xenia/third_party/crunch/crnlib/crn_zeng.cpp

290 lines
7.9 KiB
C++

// File: crn_zeng.cpp
// See Copyright Notice and license at the end of inc/crnlib.h
// Modified Zeng's technique for codebook/palette reordering
// Evaluation of some reordering techniques for image VQ index compression, António R. C. Paiva , O J. Pinho
// http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.7221
#include "crn_core.h"
#include "crn_zeng.h"
#include "crn_sparse_array.h"
#include <deque>
#define USE_SPARSE_ARRAY 1
namespace crnlib
{
#if USE_SPARSE_ARRAY
typedef sparse_array<uint, 4> hist_type;
#else
typedef crnlib::vector<uint> hist_type;
#endif
static inline void update_hist(hist_type& hist, int i, int j, int n)
{
if (i == j)
return;
if ((i != -1) && (j != -1) && (i < j))
{
CRNLIB_ASSERT( (i >= 0) && (i < (int)n) );
CRNLIB_ASSERT( (j >= 0) && (j < (int)n) );
uint index = i * n + j;
#if USE_SPARSE_ARRAY
uint freq = hist[index];
freq++;
hist.set(index, freq);
#else
hist[index]++;
#endif
}
}
static inline uint read_hist(hist_type& hist, int i, int j, int n)
{
if (i > j)
utils::swap(i, j);
return hist[i * n + j];
}
void create_zeng_reorder_table(uint n, uint num_indices, const uint* pIndices, crnlib::vector<uint>& remap_table, zeng_similarity_func pFunc, void* pContext, float similarity_func_weight)
{
CRNLIB_ASSERT((n > 0) && (num_indices > 0));
CRNLIB_ASSERT_CLOSED_RANGE(similarity_func_weight, 0.0f, 1.0f);
// printf("create_zeng_reorder_table start:\n");
remap_table.clear();
remap_table.resize(n);
if (num_indices <= 1)
return;
const uint t = n * n;
hist_type xhist(t);
for (uint i = 0; i < num_indices; i++)
{
const int prev_val = (i > 0) ? pIndices[i-1] : -1;
const int cur_val = pIndices[i];
const int next_val = (i < (num_indices - 1)) ? pIndices[i+1] : -1;
update_hist(xhist, cur_val, prev_val, n);
update_hist(xhist, cur_val, next_val, n);
}
#if 0
uint total1 = 0, total2 = 0;
for (uint i = 0; i < n; i++)
{
for (uint j = 0; j < n; j++)
{
if (i == j)
continue;
//uint a = hist[i * n + j];
//total1 += a;
uint c = read_hist(xhist, i, j, n);
total2 += c;
}
}
printf("%u %u\n", total1, total2);
#endif
uint max_freq = 0;
uint max_index = 0;
for (uint i = 0; i < t; i++)
{
if (xhist[i] > max_freq)
{
max_freq = xhist[i];
max_index = i;
}
}
uint x = max_index / n;
uint y = max_index % n;
crnlib::vector<uint16> values_chosen;
values_chosen.reserve(n);
values_chosen.push_back(static_cast<uint16>(x));
values_chosen.push_back(static_cast<uint16>(y));
crnlib::vector<uint16> values_remaining;
if (n > 2)
values_remaining.reserve(n - 2);
for (uint i = 0; i < n; i++)
if ((i != x) && (i != y))
values_remaining.push_back(static_cast<uint16>(i));
crnlib::vector<uint> total_freq_to_chosen_values(n);
for (uint i = 0; i < values_remaining.size(); i++)
{
uint u = values_remaining[i];
uint total_freq = 0;
for (uint j = 0; j < values_chosen.size(); j++)
{
uint l = values_chosen[j];
total_freq += read_hist(xhist, u, l, n); //[u * n + l];
}
total_freq_to_chosen_values[u] = total_freq;
}
while (!values_remaining.empty())
{
double best_freq = 0;
uint best_i = 0;
for (uint i = 0; i < values_remaining.size(); i++)
{
uint u = values_remaining[i];
#if 0
double total_freq = 0;
for (uint j = 0; j < values_chosen.size(); j++)
{
uint l = values_chosen[j];
total_freq += read_hist(xhist, u, l, n); //[u * n + l];
}
CRNLIB_ASSERT(total_freq_to_chosen_values[u] == total_freq);
#else
double total_freq = total_freq_to_chosen_values[u];
#endif
if (pFunc)
{
float weight = math::maximum<float>(
(*pFunc)(u, values_chosen.front(), pContext),
(*pFunc)(u, values_chosen.back(), pContext) );
CRNLIB_ASSERT_CLOSED_RANGE(weight, 0.0f, 1.0f);
weight = math::lerp(1.0f - similarity_func_weight, 1.0f + similarity_func_weight, weight);
total_freq = (total_freq + 1.0f) * weight;
}
if (total_freq > best_freq)
{
best_freq = total_freq;
best_i = i;
}
}
const uint u = values_remaining[best_i];
float side = 0;
int left_freq = 0;
int right_freq = 0;
for (uint j = 0; j < values_chosen.size(); j++)
{
const uint l = values_chosen[j];
int freq = read_hist(xhist, u, l, n); //[u * n + l];
int scale = (values_chosen.size() + 1 - 2 * (j + 1));
side = side + (float)(scale * freq);
if (scale < 0)
right_freq += -scale * freq;
else
left_freq += scale * freq;
}
if (pFunc)
{
float weight_left = (*pFunc)(u, values_chosen.front(), pContext);
float weight_right = (*pFunc)(u, values_chosen.back(), pContext);
weight_left = math::lerp(1.0f - similarity_func_weight, 1.0f + similarity_func_weight, weight_left);
weight_right = math::lerp(1.0f - similarity_func_weight, 1.0f + similarity_func_weight, weight_right);
side = weight_left * left_freq - weight_right * right_freq;
}
if (side > 0)
values_chosen.push_front(static_cast<uint16>(u));
else
values_chosen.push_back(static_cast<uint16>(u));
values_remaining.erase(values_remaining.begin() + best_i);
for (uint i = 0; i < values_remaining.size(); i++)
{
const uint r = values_remaining[i];
total_freq_to_chosen_values[r] += read_hist(xhist, r, u, n); //[r * n + u];
}
}
for (uint i = 0; i < n; i++)
{
uint v = values_chosen[i];
remap_table[v] = i;
}
#if 0
uint before_sum = 0;
uint after_sum = 0;
{
printf("\nBEFORE:\n");
crnlib::vector<uint> delta_hist(n*2);
int sum = 0;
for (uint i = 1; i < num_indices; i++)
{
int prev = pIndices[i-1];
int cur = pIndices[i];
delta_hist[prev-cur+n]++;
sum += labs(prev-cur);
}
printf("\n");
for (uint i = 0; i < n*2; i++)
printf("%04u ", delta_hist[i]);
printf("\nSum: %i\n", sum);
before_sum = sum;
}
{
printf("AFTER:\n");
crnlib::vector<uint> delta_hist(n*2);
int sum = 0;
for (uint i = 1; i < num_indices; i++)
{
int prev = remap_table[pIndices[i-1]];
int cur = remap_table[pIndices[i]];
delta_hist[prev-cur+n]++;
sum += labs(prev-cur);
}
printf("\n");
for (uint i = 0; i < n*2; i++)
printf("%04u ", delta_hist[i]);
printf("\nSum: %i\n", sum);
after_sum = sum;
}
printf("Before sum: %u, After sum: %u\n", before_sum, after_sum);
#endif
// printf("create_zeng_reorder_table end:\n");
}
} // namespace crnlib