;
float depth_scale; float depth_scale;
float depth_offset; float depth_offset;
vec3 fog_color;
vec3 lighting_global_ambient; vec3 lighting_global_ambient;
LightSrc light_src[NUM_LIGHTS]; LightSrc light_src[NUM_LIGHTS];
vec4 const_color[NUM_TEV_STAGES];
vec4 tev_combiner_buffer_color;
}; };
uniform sampler2D tex[3]; uniform sampler2D tex[3];
uniform sampler1D lut[6]; uniform sampler1D lut[6];
uniform usampler1D fog_lut;
// Rotate the vector v by the quaternion q // Rotate the vector v by the quaternion q
vec3 quaternion_rotate(vec4 q, vec3 v) { vec3 quaternion_rotate(vec4 q, vec3 v) {
@ -580,6 +582,12 @@ vec4 secondary_fragment_color = vec4(0.0);
return out; return out;
} }
out += "float z_over_w = 1.0 - gl_FragCoord.z * 2.0;\n";
out += "float depth = z_over_w * depth_scale + depth_offset;\n";
if (state.depthmap_enable == Pica::Regs::DepthBuffering::WBuffering) {
out += "depth /= gl_FragCoord.w;\n";
}
if (state.lighting.enable) if (state.lighting.enable)
WriteLighting(out, config); WriteLighting(out, config);
@ -596,14 +604,30 @@ vec4 secondary_fragment_color = vec4(0.0);
out += ") discard;\n"; out += ") discard;\n";
} }
out += "color = last_tex_env_out;\n"; // Append fog combiner
if (state.fog_mode == Regs::FogMode::Fog) {
// Get index into fog LUT
if (state.fog_flip) {
out += "float fog_index = (1.0 - depth) * 128.0;\n";
} else {
out += "float fog_index = depth * 128.0;\n";
}
out += "float z_over_w = 1.0 - gl_FragCoord.z * 2.0;\n"; // Generate clamped fog factor from LUT for given fog index
out += "float depth = z_over_w * depth_scale + depth_offset;\n"; out += "float fog_i = clamp(floor(fog_index), 0.0, 127.0);\n";
if (state.depthmap_enable == Pica::Regs::DepthBuffering::WBuffering) { out += "float fog_f = fog_index - fog_i;\n";
out += "depth /= gl_FragCoord.w;\n"; out += "uint fog_lut_entry = texelFetch(fog_lut, int(fog_i), 0).r;\n";
out += "float fog_lut_entry_difference = float(int((fog_lut_entry & 0x1FFFU) << 19U) >> 19);\n"; // Extract signed difference
out += "float fog_lut_entry_value = float((fog_lut_entry >> 13U) & 0x7FFU);\n";
out += "float fog_factor = (fog_lut_entry_value + fog_lut_entry_difference * fog_f) / 2047.0;\n";
out += "fog_factor = clamp(fog_factor, 0.0, 1.0);\n";
// Blend the fog
out += "last_tex_env_out.rgb = mix(fog_color.rgb, last_tex_env_out.rgb, fog_factor);\n";
} }
out += "gl_FragDepth = depth;\n"; out += "gl_FragDepth = depth;\n";
out += "color = last_tex_env_out;\n";
out += "}"; out += "}";

View File

@ -58,6 +58,8 @@ OpenGLState::OpenGLState() {
lut.texture_1d = 0; lut.texture_1d = 0;
} }
fog_lut.texture_1d = 0;
draw.read_framebuffer = 0; draw.read_framebuffer = 0;
draw.draw_framebuffer = 0; draw.draw_framebuffer = 0;
draw.vertex_array = 0; draw.vertex_array = 0;
@ -195,6 +197,12 @@ void OpenGLState::Apply() const {
} }
} }
// Fog LUT
if (fog_lut.texture_1d != cur_state.fog_lut.texture_1d) {
glActiveTexture(GL_TEXTURE9);
glBindTexture(GL_TEXTURE_1D, fog_lut.texture_1d);
}
// Framebuffer // Framebuffer
if (draw.read_framebuffer != cur_state.draw.read_framebuffer) { if (draw.read_framebuffer != cur_state.draw.read_framebuffer) {
glBindFramebuffer(GL_READ_FRAMEBUFFER, draw.read_framebuffer); glBindFramebuffer(GL_READ_FRAMEBUFFER, draw.read_framebuffer);

View File

@ -67,6 +67,10 @@ public:
GLuint texture_1d; // GL_TEXTURE_BINDING_1D GLuint texture_1d; // GL_TEXTURE_BINDING_1D
} lighting_luts[6]; } lighting_luts[6];
struct {
GLuint texture_1d; // GL_TEXTURE_BINDING_1D
} fog_lut;
struct { struct {
GLuint read_framebuffer; // GL_READ_FRAMEBUFFER_BINDING GLuint read_framebuffer; // GL_READ_FRAMEBUFFER_BINDING
GLuint draw_framebuffer; // GL_DRAW_FRAMEBUFFER_BINDING GLuint draw_framebuffer; // GL_DRAW_FRAMEBUFFER_BINDING