xenia/third_party/crypto/sha256.cpp

576 lines
14 KiB
C++

// //////////////////////////////////////////////////////////
// sha256.cpp
// Copyright (c) 2014,2015 Stephan Brumme. All rights reserved.
// see http://create.stephan-brumme.com/disclaimer.html
//
// Altered for use in Xenia. Licensed under zlib license when acquired.
#include "sha256.h"
// big endian architectures need #define __BYTE_ORDER __BIG_ENDIAN
#ifndef _MSC_VER
#include <endian.h>
#endif
namespace sha256 {
/// same as reset()
SHA256::SHA256() { reset(); }
/// restart
void SHA256::reset() {
m_numBytes = 0;
m_bufferSize = 0;
// according to RFC 1321
m_hash[0] = 0x6a09e667;
m_hash[1] = 0xbb67ae85;
m_hash[2] = 0x3c6ef372;
m_hash[3] = 0xa54ff53a;
m_hash[4] = 0x510e527f;
m_hash[5] = 0x9b05688c;
m_hash[6] = 0x1f83d9ab;
m_hash[7] = 0x5be0cd19;
}
namespace {
inline uint32_t rotate(uint32_t a, uint32_t c) {
return (a >> c) | (a << (32 - c));
}
inline uint32_t swap(uint32_t x) {
#if defined(__GNUC__) || defined(__clang__)
return __builtin_bswap32(x);
#endif
#ifdef MSC_VER
return _byteswap_ulong(x);
#endif
return (x >> 24) | ((x >> 8) & 0x0000FF00) | ((x << 8) & 0x00FF0000) |
(x << 24);
}
// mix functions for processBlock()
inline uint32_t f1(uint32_t e, uint32_t f, uint32_t g) {
uint32_t term1 = rotate(e, 6) ^ rotate(e, 11) ^ rotate(e, 25);
uint32_t term2 = (e & f) ^ (~e & g); //(g ^ (e & (f ^ g)))
return term1 + term2;
}
inline uint32_t f2(uint32_t a, uint32_t b, uint32_t c) {
uint32_t term1 = rotate(a, 2) ^ rotate(a, 13) ^ rotate(a, 22);
uint32_t term2 = ((a | b) & c) | (a & b); //(a & (b ^ c)) ^ (b & c);
return term1 + term2;
}
}
/// process 64 bytes
void SHA256::processBlock(const void* data) {
// get last hash
uint32_t a = m_hash[0];
uint32_t b = m_hash[1];
uint32_t c = m_hash[2];
uint32_t d = m_hash[3];
uint32_t e = m_hash[4];
uint32_t f = m_hash[5];
uint32_t g = m_hash[6];
uint32_t h = m_hash[7];
// data represented as 16x 32-bit words
const uint32_t* input = (uint32_t*)data;
// convert to big endian
uint32_t words[64];
int i;
for (i = 0; i < 16; i++)
#if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && \
(__BYTE_ORDER == __BIG_ENDIAN)
words[i] = input[i];
#else
words[i] = swap(input[i]);
#endif
uint32_t x, y; // temporaries
// first round
x = h + f1(e, f, g) + 0x428a2f98 + words[0];
y = f2(a, b, c);
d += x;
h = x + y;
x = g + f1(d, e, f) + 0x71374491 + words[1];
y = f2(h, a, b);
c += x;
g = x + y;
x = f + f1(c, d, e) + 0xb5c0fbcf + words[2];
y = f2(g, h, a);
b += x;
f = x + y;
x = e + f1(b, c, d) + 0xe9b5dba5 + words[3];
y = f2(f, g, h);
a += x;
e = x + y;
x = d + f1(a, b, c) + 0x3956c25b + words[4];
y = f2(e, f, g);
h += x;
d = x + y;
x = c + f1(h, a, b) + 0x59f111f1 + words[5];
y = f2(d, e, f);
g += x;
c = x + y;
x = b + f1(g, h, a) + 0x923f82a4 + words[6];
y = f2(c, d, e);
f += x;
b = x + y;
x = a + f1(f, g, h) + 0xab1c5ed5 + words[7];
y = f2(b, c, d);
e += x;
a = x + y;
// secound round
x = h + f1(e, f, g) + 0xd807aa98 + words[8];
y = f2(a, b, c);
d += x;
h = x + y;
x = g + f1(d, e, f) + 0x12835b01 + words[9];
y = f2(h, a, b);
c += x;
g = x + y;
x = f + f1(c, d, e) + 0x243185be + words[10];
y = f2(g, h, a);
b += x;
f = x + y;
x = e + f1(b, c, d) + 0x550c7dc3 + words[11];
y = f2(f, g, h);
a += x;
e = x + y;
x = d + f1(a, b, c) + 0x72be5d74 + words[12];
y = f2(e, f, g);
h += x;
d = x + y;
x = c + f1(h, a, b) + 0x80deb1fe + words[13];
y = f2(d, e, f);
g += x;
c = x + y;
x = b + f1(g, h, a) + 0x9bdc06a7 + words[14];
y = f2(c, d, e);
f += x;
b = x + y;
x = a + f1(f, g, h) + 0xc19bf174 + words[15];
y = f2(b, c, d);
e += x;
a = x + y;
// extend to 24 words
for (; i < 24; i++)
words[i] = words[i - 16] +
(rotate(words[i - 15], 7) ^ rotate(words[i - 15], 18) ^
(words[i - 15] >> 3)) +
words[i - 7] + (rotate(words[i - 2], 17) ^
rotate(words[i - 2], 19) ^ (words[i - 2] >> 10));
// third round
x = h + f1(e, f, g) + 0xe49b69c1 + words[16];
y = f2(a, b, c);
d += x;
h = x + y;
x = g + f1(d, e, f) + 0xefbe4786 + words[17];
y = f2(h, a, b);
c += x;
g = x + y;
x = f + f1(c, d, e) + 0x0fc19dc6 + words[18];
y = f2(g, h, a);
b += x;
f = x + y;
x = e + f1(b, c, d) + 0x240ca1cc + words[19];
y = f2(f, g, h);
a += x;
e = x + y;
x = d + f1(a, b, c) + 0x2de92c6f + words[20];
y = f2(e, f, g);
h += x;
d = x + y;
x = c + f1(h, a, b) + 0x4a7484aa + words[21];
y = f2(d, e, f);
g += x;
c = x + y;
x = b + f1(g, h, a) + 0x5cb0a9dc + words[22];
y = f2(c, d, e);
f += x;
b = x + y;
x = a + f1(f, g, h) + 0x76f988da + words[23];
y = f2(b, c, d);
e += x;
a = x + y;
// extend to 32 words
for (; i < 32; i++)
words[i] = words[i - 16] +
(rotate(words[i - 15], 7) ^ rotate(words[i - 15], 18) ^
(words[i - 15] >> 3)) +
words[i - 7] + (rotate(words[i - 2], 17) ^
rotate(words[i - 2], 19) ^ (words[i - 2] >> 10));
// fourth round
x = h + f1(e, f, g) + 0x983e5152 + words[24];
y = f2(a, b, c);
d += x;
h = x + y;
x = g + f1(d, e, f) + 0xa831c66d + words[25];
y = f2(h, a, b);
c += x;
g = x + y;
x = f + f1(c, d, e) + 0xb00327c8 + words[26];
y = f2(g, h, a);
b += x;
f = x + y;
x = e + f1(b, c, d) + 0xbf597fc7 + words[27];
y = f2(f, g, h);
a += x;
e = x + y;
x = d + f1(a, b, c) + 0xc6e00bf3 + words[28];
y = f2(e, f, g);
h += x;
d = x + y;
x = c + f1(h, a, b) + 0xd5a79147 + words[29];
y = f2(d, e, f);
g += x;
c = x + y;
x = b + f1(g, h, a) + 0x06ca6351 + words[30];
y = f2(c, d, e);
f += x;
b = x + y;
x = a + f1(f, g, h) + 0x14292967 + words[31];
y = f2(b, c, d);
e += x;
a = x + y;
// extend to 40 words
for (; i < 40; i++)
words[i] = words[i - 16] +
(rotate(words[i - 15], 7) ^ rotate(words[i - 15], 18) ^
(words[i - 15] >> 3)) +
words[i - 7] + (rotate(words[i - 2], 17) ^
rotate(words[i - 2], 19) ^ (words[i - 2] >> 10));
// fifth round
x = h + f1(e, f, g) + 0x27b70a85 + words[32];
y = f2(a, b, c);
d += x;
h = x + y;
x = g + f1(d, e, f) + 0x2e1b2138 + words[33];
y = f2(h, a, b);
c += x;
g = x + y;
x = f + f1(c, d, e) + 0x4d2c6dfc + words[34];
y = f2(g, h, a);
b += x;
f = x + y;
x = e + f1(b, c, d) + 0x53380d13 + words[35];
y = f2(f, g, h);
a += x;
e = x + y;
x = d + f1(a, b, c) + 0x650a7354 + words[36];
y = f2(e, f, g);
h += x;
d = x + y;
x = c + f1(h, a, b) + 0x766a0abb + words[37];
y = f2(d, e, f);
g += x;
c = x + y;
x = b + f1(g, h, a) + 0x81c2c92e + words[38];
y = f2(c, d, e);
f += x;
b = x + y;
x = a + f1(f, g, h) + 0x92722c85 + words[39];
y = f2(b, c, d);
e += x;
a = x + y;
// extend to 48 words
for (; i < 48; i++)
words[i] = words[i - 16] +
(rotate(words[i - 15], 7) ^ rotate(words[i - 15], 18) ^
(words[i - 15] >> 3)) +
words[i - 7] + (rotate(words[i - 2], 17) ^
rotate(words[i - 2], 19) ^ (words[i - 2] >> 10));
// sixth round
x = h + f1(e, f, g) + 0xa2bfe8a1 + words[40];
y = f2(a, b, c);
d += x;
h = x + y;
x = g + f1(d, e, f) + 0xa81a664b + words[41];
y = f2(h, a, b);
c += x;
g = x + y;
x = f + f1(c, d, e) + 0xc24b8b70 + words[42];
y = f2(g, h, a);
b += x;
f = x + y;
x = e + f1(b, c, d) + 0xc76c51a3 + words[43];
y = f2(f, g, h);
a += x;
e = x + y;
x = d + f1(a, b, c) + 0xd192e819 + words[44];
y = f2(e, f, g);
h += x;
d = x + y;
x = c + f1(h, a, b) + 0xd6990624 + words[45];
y = f2(d, e, f);
g += x;
c = x + y;
x = b + f1(g, h, a) + 0xf40e3585 + words[46];
y = f2(c, d, e);
f += x;
b = x + y;
x = a + f1(f, g, h) + 0x106aa070 + words[47];
y = f2(b, c, d);
e += x;
a = x + y;
// extend to 56 words
for (; i < 56; i++)
words[i] = words[i - 16] +
(rotate(words[i - 15], 7) ^ rotate(words[i - 15], 18) ^
(words[i - 15] >> 3)) +
words[i - 7] + (rotate(words[i - 2], 17) ^
rotate(words[i - 2], 19) ^ (words[i - 2] >> 10));
// seventh round
x = h + f1(e, f, g) + 0x19a4c116 + words[48];
y = f2(a, b, c);
d += x;
h = x + y;
x = g + f1(d, e, f) + 0x1e376c08 + words[49];
y = f2(h, a, b);
c += x;
g = x + y;
x = f + f1(c, d, e) + 0x2748774c + words[50];
y = f2(g, h, a);
b += x;
f = x + y;
x = e + f1(b, c, d) + 0x34b0bcb5 + words[51];
y = f2(f, g, h);
a += x;
e = x + y;
x = d + f1(a, b, c) + 0x391c0cb3 + words[52];
y = f2(e, f, g);
h += x;
d = x + y;
x = c + f1(h, a, b) + 0x4ed8aa4a + words[53];
y = f2(d, e, f);
g += x;
c = x + y;
x = b + f1(g, h, a) + 0x5b9cca4f + words[54];
y = f2(c, d, e);
f += x;
b = x + y;
x = a + f1(f, g, h) + 0x682e6ff3 + words[55];
y = f2(b, c, d);
e += x;
a = x + y;
// extend to 64 words
for (; i < 64; i++)
words[i] = words[i - 16] +
(rotate(words[i - 15], 7) ^ rotate(words[i - 15], 18) ^
(words[i - 15] >> 3)) +
words[i - 7] + (rotate(words[i - 2], 17) ^
rotate(words[i - 2], 19) ^ (words[i - 2] >> 10));
// eigth round
x = h + f1(e, f, g) + 0x748f82ee + words[56];
y = f2(a, b, c);
d += x;
h = x + y;
x = g + f1(d, e, f) + 0x78a5636f + words[57];
y = f2(h, a, b);
c += x;
g = x + y;
x = f + f1(c, d, e) + 0x84c87814 + words[58];
y = f2(g, h, a);
b += x;
f = x + y;
x = e + f1(b, c, d) + 0x8cc70208 + words[59];
y = f2(f, g, h);
a += x;
e = x + y;
x = d + f1(a, b, c) + 0x90befffa + words[60];
y = f2(e, f, g);
h += x;
d = x + y;
x = c + f1(h, a, b) + 0xa4506ceb + words[61];
y = f2(d, e, f);
g += x;
c = x + y;
x = b + f1(g, h, a) + 0xbef9a3f7 + words[62];
y = f2(c, d, e);
f += x;
b = x + y;
x = a + f1(f, g, h) + 0xc67178f2 + words[63];
y = f2(b, c, d);
e += x;
a = x + y;
// update hash
m_hash[0] += a;
m_hash[1] += b;
m_hash[2] += c;
m_hash[3] += d;
m_hash[4] += e;
m_hash[5] += f;
m_hash[6] += g;
m_hash[7] += h;
}
/// add arbitrary number of bytes
void SHA256::add(const void* data, size_t numBytes) {
const uint8_t* current = (const uint8_t*)data;
if (m_bufferSize > 0) {
while (numBytes > 0 && m_bufferSize < BlockSize) {
m_buffer[m_bufferSize++] = *current++;
numBytes--;
}
}
// full buffer
if (m_bufferSize == BlockSize) {
processBlock(m_buffer);
m_numBytes += BlockSize;
m_bufferSize = 0;
}
// no more data ?
if (numBytes == 0) return;
// process full blocks
while (numBytes >= BlockSize) {
processBlock(current);
current += BlockSize;
m_numBytes += BlockSize;
numBytes -= BlockSize;
}
// keep remaining bytes in buffer
while (numBytes > 0) {
m_buffer[m_bufferSize++] = *current++;
numBytes--;
}
}
/// process final block, less than 64 bytes
void SHA256::processBuffer() {
// the input bytes are considered as bits strings, where the first bit is the
// most significant bit of the byte
// - append "1" bit to message
// - append "0" bits until message length in bit mod 512 is 448
// - append length as 64 bit integer
// number of bits
size_t paddedLength = m_bufferSize * 8;
// plus one bit set to 1 (always appended)
paddedLength++;
// number of bits must be (numBits % 512) = 448
size_t lower11Bits = paddedLength & 511;
if (lower11Bits <= 448)
paddedLength += 448 - lower11Bits;
else
paddedLength += 512 + 448 - lower11Bits;
// convert from bits to bytes
paddedLength /= 8;
// only needed if additional data flows over into a second block
unsigned char extra[BlockSize];
// append a "1" bit, 128 => binary 10000000
if (m_bufferSize < BlockSize)
m_buffer[m_bufferSize] = 128;
else
extra[0] = 128;
size_t i;
for (i = m_bufferSize + 1; i < BlockSize; i++) m_buffer[i] = 0;
for (; i < paddedLength; i++) extra[i - BlockSize] = 0;
// add message length in bits as 64 bit number
uint64_t msgBits = 8 * (m_numBytes + m_bufferSize);
// find right position
unsigned char* addLength;
if (paddedLength < BlockSize)
addLength = m_buffer + paddedLength;
else
addLength = extra + paddedLength - BlockSize;
// must be big endian
*addLength++ = (unsigned char)((msgBits >> 56) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 48) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 40) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 32) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 24) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 16) & 0xFF);
*addLength++ = (unsigned char)((msgBits >> 8) & 0xFF);
*addLength = (unsigned char)(msgBits & 0xFF);
// process blocks
processBlock(m_buffer);
// flowed over into a second block ?
if (paddedLength > BlockSize) processBlock(extra);
}
/// return latest hash as 64 hex characters
std::string SHA256::getHash() {
// compute hash (as raw bytes)
unsigned char rawHash[HashBytes];
getHash(rawHash);
// convert to hex string
std::string result;
result.reserve(2 * HashBytes);
for (int i = 0; i < HashBytes; i++) {
static const char dec2hex[16 + 1] = "0123456789abcdef";
result += dec2hex[(rawHash[i] >> 4) & 15];
result += dec2hex[rawHash[i] & 15];
}
return result;
}
/// return latest hash as bytes
void SHA256::getHash(unsigned char buffer[SHA256::HashBytes]) {
// save old hash if buffer is partially filled
uint32_t oldHash[HashValues];
for (int i = 0; i < HashValues; i++) oldHash[i] = m_hash[i];
// process remaining bytes
processBuffer();
unsigned char* current = buffer;
for (int i = 0; i < HashValues; i++) {
*current++ = (m_hash[i] >> 24) & 0xFF;
*current++ = (m_hash[i] >> 16) & 0xFF;
*current++ = (m_hash[i] >> 8) & 0xFF;
*current++ = m_hash[i] & 0xFF;
// restore old hash
m_hash[i] = oldHash[i];
}
}
/// compute SHA256 of a memory block
std::string SHA256::operator()(const void* data, size_t numBytes) {
reset();
add(data, numBytes);
return getHash();
}
/// compute SHA256 of a string, excluding final zero
std::string SHA256::operator()(const std::string& text) {
reset();
add(text.c_str(), text.size());
return getHash();
}
}