[Base] Clock reworked.

- Time progression is now equal and in sync on all threads.
- Floating point imprecisions do not interfere with timing.
This commit is contained in:
Joel Linn 2019-11-20 00:28:08 +01:00 committed by Rick Gibbed
parent 6a3a56b3b9
commit d6ce72ddc9
3 changed files with 121 additions and 44 deletions

View File

@ -2,7 +2,7 @@
****************************************************************************** ******************************************************************************
* Xenia : Xbox 360 Emulator Research Project * * Xenia : Xbox 360 Emulator Research Project *
****************************************************************************** ******************************************************************************
* Copyright 2015 Ben Vanik. All rights reserved. * * Copyright 2019 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. * * Released under the BSD license - see LICENSE in the root for more details. *
****************************************************************************** ******************************************************************************
*/ */
@ -10,9 +10,11 @@
#include "xenia/base/clock.h" #include "xenia/base/clock.h"
#include <algorithm> #include <algorithm>
#include <climits> #include <limits>
#include <mutex>
#include "xenia/base/assert.h" #include "xenia/base/assert.h"
#include "xenia/base/math.h"
namespace xe { namespace xe {
@ -22,29 +24,70 @@ double guest_time_scalar_ = 1.0;
uint64_t guest_tick_frequency_ = Clock::host_tick_frequency(); uint64_t guest_tick_frequency_ = Clock::host_tick_frequency();
// Base FILETIME of the guest system from app start. // Base FILETIME of the guest system from app start.
uint64_t guest_system_time_base_ = Clock::QueryHostSystemTime(); uint64_t guest_system_time_base_ = Clock::QueryHostSystemTime();
// Combined time and frequency scalar (computed by RecomputeGuestTickScalar). // Combined time and frequency ratio between host and guest.
double guest_tick_scalar_ = 1.0; // Split in numerator (first) and denominator (second).
// Computed by RecomputeGuestTickScalar.
std::pair<uint64_t, uint64_t> guest_tick_ratio_ = std::make_pair(1, 1);
// Native guest ticks. // Native guest ticks.
thread_local uint64_t guest_tick_count_ = 0; uint64_t last_guest_tick_count_ = 0;
// 100ns ticks, relative to guest_system_time_base_.
thread_local uint64_t guest_time_filetime_ = 0;
// Last sampled host tick count. // Last sampled host tick count.
thread_local uint64_t last_host_tick_count_ = Clock::QueryHostTickCount(); uint64_t last_host_tick_count_ = Clock::QueryHostTickCount();
// Mutex to ensure last_host_tick_count_ and last_guest_tick_count_ are in sync
std::mutex tick_mutex_;
void RecomputeGuestTickScalar() { void RecomputeGuestTickScalar() {
guest_tick_scalar_ = (guest_tick_frequency_ * guest_time_scalar_) / // Create a rational number with numerator (first) and denominator (second)
static_cast<double>(Clock::host_tick_frequency()); auto frac =
std::make_pair(guest_tick_frequency_, Clock::host_tick_frequency());
// Doing it this way ensures we don't mess up our frequency scaling and
// precisely controls the precision the guest_time_scalar_ can have.
if (guest_time_scalar_ > 1.0) {
frac.first *= static_cast<uint64_t>(guest_time_scalar_ * 10.0);
frac.second *= 10;
} else {
frac.first *= 10;
frac.second *= static_cast<uint64_t>(10.0 / guest_time_scalar_);
}
// Keep this a rational calculation and reduce the fraction
reduce_fraction(frac);
std::lock_guard<std::mutex> lock(tick_mutex_);
guest_tick_ratio_ = frac;
} }
void UpdateGuestClock() { // Update the guest timer for all threads.
// Return a copy of the value so locking is reduced.
uint64_t UpdateGuestClock() {
uint64_t host_tick_count = Clock::QueryHostTickCount(); uint64_t host_tick_count = Clock::QueryHostTickCount();
uint64_t host_tick_delta = host_tick_count > last_host_tick_count_
? host_tick_count - last_host_tick_count_ std::unique_lock<std::mutex> lock(tick_mutex_, std::defer_lock);
: 0; if (lock.try_lock()) {
last_host_tick_count_ = host_tick_count; // Translate host tick count to guest tick count.
uint64_t guest_tick_delta = uint64_t(host_tick_delta * guest_tick_scalar_); uint64_t host_tick_delta = host_tick_count > last_host_tick_count_
guest_tick_count_ += guest_tick_delta; ? host_tick_count - last_host_tick_count_
guest_time_filetime_ += (guest_tick_delta * 10000000) / guest_tick_frequency_; : 0;
last_host_tick_count_ = host_tick_count;
uint64_t guest_tick_delta =
host_tick_delta * guest_tick_ratio_.first / guest_tick_ratio_.second;
last_guest_tick_count_ += guest_tick_delta;
return last_guest_tick_count_;
} else {
// Wait until another thread has finished updating the clock.
lock.lock();
return last_guest_tick_count_;
}
}
// Offset of the current guest system file time relative to the guest base time.
inline uint64_t QueryGuestSystemTimeOffset() {
auto guest_tick_count = UpdateGuestClock();
uint64_t numerator = 10000000; // 100ns/10MHz resolution
uint64_t denominator = guest_tick_frequency_;
reduce_fraction(numerator, denominator);
return guest_tick_count * numerator / denominator;
} }
double Clock::guest_time_scalar() { return guest_time_scalar_; } double Clock::guest_time_scalar() { return guest_time_scalar_; }
@ -68,40 +111,45 @@ void Clock::set_guest_system_time_base(uint64_t time_base) {
} }
uint64_t Clock::QueryGuestTickCount() { uint64_t Clock::QueryGuestTickCount() {
UpdateGuestClock(); auto guest_tick_count = UpdateGuestClock();
return guest_tick_count_; return guest_tick_count;
} }
uint64_t Clock::QueryGuestSystemTime() { uint64_t Clock::QueryGuestSystemTime() {
UpdateGuestClock(); auto guest_system_time_offset = QueryGuestSystemTimeOffset();
return guest_system_time_base_ + guest_time_filetime_; return guest_system_time_base_ + guest_system_time_offset;
} }
uint32_t Clock::QueryGuestUptimeMillis() { uint32_t Clock::QueryGuestUptimeMillis() {
UpdateGuestClock(); return static_cast<uint32_t>(
uint64_t uptime_millis = guest_tick_count_ / (guest_tick_frequency_ / 1000); std::min<uint64_t>(QueryGuestSystemTimeOffset() / 10000,
uint32_t result = uint32_t(std::min(uptime_millis, uint64_t(UINT_MAX))); std::numeric_limits<uint32_t>::max()));
return result;
} }
void Clock::SetGuestTickCount(uint64_t tick_count) { void Clock::SetGuestTickCount(uint64_t tick_count) {
std::lock_guard<std::mutex> lock(tick_mutex_);
last_host_tick_count_ = Clock::QueryHostTickCount(); last_host_tick_count_ = Clock::QueryHostTickCount();
guest_tick_count_ = tick_count; last_guest_tick_count_ = tick_count;
} }
void Clock::SetGuestSystemTime(uint64_t system_time) { void Clock::SetGuestSystemTime(uint64_t system_time) {
last_host_tick_count_ = Clock::QueryHostTickCount(); // Query the filetime offset to calculate a new base time.
guest_time_filetime_ = system_time - guest_system_time_base_; auto guest_system_time_offset = QueryGuestSystemTimeOffset();
guest_system_time_base_ = system_time - guest_system_time_offset;
} }
uint32_t Clock::ScaleGuestDurationMillis(uint32_t guest_ms) { uint32_t Clock::ScaleGuestDurationMillis(uint32_t guest_ms) {
if (guest_ms == UINT_MAX) { constexpr uint64_t max = std::numeric_limits<uint32_t>::max();
return UINT_MAX;
if (guest_ms >= max) {
return max;
} else if (!guest_ms) { } else if (!guest_ms) {
return 0; return 0;
} }
uint64_t scaled_ms = uint64_t(uint64_t(guest_ms) * guest_time_scalar_); uint64_t scaled_ms = static_cast<uint64_t>(
return uint32_t(std::min(scaled_ms, uint64_t(UINT_MAX))); (static_cast<uint64_t>(guest_ms) * guest_time_scalar_));
return static_cast<uint32_t>(std::min(scaled_ms, max));
} }
int64_t Clock::ScaleGuestDurationFileTime(int64_t guest_file_time) { int64_t Clock::ScaleGuestDurationFileTime(int64_t guest_file_time) {
@ -116,17 +164,19 @@ int64_t Clock::ScaleGuestDurationFileTime(int64_t guest_file_time) {
return static_cast<int64_t>(guest_time) + scaled_time; return static_cast<int64_t>(guest_time) + scaled_time;
} else { } else {
// Relative time. // Relative time.
uint64_t scaled_file_time = uint64_t scaled_file_time = static_cast<uint64_t>(
uint64_t(uint64_t(guest_file_time) * guest_time_scalar_); (static_cast<uint64_t>(guest_file_time) * guest_time_scalar_));
// TODO(benvanik): check for overflow? // TODO(benvanik): check for overflow?
return scaled_file_time; return scaled_file_time;
} }
} }
void Clock::ScaleGuestDurationTimeval(int32_t* tv_sec, int32_t* tv_usec) { void Clock::ScaleGuestDurationTimeval(int32_t* tv_sec, int32_t* tv_usec) {
uint64_t scaled_sec = uint64_t(uint64_t(*tv_sec) * guest_tick_scalar_); uint64_t scaled_sec = static_cast<uint64_t>(static_cast<uint64_t>(*tv_sec) *
uint64_t scaled_usec = uint64_t(uint64_t(*tv_usec) * guest_time_scalar_); guest_time_scalar_);
if (scaled_usec > UINT_MAX) { uint64_t scaled_usec = static_cast<uint64_t>(static_cast<uint64_t>(*tv_usec) *
guest_time_scalar_);
if (scaled_usec > std::numeric_limits<uint32_t>::max()) {
uint64_t overflow_sec = scaled_usec / 1000000; uint64_t overflow_sec = scaled_usec / 1000000;
scaled_usec -= overflow_sec * 1000000; scaled_usec -= overflow_sec * 1000000;
scaled_sec += overflow_sec; scaled_sec += overflow_sec;

View File

@ -2,7 +2,7 @@
****************************************************************************** ******************************************************************************
* Xenia : Xbox 360 Emulator Research Project * * Xenia : Xbox 360 Emulator Research Project *
****************************************************************************** ******************************************************************************
* Copyright 2015 Ben Vanik. All rights reserved. * * Copyright 2019 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. * * Released under the BSD license - see LICENSE in the root for more details. *
****************************************************************************** ******************************************************************************
*/ */
@ -14,10 +14,8 @@
namespace xe { namespace xe {
uint64_t Clock::host_tick_frequency() { uint64_t Clock::host_tick_frequency() {
static LARGE_INTEGER frequency = {{0}}; LARGE_INTEGER frequency;
if (!frequency.QuadPart) { QueryPerformanceFrequency(&frequency);
QueryPerformanceFrequency(&frequency);
}
return frequency.QuadPart; return frequency.QuadPart;
} }

View File

@ -2,7 +2,7 @@
****************************************************************************** ******************************************************************************
* Xenia : Xbox 360 Emulator Research Project * * Xenia : Xbox 360 Emulator Research Project *
****************************************************************************** ******************************************************************************
* Copyright 2014 Ben Vanik. All rights reserved. * * Copyright 2019 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. * * Released under the BSD license - see LICENSE in the root for more details. *
****************************************************************************** ******************************************************************************
*/ */
@ -15,6 +15,7 @@
#include <cstdint> #include <cstdint>
#include <cstring> #include <cstring>
#include <limits> #include <limits>
#include <numeric>
#include <type_traits> #include <type_traits>
#include "xenia/base/platform.h" #include "xenia/base/platform.h"
@ -59,6 +60,34 @@ T next_pow2(T value) {
return value; return value;
} }
#if __cpp_lib_gcd_lcm
template <typename T>
inline constexpr T greatest_common_divisor(T a, T b) {
return std::gcd(a, b);
}
#else
template <typename T>
constexpr T greatest_common_divisor(T a, T b) {
// Use the Euclid algorithm to calculate the greatest common divisor
while (b) {
a = std::exchange(b, a % b);
}
return a;
}
#endif
template <typename T>
inline constexpr void reduce_fraction(T& numerator, T& denominator) {
auto gcd = greatest_common_divisor(numerator, denominator);
numerator /= gcd;
denominator /= gcd;
}
template <typename T>
inline constexpr void reduce_fraction(std::pair<T, T>& fraction) {
reduce_fraction<T>(fraction.first, fraction.second);
}
constexpr uint32_t make_bitmask(uint32_t a, uint32_t b) { constexpr uint32_t make_bitmask(uint32_t a, uint32_t b) {
return (static_cast<uint32_t>(-1) >> (31 - b)) & ~((1u << a) - 1); return (static_cast<uint32_t>(-1) >> (31 - b)) & ~((1u << a) - 1);
} }