forked from ShuriZma/suyu
1
0
Fork 0

shader/image: Implement SUATOM and fix SUST

This commit is contained in:
ReinUsesLisp 2019-07-17 21:03:53 -03:00
parent 34b2c60f95
commit 36abf67e79
7 changed files with 332 additions and 72 deletions

View File

@ -544,6 +544,28 @@ enum class VoteOperation : u64 {
Eq = 2, // allThreadsEqualNV Eq = 2, // allThreadsEqualNV
}; };
enum class ImageAtomicSize : u64 {
U32 = 0,
S32 = 1,
U64 = 2,
F32 = 3,
S64 = 5,
SD32 = 6,
SD64 = 7,
};
enum class ImageAtomicOperation : u64 {
Add = 0,
Min = 1,
Max = 2,
Inc = 3,
Dec = 4,
And = 5,
Or = 6,
Xor = 7,
Exch = 8,
};
union Instruction { union Instruction {
Instruction& operator=(const Instruction& instr) { Instruction& operator=(const Instruction& instr) {
value = instr.value; value = instr.value;
@ -1391,6 +1413,14 @@ union Instruction {
} }
} sust; } sust;
union {
BitField<28, 1, u64> is_ba;
BitField<51, 3, ImageAtomicSize> size;
BitField<33, 3, ImageType> image_type;
BitField<29, 4, ImageAtomicOperation> operation;
BitField<49, 2, OutOfBoundsStore> out_of_bounds_store;
} suatom_d;
union { union {
BitField<20, 24, u64> target; BitField<20, 24, u64> target;
BitField<5, 1, u64> constant_buffer; BitField<5, 1, u64> constant_buffer;
@ -1543,6 +1573,7 @@ public:
TMML_B, // Texture Mip Map Level TMML_B, // Texture Mip Map Level
TMML, // Texture Mip Map Level TMML, // Texture Mip Map Level
SUST, // Surface Store SUST, // Surface Store
SUATOM, // Surface Atomic Operation
EXIT, EXIT,
NOP, NOP,
IPA, IPA,
@ -1826,6 +1857,7 @@ private:
INST("110111110110----", Id::TMML_B, Type::Texture, "TMML_B"), INST("110111110110----", Id::TMML_B, Type::Texture, "TMML_B"),
INST("1101111101011---", Id::TMML, Type::Texture, "TMML"), INST("1101111101011---", Id::TMML, Type::Texture, "TMML"),
INST("11101011001-----", Id::SUST, Type::Image, "SUST"), INST("11101011001-----", Id::SUST, Type::Image, "SUST"),
INST("1110101000------", Id::SUATOM, Type::Image, "SUATOM_D"),
INST("0101000010110---", Id::NOP, Type::Trivial, "NOP"), INST("0101000010110---", Id::NOP, Type::Trivial, "NOP"),
INST("11100000--------", Id::IPA, Type::Trivial, "IPA"), INST("11100000--------", Id::IPA, Type::Trivial, "IPA"),
INST("1111101111100---", Id::OUT_R, Type::Trivial, "OUT_R"), INST("1111101111100---", Id::OUT_R, Type::Trivial, "OUT_R"),

View File

@ -706,7 +706,7 @@ private:
void DeclareImages() { void DeclareImages() {
const auto& images{ir.GetImages()}; const auto& images{ir.GetImages()};
for (const auto& [offset, image] : images) { for (const auto& [offset, image] : images) {
const std::string image_type = [&]() { const char* image_type = [&] {
switch (image.GetType()) { switch (image.GetType()) {
case Tegra::Shader::ImageType::Texture1D: case Tegra::Shader::ImageType::Texture1D:
return "image1D"; return "image1D";
@ -725,6 +725,23 @@ private:
return "image1D"; return "image1D";
} }
}(); }();
const auto [type_prefix, format] = [&]() -> std::pair<const char*, const char*> {
if (!image.IsSizeKnown()) {
return {"", ""};
}
switch (image.GetSize()) {
case Tegra::Shader::ImageAtomicSize::U32:
return {"u", "r32ui, "};
case Tegra::Shader::ImageAtomicSize::S32:
return {"i", "r32i, "};
default:
UNIMPLEMENTED_MSG("Unimplemented atomic size={}",
static_cast<u32>(image.GetSize()));
return {"", ""};
}
}();
std::string qualifier = "coherent volatile"; std::string qualifier = "coherent volatile";
if (image.IsRead() && !image.IsWritten()) { if (image.IsRead() && !image.IsWritten()) {
qualifier += " readonly"; qualifier += " readonly";
@ -1180,6 +1197,74 @@ private:
return expr; return expr;
} }
std::string BuildIntegerCoordinates(Operation operation) {
constexpr std::array constructors{"int(", "ivec2(", "ivec3(", "ivec4("};
const std::size_t coords_count{operation.GetOperandsCount()};
std::string expr = constructors.at(coords_count - 1);
for (std::size_t i = 0; i < coords_count; ++i) {
expr += VisitOperand(operation, i).AsInt();
if (i + 1 < coords_count) {
expr += ", ";
}
}
expr += ')';
return expr;
}
std::string BuildImageValues(Operation operation) {
const auto meta{std::get<MetaImage>(operation.GetMeta())};
const auto [constructors, type] = [&]() -> std::pair<std::array<const char*, 4>, Type> {
constexpr std::array float_constructors{"float", "vec2", "vec3", "vec4"};
if (!meta.image.IsSizeKnown()) {
return {float_constructors, Type::Float};
}
switch (meta.image.GetSize()) {
case Tegra::Shader::ImageAtomicSize::U32:
return {{"uint", "uvec2", "uvec3", "uvec4"}, Type::Uint};
case Tegra::Shader::ImageAtomicSize::S32:
return {{"int", "ivec2", "ivec3", "ivec4"}, Type::Uint};
default:
UNIMPLEMENTED_MSG("Unimplemented image size={}",
static_cast<u32>(meta.image.GetSize()));
return {float_constructors, Type::Float};
}
}();
const std::size_t values_count{meta.values.size()};
std::string expr = fmt::format("{}(", constructors.at(values_count - 1));
for (std::size_t i = 0; i < values_count; ++i) {
expr += Visit(meta.values.at(i)).As(type);
if (i + 1 < values_count) {
expr += ", ";
}
}
expr += ')';
return expr;
}
Expression AtomicImage(Operation operation, const char* opname) {
constexpr std::array constructors{"int(", "ivec2(", "ivec3(", "ivec4("};
const auto meta{std::get<MetaImage>(operation.GetMeta())};
ASSERT(meta.values.size() == 1);
ASSERT(meta.image.IsSizeKnown());
const auto type = [&]() {
switch (const auto size = meta.image.GetSize()) {
case Tegra::Shader::ImageAtomicSize::U32:
return Type::Uint;
case Tegra::Shader::ImageAtomicSize::S32:
return Type::Int;
default:
UNIMPLEMENTED_MSG("Unimplemented image size={}", static_cast<u32>(size));
return Type::Uint;
}
}();
return {fmt::format("{}({}, {}, {})", opname, GetImage(meta.image),
BuildIntegerCoordinates(operation), Visit(meta.values[0]).As(type)),
type};
}
Expression Assign(Operation operation) { Expression Assign(Operation operation) {
const Node& dest = operation[0]; const Node& dest = operation[0];
const Node& src = operation[1]; const Node& src = operation[1];
@ -1694,38 +1779,39 @@ private:
} }
Expression ImageStore(Operation operation) { Expression ImageStore(Operation operation) {
constexpr std::array constructors{"int(", "ivec2(", "ivec3(", "ivec4("};
const auto meta{std::get<MetaImage>(operation.GetMeta())}; const auto meta{std::get<MetaImage>(operation.GetMeta())};
code.AddLine("imageStore({}, {}, {});", GetImage(meta.image),
std::string expr = "imageStore("; BuildIntegerCoordinates(operation), BuildImageValues(operation));
expr += GetImage(meta.image);
expr += ", ";
const std::size_t coords_count{operation.GetOperandsCount()};
expr += constructors.at(coords_count - 1);
for (std::size_t i = 0; i < coords_count; ++i) {
expr += VisitOperand(operation, i).AsInt();
if (i + 1 < coords_count) {
expr += ", ";
}
}
expr += "), ";
const std::size_t values_count{meta.values.size()};
UNIMPLEMENTED_IF(values_count != 4);
expr += "vec4(";
for (std::size_t i = 0; i < values_count; ++i) {
expr += Visit(meta.values.at(i)).AsFloat();
if (i + 1 < values_count) {
expr += ", ";
}
}
expr += "));";
code.AddLine(expr);
return {}; return {};
} }
Expression AtomicImageAdd(Operation operation) {
return AtomicImage(operation, "imageAtomicAdd");
}
Expression AtomicImageMin(Operation operation) {
return AtomicImage(operation, "imageAtomicMin");
}
Expression AtomicImageMax(Operation operation) {
return AtomicImage(operation, "imageAtomicMax");
}
Expression AtomicImageAnd(Operation operation) {
return AtomicImage(operation, "imageAtomicAnd");
}
Expression AtomicImageOr(Operation operation) {
return AtomicImage(operation, "imageAtomicOr");
}
Expression AtomicImageXor(Operation operation) {
return AtomicImage(operation, "imageAtomicXor");
}
Expression AtomicImageExchange(Operation operation) {
return AtomicImage(operation, "imageAtomicExchange");
}
Expression Branch(Operation operation) { Expression Branch(Operation operation) {
const auto target = std::get_if<ImmediateNode>(&*operation[0]); const auto target = std::get_if<ImmediateNode>(&*operation[0]);
UNIMPLEMENTED_IF(!target); UNIMPLEMENTED_IF(!target);
@ -2019,6 +2105,13 @@ private:
&GLSLDecompiler::TexelFetch, &GLSLDecompiler::TexelFetch,
&GLSLDecompiler::ImageStore, &GLSLDecompiler::ImageStore,
&GLSLDecompiler::AtomicImageAdd,
&GLSLDecompiler::AtomicImageMin,
&GLSLDecompiler::AtomicImageMax,
&GLSLDecompiler::AtomicImageAnd,
&GLSLDecompiler::AtomicImageOr,
&GLSLDecompiler::AtomicImageXor,
&GLSLDecompiler::AtomicImageExchange,
&GLSLDecompiler::Branch, &GLSLDecompiler::Branch,
&GLSLDecompiler::BranchIndirect, &GLSLDecompiler::BranchIndirect,

View File

@ -341,16 +341,22 @@ std::optional<ShaderDiskCacheDecompiled> ShaderDiskCacheOpenGL::LoadDecompiledEn
u64 index{}; u64 index{};
u32 type{}; u32 type{};
u8 is_bindless{}; u8 is_bindless{};
u8 is_read{};
u8 is_written{}; u8 is_written{};
u8 is_read{};
u8 is_size_known{};
u32 size{};
if (!LoadObjectFromPrecompiled(offset) || !LoadObjectFromPrecompiled(index) || if (!LoadObjectFromPrecompiled(offset) || !LoadObjectFromPrecompiled(index) ||
!LoadObjectFromPrecompiled(type) || !LoadObjectFromPrecompiled(is_bindless) || !LoadObjectFromPrecompiled(type) || !LoadObjectFromPrecompiled(is_bindless) ||
!LoadObjectFromPrecompiled(is_read) || !LoadObjectFromPrecompiled(is_written)) { !LoadObjectFromPrecompiled(is_written) || !LoadObjectFromPrecompiled(is_read) ||
!LoadObjectFromPrecompiled(is_size_known) || !LoadObjectFromPrecompiled(size)) {
return {}; return {};
} }
entry.entries.images.emplace_back(static_cast<u64>(offset), static_cast<std::size_t>(index), entry.entries.images.emplace_back(
static_cast<Tegra::Shader::ImageType>(type), static_cast<std::size_t>(offset), static_cast<std::size_t>(index),
is_bindless != 0, is_written != 0, is_read != 0); static_cast<Tegra::Shader::ImageType>(type), is_bindless != 0, is_written != 0,
is_read != 0,
is_size_known ? std::make_optional(static_cast<Tegra::Shader::ImageAtomicSize>(size))
: std::nullopt);
} }
u32 global_memory_count{}; u32 global_memory_count{};
@ -429,12 +435,14 @@ bool ShaderDiskCacheOpenGL::SaveDecompiledFile(u64 unique_identifier, const std:
return false; return false;
} }
for (const auto& image : entries.images) { for (const auto& image : entries.images) {
const u32 size = image.IsSizeKnown() ? static_cast<u32>(image.GetSize()) : 0U;
if (!SaveObjectToPrecompiled(static_cast<u64>(image.GetOffset())) || if (!SaveObjectToPrecompiled(static_cast<u64>(image.GetOffset())) ||
!SaveObjectToPrecompiled(static_cast<u64>(image.GetIndex())) || !SaveObjectToPrecompiled(static_cast<u64>(image.GetIndex())) ||
!SaveObjectToPrecompiled(static_cast<u32>(image.GetType())) || !SaveObjectToPrecompiled(static_cast<u32>(image.GetType())) ||
!SaveObjectToPrecompiled(static_cast<u8>(image.IsBindless() ? 1 : 0)) || !SaveObjectToPrecompiled(static_cast<u8>(image.IsBindless() ? 1 : 0)) ||
!SaveObjectToPrecompiled(static_cast<u8>(image.IsWritten() ? 1 : 0)) ||
!SaveObjectToPrecompiled(static_cast<u8>(image.IsRead() ? 1 : 0)) || !SaveObjectToPrecompiled(static_cast<u8>(image.IsRead() ? 1 : 0)) ||
!SaveObjectToPrecompiled(static_cast<u8>(image.IsWritten() ? 1 : 0))) { !SaveObjectToPrecompiled(image.IsSizeKnown()) || !SaveObjectToPrecompiled(size)) {
return false; return false;
} }
} }

View File

@ -944,6 +944,41 @@ private:
return {}; return {};
} }
Id AtomicImageAdd(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id AtomicImageMin(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id AtomicImageMax(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id AtomicImageAnd(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id AtomicImageOr(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id AtomicImageXor(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id AtomicImageExchange(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id Branch(Operation operation) { Id Branch(Operation operation) {
const auto target = std::get_if<ImmediateNode>(&*operation[0]); const auto target = std::get_if<ImmediateNode>(&*operation[0]);
UNIMPLEMENTED_IF(!target); UNIMPLEMENTED_IF(!target);
@ -1366,6 +1401,13 @@ private:
&SPIRVDecompiler::TexelFetch, &SPIRVDecompiler::TexelFetch,
&SPIRVDecompiler::ImageStore, &SPIRVDecompiler::ImageStore,
&SPIRVDecompiler::AtomicImageAdd,
&SPIRVDecompiler::AtomicImageMin,
&SPIRVDecompiler::AtomicImageMax,
&SPIRVDecompiler::AtomicImageAnd,
&SPIRVDecompiler::AtomicImageOr,
&SPIRVDecompiler::AtomicImageXor,
&SPIRVDecompiler::AtomicImageExchange,
&SPIRVDecompiler::Branch, &SPIRVDecompiler::Branch,
&SPIRVDecompiler::BranchIndirect, &SPIRVDecompiler::BranchIndirect,

View File

@ -44,7 +44,6 @@ u32 ShaderIR::DecodeImage(NodeBlock& bb, u32 pc) {
switch (opcode->get().GetId()) { switch (opcode->get().GetId()) {
case OpCode::Id::SUST: { case OpCode::Id::SUST: {
UNIMPLEMENTED_IF(instr.sust.mode != Tegra::Shader::SurfaceDataMode::P); UNIMPLEMENTED_IF(instr.sust.mode != Tegra::Shader::SurfaceDataMode::P);
UNIMPLEMENTED_IF(instr.sust.image_type == Tegra::Shader::ImageType::TextureBuffer);
UNIMPLEMENTED_IF(instr.sust.out_of_bounds_store != Tegra::Shader::OutOfBoundsStore::Ignore); UNIMPLEMENTED_IF(instr.sust.out_of_bounds_store != Tegra::Shader::OutOfBoundsStore::Ignore);
UNIMPLEMENTED_IF(instr.sust.component_mask_selector != 0xf); // Ensure we have an RGBA store UNIMPLEMENTED_IF(instr.sust.component_mask_selector != 0xf); // Ensure we have an RGBA store
@ -66,8 +65,46 @@ u32 ShaderIR::DecodeImage(NodeBlock& bb, u32 pc) {
image.MarkWrite(); image.MarkWrite();
MetaImage meta{image, values}; MetaImage meta{image, values};
const Node store{Operation(OperationCode::ImageStore, meta, std::move(coords))}; bb.push_back(Operation(OperationCode::ImageStore, meta, std::move(coords)));
bb.push_back(store); break;
}
case OpCode::Id::SUATOM: {
UNIMPLEMENTED_IF(instr.suatom_d.is_ba != 0);
Node value = GetRegister(instr.gpr0);
std::vector<Node> coords;
const std::size_t num_coords{GetImageTypeNumCoordinates(instr.sust.image_type)};
for (std::size_t i = 0; i < num_coords; ++i) {
coords.push_back(GetRegister(instr.gpr8.Value() + i));
}
const OperationCode operation_code = [instr] {
switch (instr.suatom_d.operation) {
case Tegra::Shader::ImageAtomicOperation::Add:
return OperationCode::AtomicImageAdd;
case Tegra::Shader::ImageAtomicOperation::Min:
return OperationCode::AtomicImageMin;
case Tegra::Shader::ImageAtomicOperation::Max:
return OperationCode::AtomicImageMax;
case Tegra::Shader::ImageAtomicOperation::And:
return OperationCode::AtomicImageAnd;
case Tegra::Shader::ImageAtomicOperation::Or:
return OperationCode::AtomicImageOr;
case Tegra::Shader::ImageAtomicOperation::Xor:
return OperationCode::AtomicImageXor;
case Tegra::Shader::ImageAtomicOperation::Exch:
return OperationCode::AtomicImageExchange;
default:
UNIMPLEMENTED_MSG("Unimplemented operation={}",
static_cast<u32>(instr.suatom_d.operation.Value()));
return OperationCode::AtomicImageAdd;
}
}();
const auto& image{GetImage(instr.image, instr.suatom_d.image_type, instr.suatom_d.size)};
MetaImage meta{image, {std::move(value)}};
SetRegister(bb, instr.gpr0, Operation(operation_code, meta, std::move(coords)));
break; break;
} }
default: default:
@ -77,38 +114,51 @@ u32 ShaderIR::DecodeImage(NodeBlock& bb, u32 pc) {
return pc; return pc;
} }
Image& ShaderIR::GetImage(Tegra::Shader::Image image, Tegra::Shader::ImageType type) { Image& ShaderIR::GetImage(Tegra::Shader::Image image, Tegra::Shader::ImageType type,
const auto offset{static_cast<u64>(image.index.Value())}; std::optional<Tegra::Shader::ImageAtomicSize> size) {
const auto offset{static_cast<std::size_t>(image.index.Value())};
// If this image has already been used, return the existing mapping. if (const auto image = TryUseExistingImage(offset, type, size)) {
const auto it = used_images.find(offset); return *image;
if (it != used_images.end()) {
ASSERT(it->second.GetType() == type);
return it->second;
} }
// Otherwise create a new mapping for this image.
const std::size_t next_index{used_images.size()}; const std::size_t next_index{used_images.size()};
return used_images.emplace(offset, Image{offset, next_index, type}).first->second; return used_images.emplace(offset, Image{offset, next_index, type, size}).first->second;
} }
Image& ShaderIR::GetBindlessImage(Tegra::Shader::Register reg, Tegra::Shader::ImageType type) { Image& ShaderIR::GetBindlessImage(Tegra::Shader::Register reg, Tegra::Shader::ImageType type,
std::optional<Tegra::Shader::ImageAtomicSize> size) {
const Node image_register{GetRegister(reg)}; const Node image_register{GetRegister(reg)};
const auto [base_image, cbuf_index, cbuf_offset]{ const auto [base_image, cbuf_index, cbuf_offset]{
TrackCbuf(image_register, global_code, static_cast<s64>(global_code.size()))}; TrackCbuf(image_register, global_code, static_cast<s64>(global_code.size()))};
const auto cbuf_key{(static_cast<u64>(cbuf_index) << 32) | static_cast<u64>(cbuf_offset)}; const auto cbuf_key{(static_cast<u64>(cbuf_index) << 32) | static_cast<u64>(cbuf_offset)};
// If this image has already been used, return the existing mapping. if (const auto image = TryUseExistingImage(cbuf_key, type, size)) {
const auto it = used_images.find(cbuf_key); return *image;
if (it != used_images.end()) {
ASSERT(it->second.GetType() == type);
return it->second;
} }
// Otherwise create a new mapping for this image.
const std::size_t next_index{used_images.size()}; const std::size_t next_index{used_images.size()};
return used_images.emplace(cbuf_key, Image{cbuf_index, cbuf_offset, next_index, type}) return used_images.emplace(cbuf_key, Image{cbuf_index, cbuf_offset, next_index, type, size})
.first->second; .first->second;
} }
Image* ShaderIR::TryUseExistingImage(u64 offset, Tegra::Shader::ImageType type,
std::optional<Tegra::Shader::ImageAtomicSize> size) {
auto it = used_images.find(offset);
if (it == used_images.end()) {
return nullptr;
}
auto& image = it->second;
ASSERT(image.GetType() == type);
if (size) {
// We know the size, if it's known it has to be the same as before, otherwise we can set it.
if (image.IsSizeKnown()) {
ASSERT(image.GetSize() == size);
} else {
image.SetSize(*size);
}
}
return &image;
}
} // namespace VideoCommon::Shader } // namespace VideoCommon::Shader

View File

@ -7,6 +7,7 @@
#include <array> #include <array>
#include <cstddef> #include <cstddef>
#include <memory> #include <memory>
#include <optional>
#include <string> #include <string>
#include <tuple> #include <tuple>
#include <utility> #include <utility>
@ -148,7 +149,14 @@ enum class OperationCode {
TextureQueryLod, /// (MetaTexture, float[N] coords) -> float4 TextureQueryLod, /// (MetaTexture, float[N] coords) -> float4
TexelFetch, /// (MetaTexture, int[N], int) -> float4 TexelFetch, /// (MetaTexture, int[N], int) -> float4
ImageStore, /// (MetaImage, float[N] coords) -> void ImageStore, /// (MetaImage, int[N] values) -> void
AtomicImageAdd, /// (MetaImage, int[N] coords) -> void
AtomicImageMin, /// (MetaImage, int[N] coords) -> void
AtomicImageMax, /// (MetaImage, int[N] coords) -> void
AtomicImageAnd, /// (MetaImage, int[N] coords) -> void
AtomicImageOr, /// (MetaImage, int[N] coords) -> void
AtomicImageXor, /// (MetaImage, int[N] coords) -> void
AtomicImageExchange, /// (MetaImage, int[N] coords) -> void
Branch, /// (uint branch_target) -> void Branch, /// (uint branch_target) -> void
BranchIndirect, /// (uint branch_target) -> void BranchIndirect, /// (uint branch_target) -> void
@ -275,25 +283,32 @@ private:
class Image final { class Image final {
public: public:
constexpr explicit Image(u64 offset, std::size_t index, Tegra::Shader::ImageType type) constexpr explicit Image(std::size_t offset, std::size_t index, Tegra::Shader::ImageType type,
: offset{offset}, index{index}, type{type}, is_bindless{false} {} std::optional<Tegra::Shader::ImageAtomicSize> size)
: offset{offset}, index{index}, type{type}, is_bindless{false}, size{size} {}
constexpr explicit Image(u32 cbuf_index, u32 cbuf_offset, std::size_t index, constexpr explicit Image(u32 cbuf_index, u32 cbuf_offset, std::size_t index,
Tegra::Shader::ImageType type) Tegra::Shader::ImageType type,
std::optional<Tegra::Shader::ImageAtomicSize> size)
: offset{(static_cast<u64>(cbuf_index) << 32) | cbuf_offset}, index{index}, type{type}, : offset{(static_cast<u64>(cbuf_index) << 32) | cbuf_offset}, index{index}, type{type},
is_bindless{true} {} is_bindless{true}, size{size} {}
constexpr explicit Image(std::size_t offset, std::size_t index, Tegra::Shader::ImageType type, constexpr explicit Image(std::size_t offset, std::size_t index, Tegra::Shader::ImageType type,
bool is_bindless, bool is_written, bool is_read) bool is_bindless, bool is_written, bool is_read,
std::optional<Tegra::Shader::ImageAtomicSize> size)
: offset{offset}, index{index}, type{type}, is_bindless{is_bindless}, : offset{offset}, index{index}, type{type}, is_bindless{is_bindless},
is_written{is_written}, is_read{is_read} {} is_written{is_written}, is_read{is_read}, size{size} {}
void MarkWrite() {
is_written = true;
}
void MarkRead() { void MarkRead() {
is_read = true; is_read = true;
} }
void MarkWrite() { void SetSize(Tegra::Shader::ImageAtomicSize size_) {
is_written = true; size = size_;
} }
constexpr std::size_t GetOffset() const { constexpr std::size_t GetOffset() const {
@ -312,25 +327,39 @@ public:
return is_bindless; return is_bindless;
} }
constexpr bool IsRead() const {
return is_read;
}
constexpr bool IsWritten() const { constexpr bool IsWritten() const {
return is_written; return is_written;
} }
constexpr bool IsRead() const {
return is_read;
}
constexpr std::pair<u32, u32> GetBindlessCBuf() const { constexpr std::pair<u32, u32> GetBindlessCBuf() const {
return {static_cast<u32>(offset >> 32), static_cast<u32>(offset)}; return {static_cast<u32>(offset >> 32), static_cast<u32>(offset)};
} }
constexpr bool IsSizeKnown() const {
return size.has_value();
}
constexpr Tegra::Shader::ImageAtomicSize GetSize() const {
return size.value();
}
constexpr bool operator<(const Image& rhs) const {
return std::tie(offset, index, type, size, is_bindless) <
std::tie(rhs.offset, rhs.index, rhs.type, rhs.size, rhs.is_bindless);
}
private: private:
u64 offset{}; u64 offset{};
std::size_t index{}; std::size_t index{};
Tegra::Shader::ImageType type{}; Tegra::Shader::ImageType type{};
bool is_bindless{}; bool is_bindless{};
bool is_read{};
bool is_written{}; bool is_written{};
bool is_read{};
std::optional<Tegra::Shader::ImageAtomicSize> size{};
}; };
struct GlobalMemoryBase { struct GlobalMemoryBase {

View File

@ -272,10 +272,16 @@ private:
bool is_shadow); bool is_shadow);
/// Accesses an image. /// Accesses an image.
Image& GetImage(Tegra::Shader::Image image, Tegra::Shader::ImageType type); Image& GetImage(Tegra::Shader::Image image, Tegra::Shader::ImageType type,
std::optional<Tegra::Shader::ImageAtomicSize> size = {});
/// Access a bindless image sampler. /// Access a bindless image sampler.
Image& GetBindlessImage(Tegra::Shader::Register reg, Tegra::Shader::ImageType type); Image& GetBindlessImage(Tegra::Shader::Register reg, Tegra::Shader::ImageType type,
std::optional<Tegra::Shader::ImageAtomicSize> size = {});
/// Tries to access an existing image, updating it's state as needed
Image* TryUseExistingImage(u64 offset, Tegra::Shader::ImageType type,
std::optional<Tegra::Shader::ImageAtomicSize> size);
/// Extracts a sequence of bits from a node /// Extracts a sequence of bits from a node
Node BitfieldExtract(Node value, u32 offset, u32 bits); Node BitfieldExtract(Node value, u32 offset, u32 bits);