Adding 'x64' backend.

Does not compile.
This commit is contained in:
Ben Vanik 2013-05-23 18:04:12 -07:00
parent 86002b2f44
commit bedf86d259
16 changed files with 5116 additions and 3 deletions

View File

@ -13,6 +13,6 @@
#include <xenia/cpu/processor.h> #include <xenia/cpu/processor.h>
// TODO(benvanik): conditionally include? // TODO(benvanik): conditionally include?
//#include <xenia/cpu/libjit/libjit_backend.h> #include <xenia/cpu/x64/x64_backend.h>
#endif // XENIA_CPU_CPU_H_ #endif // XENIA_CPU_CPU_H_

View File

@ -20,5 +20,6 @@
'includes': [ 'includes': [
'ppc/sources.gypi', 'ppc/sources.gypi',
'sdb/sources.gypi', 'sdb/sources.gypi',
'x64/sources.gypi',
], ],
} }

View File

@ -0,0 +1,16 @@
# Copyright 2013 Ben Vanik. All Rights Reserved.
{
'sources': [
'x64_backend.cc',
'x64_backend.h',
'x64_emit.h',
'x64_emit_alu.cc',
'x64_emit_control.cc',
'x64_emit_fpu.cc',
'x64_emit_memory.cc',
'x64_emitter.cc',
'x64_emitter.h',
'x64_jit.cc',
'x64_jit.h',
],
}

View File

@ -0,0 +1,57 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include <xenia/cpu/x64/x64_backend.h>
#include <xenia/cpu/sdb/symbol_table.h>
#include <xenia/cpu/x64/x64_emit.h>
#include <xenia/cpu/x64/x64_jit.h>
using namespace xe;
using namespace xe::cpu;
using namespace xe::cpu::sdb;
using namespace xe::cpu::x64;
namespace {
void InitializeIfNeeded();
void CleanupOnShutdown();
void InitializeIfNeeded() {
static bool has_initialized = false;
if (has_initialized) {
return;
}
has_initialized = true;
X64RegisterEmitCategoryALU();
X64RegisterEmitCategoryControl();
X64RegisterEmitCategoryFPU();
X64RegisterEmitCategoryMemory();
atexit(CleanupOnShutdown);
}
void CleanupOnShutdown() {
}
}
X64Backend::X64Backend() :
Backend() {
InitializeIfNeeded();
}
X64Backend::~X64Backend() {
}
JIT* X64Backend::CreateJIT(xe_memory_ref memory, SymbolTable* sym_table) {
return new X64JIT(memory, sym_table);
}

View File

@ -0,0 +1,39 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#ifndef XENIA_CPU_X64_X64_BACKEND_H_
#define XENIA_CPU_X64_X64_BACKEND_H_
#include <xenia/common.h>
#include <xenia/cpu/backend.h>
namespace xe {
namespace cpu {
namespace x64 {
class X64Backend : public Backend {
public:
X64Backend();
virtual ~X64Backend();
virtual JIT* CreateJIT(xe_memory_ref memory, sdb::SymbolTable* sym_table);
protected:
};
} // namespace x64
} // namespace cpu
} // namespace xe
#endif // XENIA_CPU_X64_X64_BACKEND_H_

View File

@ -0,0 +1,43 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#ifndef XENIA_CPU_X64_X64_EMIT_H_
#define XENIA_CPU_X64_X64_EMIT_H_
#include <xenia/cpu/ppc/instr.h>
#include <xenia/cpu/ppc/state.h>
#include <xenia/cpu/x64/x64_emitter.h>
namespace xe {
namespace cpu {
namespace x64 {
void X64RegisterEmitCategoryALU();
void X64RegisterEmitCategoryControl();
void X64RegisterEmitCategoryFPU();
void X64RegisterEmitCategoryMemory();
#define XEEMITTER(name, opcode, format) int InstrEmit_##name
#define XEREGISTERINSTR(name, opcode) \
RegisterInstrEmit(opcode, (InstrEmitFn)InstrEmit_##name);
#define XEINSTRNOTIMPLEMENTED()
//#define XEINSTRNOTIMPLEMENTED XEASSERTALWAYS
} // namespace x64
} // namespace cpu
} // namespace xe
#endif // XENIA_CPU_X64_X64_EMIT_H_

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,686 @@
/*
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include <xenia/cpu/x64/x64_emit.h>
#include <xenia/cpu/cpu-private.h>
using namespace xe::cpu;
using namespace xe::cpu::ppc;
using namespace xe::cpu::sdb;
namespace xe {
namespace cpu {
namespace x64 {
int XeEmitIndirectBranchTo(
X64Emitter& e, jit_function_t f, const char* src, uint32_t cia,
bool lk, uint32_t reg) {
// TODO(benvanik): run a DFA pass to see if we can detect whether this is
// a normal function return that is pulling the LR from the stack that
// it set in the prolog. If so, we can omit the dynamic check!
// NOTE: we avoid spilling registers until we know that the target is not
// a basic block within this function.
jit_value_t target;
switch (reg) {
case kXEPPCRegLR:
target = e.lr_value();
break;
case kXEPPCRegCTR:
target = e.ctr_value();
break;
default:
XEASSERTALWAYS();
return 1;
}
// Dynamic test when branching to LR, which is usually used for the return.
// We only do this if LK=0 as returns wouldn't set LR.
// Ideally it's a return and we can just do a simple ret and be done.
// If it's not, we fall through to the full indirection logic.
if (!lk && reg == kXEPPCRegLR) {
// The return block will spill registers for us.
// TODO(benvanik): 'lr_mismatch' debug info.
jit_value_t lr_cmp = jit_insn_eq(f, target, jit_value_get_param(f, 1));
e.branch_to_return_if(lr_cmp);
}
// Defer to the generator, which will do fancy things.
bool likely_local = !lk && reg == kXEPPCRegCTR;
return e.GenerateIndirectionBranch(cia, target, lk, likely_local);
}
int XeEmitBranchTo(
X64Emitter& e, jit_function_t f, const char* src, uint32_t cia,
bool lk, jit_value_t condition) {
FunctionBlock* fn_block = e.fn_block();
// Fast-path for branches to other blocks.
// Only valid when not tracing branches.
if (!FLAGS_trace_branches &&
fn_block->outgoing_type == FunctionBlock::kTargetBlock) {
e.branch_to_block_if(fn_block->outgoing_address, condition);
return 0;
}
// Only branch of conditionals when we have one.
jit_label_t post_jump_label = jit_label_undefined;
if (condition) {
// TODO(benvanik): add debug info for this?
// char name[32];
// xesnprintfa(name, XECOUNT(name), "loc_%.8X_bcx", i.address);
jit_insn_branch_if_not(f, condition, &post_jump_label);
}
if (FLAGS_trace_branches) {
e.TraceBranch(cia);
}
// Get the basic block and switch behavior based on outgoing type.
int result = 0;
switch (fn_block->outgoing_type) {
case FunctionBlock::kTargetBlock:
// Taken care of above usually.
e.branch_to_block(fn_block->outgoing_address);
break;
case FunctionBlock::kTargetFunction:
{
// Spill all registers to memory.
// TODO(benvanik): only spill ones used by the target function? Use
// calling convention flags on the function to not spill temp
// registers?
e.SpillRegisters();
XEASSERTNOTNULL(fn_block->outgoing_function);
// TODO(benvanik): check to see if this is the last block in the function.
// This would enable tail calls/etc.
bool is_end = false;
if (!lk || is_end) {
// Tail. No need to refill the local register values, just return.
// We optimize this by passing in the LR from our parent instead of the
// next instruction. This allows the return from our callee to pop
// all the way up.
e.call_function(fn_block->outgoing_function,
jit_value_get_param(f, 1), true);
jit_insn_return(f, NULL);
} else {
// Will return here eventually.
// Refill registers from state.
e.call_function(fn_block->outgoing_function,
e.get_uint64(cia + 4), false);
e.FillRegisters();
}
break;
}
case FunctionBlock::kTargetLR:
{
// An indirect jump.
printf("INDIRECT JUMP VIA LR: %.8X\n", cia);
result = XeEmitIndirectBranchTo(e, f, src, cia, lk, kXEPPCRegLR);
break;
}
case FunctionBlock::kTargetCTR:
{
// An indirect jump.
printf("INDIRECT JUMP VIA CTR: %.8X\n", cia);
result = XeEmitIndirectBranchTo(e, f, src, cia, lk, kXEPPCRegCTR);
break;
}
default:
case FunctionBlock::kTargetNone:
XEASSERTALWAYS();
result = 1;
break;
}
if (condition) {
jit_insn_label(f, &post_jump_label);
}
return result;
}
XEEMITTER(bx, 0x48000000, I )(X64Emitter& e, jit_function_t f, InstrData& i) {
// if AA then
// NIA <- EXTS(LI || 0b00)
// else
// NIA <- CIA + EXTS(LI || 0b00)
// if LK then
// LR <- CIA + 4
uint32_t nia;
if (i.I.AA) {
nia = XEEXTS26(i.I.LI << 2);
} else {
nia = i.address + XEEXTS26(i.I.LI << 2);
}
if (i.I.LK) {
e.update_lr_value(e.get_uint64(i.address + 4));
}
return XeEmitBranchTo(e, f, "bx", i.address, i.I.LK, NULL);
}
XEEMITTER(bcx, 0x40000000, B )(X64Emitter& e, jit_function_t f, InstrData& i) {
// if ¬BO[2] then
// CTR <- CTR - 1
// ctr_ok <- BO[2] | ((CTR[0:63] != 0) XOR BO[3])
// cond_ok <- BO[0] | (CR[BI+32] ≡ BO[1])
// if ctr_ok & cond_ok then
// if AA then
// NIA <- EXTS(BD || 0b00)
// else
// NIA <- CIA + EXTS(BD || 0b00)
// if LK then
// LR <- CIA + 4
// NOTE: the condition bits are reversed!
// 01234 (docs)
// 43210 (real)
// TODO(benvanik): this may be wrong and overwrite LRs when not desired!
// The docs say always, though...
if (i.B.LK) {
e.update_lr_value(e.get_uint64(i.address + 4));
}
jit_value_t ctr_ok = NULL;
if (XESELECTBITS(i.B.BO, 2, 2)) {
// Ignore ctr.
} else {
// Decrement counter.
jit_value_t ctr = e.ctr_value();
ctr = jit_insn_sub(f, ctr, e.get_int64(1));
e.update_ctr_value(ctr);
// Ctr check.
if (XESELECTBITS(i.B.BO, 1, 1)) {
ctr_ok = jit_insn_eq(f, ctr, e.get_int64(0));
} else {
ctr_ok = jit_insn_ne(f, ctr, e.get_int64(0));
}
}
jit_value_t cond_ok = NULL;
if (XESELECTBITS(i.B.BO, 4, 4)) {
// Ignore cond.
} else {
jit_value_t cr = e.cr_value(i.B.BI >> 2);
cr = jit_insn_and(f, cr, e.get_uint32(1 << (i.B.BI & 3)));
if (XESELECTBITS(i.B.BO, 3, 3)) {
cond_ok = jit_insn_ne(f, cr, e.get_int64(0));
} else {
cond_ok = jit_insn_eq(f, cr, e.get_int64(0));
}
}
// We do a bit of optimization here to make the llvm assembly easier to read.
jit_value_t ok = NULL;
if (ctr_ok && cond_ok) {
ok = jit_insn_and(f, ctr_ok, cond_ok);
} else if (ctr_ok) {
ok = ctr_ok;
} else if (cond_ok) {
ok = cond_ok;
}
uint32_t nia;
if (i.B.AA) {
nia = XEEXTS26(i.B.BD << 2);
} else {
nia = i.address + XEEXTS26(i.B.BD << 2);
}
if (XeEmitBranchTo(e, f, "bcx", i.address, i.B.LK, ok)) {
return 1;
}
return 0;
}
XEEMITTER(bcctrx, 0x4C000420, XL )(X64Emitter& e, jit_function_t f, InstrData& i) {
// cond_ok <- BO[0] | (CR[BI+32] ≡ BO[1])
// if cond_ok then
// NIA <- CTR[0:61] || 0b00
// if LK then
// LR <- CIA + 4
// NOTE: the condition bits are reversed!
// 01234 (docs)
// 43210 (real)
// TODO(benvanik): this may be wrong and overwrite LRs when not desired!
// The docs say always, though...
if (i.XL.LK) {
e.update_lr_value(e.get_uint64(i.address + 4));
}
jit_value_t cond_ok = NULL;
if (XESELECTBITS(i.XL.BO, 4, 4)) {
// Ignore cond.
} else {
jit_value_t cr = e.cr_value(i.XL.BI >> 2);
cr = jit_insn_and(f, cr, e.get_uint64(1 << (i.XL.BI & 3)));
if (XESELECTBITS(i.XL.BO, 3, 3)) {
cond_ok = jit_insn_ne(f, cr, e.get_int64(0));
} else {
cond_ok = jit_insn_eq(f, cr, e.get_int64(0));
}
}
// We do a bit of optimization here to make the llvm assembly easier to read.
jit_value_t ok = NULL;
if (cond_ok) {
ok = cond_ok;
}
if (XeEmitBranchTo(e, f, "bcctrx", i.address, i.XL.LK, ok)) {
return 1;
}
return 0;
}
XEEMITTER(bclrx, 0x4C000020, XL )(X64Emitter& e, jit_function_t f, InstrData& i) {
// if ¬BO[2] then
// CTR <- CTR - 1
// ctr_ok <- BO[2] | ((CTR[0:63] != 0) XOR BO[3]
// cond_ok <- BO[0] | (CR[BI+32] ≡ BO[1])
// if ctr_ok & cond_ok then
// NIA <- LR[0:61] || 0b00
// if LK then
// LR <- CIA + 4
// NOTE: the condition bits are reversed!
// 01234 (docs)
// 43210 (real)
// TODO(benvanik): this may be wrong and overwrite LRs when not desired!
// The docs say always, though...
if (i.XL.LK) {
e.update_lr_value(e.get_uint64(i.address + 4));
}
jit_value_t ctr_ok = NULL;
if (XESELECTBITS(i.XL.BO, 2, 2)) {
// Ignore ctr.
} else {
// Decrement counter.
jit_value_t ctr = e.ctr_value();
ctr = jit_insn_sub(f, ctr, e.get_int64(1));
// Ctr check.
if (XESELECTBITS(i.XL.BO, 1, 1)) {
ctr_ok = jit_insn_eq(f, ctr, e.get_int64(0));
} else {
ctr_ok = jit_insn_ne(f, ctr, e.get_int64(0));
}
}
jit_value_t cond_ok = NULL;
if (XESELECTBITS(i.XL.BO, 4, 4)) {
// Ignore cond.
} else {
jit_value_t cr = e.cr_value(i.XL.BI >> 2);
cr = jit_insn_and(f, cr, e.get_uint32(1 << (i.XL.BI & 3)));
if (XESELECTBITS(i.XL.BO, 3, 3)) {
cond_ok = jit_insn_ne(f, cr, e.get_int64(0));
} else {
cond_ok = jit_insn_eq(f, cr, e.get_int64(0));
}
}
// We do a bit of optimization here to make the llvm assembly easier to read.
jit_value_t ok = NULL;
if (ctr_ok && cond_ok) {
ok = jit_insn_and(f, ctr_ok, cond_ok);
} else if (ctr_ok) {
ok = ctr_ok;
} else if (cond_ok) {
ok = cond_ok;
}
if (XeEmitBranchTo(e, f, "bclrx", i.address, i.XL.LK, ok)) {
return 1;
}
return 0;
}
// Condition register logical (A-23)
XEEMITTER(crand, 0x4C000202, XL )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(crandc, 0x4C000102, XL )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(creqv, 0x4C000242, XL )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(crnand, 0x4C0001C2, XL )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(crnor, 0x4C000042, XL )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(cror, 0x4C000382, XL )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(crorc, 0x4C000342, XL )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(crxor, 0x4C000182, XL )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(mcrf, 0x4C000000, XL )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
// System linkage (A-24)
XEEMITTER(sc, 0x44000002, SC )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
// Trap (A-25)
int XeEmitTrap(X64Emitter& e, jit_function_t f, InstrData& i,
jit_value_t va, jit_value_t vb, uint32_t TO) {
// if (a < b) & TO[0] then TRAP
// if (a > b) & TO[1] then TRAP
// if (a = b) & TO[2] then TRAP
// if (a <u b) & TO[3] then TRAP
// if (a >u b) & TO[4] then TRAP
// Bits swapped:
// 01234
// 43210
if (!TO) {
return 0;
}
// TODO(benvanik): port from LLVM
XEASSERTALWAYS();
// BasicBlock* after_bb = BasicBlock::Create(*e.context(), "", e.fn(),
// e.GetNextBasicBlock());
// BasicBlock* trap_bb = BasicBlock::Create(*e.context(), "", e.fn(),
// after_bb);
// // Create the basic blocks (so we can chain).
// std::vector<BasicBlock*> bbs;
// if (TO & (1 << 4)) {
// bbs.push_back(BasicBlock::Create(*e.context(), "", e.fn(), trap_bb));
// }
// if (TO & (1 << 3)) {
// bbs.push_back(BasicBlock::Create(*e.context(), "", e.fn(), trap_bb));
// }
// if (TO & (1 << 2)) {
// bbs.push_back(BasicBlock::Create(*e.context(), "", e.fn(), trap_bb));
// }
// if (TO & (1 << 1)) {
// bbs.push_back(BasicBlock::Create(*e.context(), "", e.fn(), trap_bb));
// }
// if (TO & (1 << 0)) {
// bbs.push_back(BasicBlock::Create(*e.context(), "", e.fn(), trap_bb));
// }
// bbs.push_back(after_bb);
// // Jump to the first bb.
// b.CreateBr(bbs.front());
// // Setup each basic block.
// std::vector<BasicBlock*>::iterator it = bbs.begin();
// if (TO & (1 << 4)) {
// // a < b
// BasicBlock* bb = *(it++);
// b.SetInsertPoint(bb);
// jit_value_t cmp = b.CreateICmpSLT(va, vb);
// b.CreateCondBr(cmp, trap_bb, *it);
// }
// if (TO & (1 << 3)) {
// // a > b
// BasicBlock* bb = *(it++);
// b.SetInsertPoint(bb);
// jit_value_t cmp = b.CreateICmpSGT(va, vb);
// b.CreateCondBr(cmp, trap_bb, *it);
// }
// if (TO & (1 << 2)) {
// // a = b
// BasicBlock* bb = *(it++);
// b.SetInsertPoint(bb);
// jit_value_t cmp = b.CreateICmpEQ(va, vb);
// b.CreateCondBr(cmp, trap_bb, *it);
// }
// if (TO & (1 << 1)) {
// // a <u b
// BasicBlock* bb = *(it++);
// b.SetInsertPoint(bb);
// jit_value_t cmp = b.CreateICmpULT(va, vb);
// b.CreateCondBr(cmp, trap_bb, *it);
// }
// if (TO & (1 << 0)) {
// // a >u b
// BasicBlock* bb = *(it++);
// b.SetInsertPoint(bb);
// jit_value_t cmp = b.CreateICmpUGT(va, vb);
// b.CreateCondBr(cmp, trap_bb, *it);
// }
// // Create trap BB.
// b.SetInsertPoint(trap_bb);
// e.SpillRegisters();
// // TODO(benvanik): use @llvm.debugtrap? could make debugging better
// b.CreateCall2(e.gen_module()->getFunction("XeTrap"),
// e.fn()->arg_begin(),
// e.get_uint64(i.address));
// b.CreateBr(after_bb);
// // Resume.
// b.SetInsertPoint(after_bb);
return 0;
}
XEEMITTER(td, 0x7C000088, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
// a <- (RA)
// b <- (RB)
// if (a < b) & TO[0] then TRAP
// if (a > b) & TO[1] then TRAP
// if (a = b) & TO[2] then TRAP
// if (a <u b) & TO[3] then TRAP
// if (a >u b) & TO[4] then TRAP
return XeEmitTrap(e, f, i,
e.gpr_value(i.X.RA),
e.gpr_value(i.X.RB),
i.X.RT);
}
XEEMITTER(tdi, 0x08000000, D )(X64Emitter& e, jit_function_t f, InstrData& i) {
// a <- (RA)
// if (a < EXTS(SI)) & TO[0] then TRAP
// if (a > EXTS(SI)) & TO[1] then TRAP
// if (a = EXTS(SI)) & TO[2] then TRAP
// if (a <u EXTS(SI)) & TO[3] then TRAP
// if (a >u EXTS(SI)) & TO[4] then TRAP
return XeEmitTrap(e, f, i,
e.gpr_value(i.D.RA),
e.get_int64(XEEXTS16(i.D.DS)),
i.D.RT);
}
XEEMITTER(tw, 0x7C000008, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
// a <- EXTS((RA)[32:63])
// b <- EXTS((RB)[32:63])
// if (a < b) & TO[0] then TRAP
// if (a > b) & TO[1] then TRAP
// if (a = b) & TO[2] then TRAP
// if (a <u b) & TO[3] then TRAP
// if (a >u b) & TO[4] then TRAP
return XeEmitTrap(e, f, i,
e.sign_extend(e.trunc_to_int(e.gpr_value(i.X.RA)),
jit_type_nint),
e.sign_extend(e.trunc_to_int(e.gpr_value(i.X.RB)),
jit_type_nint),
i.X.RT);
}
XEEMITTER(twi, 0x0C000000, D )(X64Emitter& e, jit_function_t f, InstrData& i) {
// a <- EXTS((RA)[32:63])
// if (a < EXTS(SI)) & TO[0] then TRAP
// if (a > EXTS(SI)) & TO[1] then TRAP
// if (a = EXTS(SI)) & TO[2] then TRAP
// if (a <u EXTS(SI)) & TO[3] then TRAP
// if (a >u EXTS(SI)) & TO[4] then TRAP
return XeEmitTrap(e, f, i,
e.sign_extend(e.trunc_to_int(e.gpr_value(i.D.RA)),
jit_type_nint),
e.get_int64(XEEXTS16(i.D.DS)),
i.D.RT);
}
// Processor control (A-26)
XEEMITTER(mfcr, 0x7C000026, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(mfspr, 0x7C0002A6, XFX)(X64Emitter& e, jit_function_t f, InstrData& i) {
// n <- spr[5:9] || spr[0:4]
// if length(SPR(n)) = 64 then
// RT <- SPR(n)
// else
// RT <- i32.0 || SPR(n)
const uint32_t n = ((i.XFX.spr & 0x1F) << 5) | ((i.XFX.spr >> 5) & 0x1F);
jit_value_t v = NULL;
switch (n) {
case 1:
// XER
v = e.xer_value();
break;
case 8:
// LR
v = e.lr_value();
break;
case 9:
// CTR
v = e.ctr_value();
break;
default:
XEINSTRNOTIMPLEMENTED();
return 1;
}
e.update_gpr_value(i.XFX.RT, v);
return 0;
}
XEEMITTER(mftb, 0x7C0002E6, XFX)(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(mtcrf, 0x7C000120, XFX)(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(mtspr, 0x7C0003A6, XFX)(X64Emitter& e, jit_function_t f, InstrData& i) {
// n <- spr[5:9] || spr[0:4]
// if length(SPR(n)) = 64 then
// SPR(n) <- (RS)
// else
// SPR(n) <- (RS)[32:63]
jit_value_t v = e.gpr_value(i.XFX.RT);
const uint32_t n = ((i.XFX.spr & 0x1F) << 5) | ((i.XFX.spr >> 5) & 0x1F);
switch (n) {
case 1:
// XER
e.update_xer_value(v);
break;
case 8:
// LR
e.update_lr_value(v);
break;
case 9:
// CTR
e.update_ctr_value(v);
break;
default:
XEINSTRNOTIMPLEMENTED();
return 1;
}
return 0;
}
void X64RegisterEmitCategoryControl() {
XEREGISTERINSTR(bx, 0x48000000);
XEREGISTERINSTR(bcx, 0x40000000);
XEREGISTERINSTR(bcctrx, 0x4C000420);
XEREGISTERINSTR(bclrx, 0x4C000020);
XEREGISTERINSTR(crand, 0x4C000202);
XEREGISTERINSTR(crandc, 0x4C000102);
XEREGISTERINSTR(creqv, 0x4C000242);
XEREGISTERINSTR(crnand, 0x4C0001C2);
XEREGISTERINSTR(crnor, 0x4C000042);
XEREGISTERINSTR(cror, 0x4C000382);
XEREGISTERINSTR(crorc, 0x4C000342);
XEREGISTERINSTR(crxor, 0x4C000182);
XEREGISTERINSTR(mcrf, 0x4C000000);
XEREGISTERINSTR(sc, 0x44000002);
XEREGISTERINSTR(td, 0x7C000088);
XEREGISTERINSTR(tdi, 0x08000000);
XEREGISTERINSTR(tw, 0x7C000008);
XEREGISTERINSTR(twi, 0x0C000000);
XEREGISTERINSTR(mfcr, 0x7C000026);
XEREGISTERINSTR(mfspr, 0x7C0002A6);
XEREGISTERINSTR(mftb, 0x7C0002E6);
XEREGISTERINSTR(mtcrf, 0x7C000120);
XEREGISTERINSTR(mtspr, 0x7C0003A6);
}
} // namespace x64
} // namespace cpu
} // namespace xe

View File

@ -0,0 +1,295 @@
/*
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include <xenia/cpu/x64/x64_emit.h>
#include <xenia/cpu/cpu-private.h>
using namespace xe::cpu;
using namespace xe::cpu::ppc;
namespace xe {
namespace cpu {
namespace x64 {
// Floating-point arithmetic (A-8)
XEEMITTER(faddx, 0xFC00002A, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(faddsx, 0xEC00002A, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fdivx, 0xFC000024, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fdivsx, 0xEC000024, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fmulx, 0xFC000032, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fmulsx, 0xEC000032, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fresx, 0xEC000030, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(frsqrtex, 0xFC000034, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fsubx, 0xFC000028, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fsubsx, 0xEC000028, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fselx, 0xFC00002E, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fsqrtx, 0xFC00002C, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fsqrtsx, 0xEC00002C, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
// Floating-point multiply-add (A-9)
XEEMITTER(fmaddx, 0xFC00003A, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fmaddsx, 0xEC00003A, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fmsubx, 0xFC000038, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fmsubsx, 0xEC000038, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fnmaddx, 0xFC00003E, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fnmaddsx, 0xEC00003E, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fnmsubx, 0xFC00003C, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fnmsubsx, 0xEC00003C, A )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
// Floating-point rounding and conversion (A-10)
XEEMITTER(fcfidx, 0xFC00069C, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fctidx, 0xFC00065C, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fctidzx, 0xFC00065E, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fctiwx, 0xFC00001C, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fctiwzx, 0xFC00001E, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(frspx, 0xFC000018, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
// Floating-point compare (A-11)
XEEMITTER(fcmpo, 0xFC000040, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fcmpu, 0xFC000000, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
// if (FRA) is a NaN or (FRB) is a NaN then
// c <- 0b0001
// else if (FRA) < (FRB) then
// c <- 0b1000
// else if (FRA) > (FRB) then
// c <- 0b0100
// else {
// c <- 0b0010
// }
// FPCC <- c
// CR[4*BF:4*BF+3] <- c
// if (FRA) is an SNaN or (FRB) is an SNaN then
// VXSNAN <- 1
XEINSTRNOTIMPLEMENTED();
return 1;
}
// Floating-point status and control register (A
XEEMITTER(mcrfs, 0xFC000080, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(mffsx, 0xFC00048E, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(mtfsb0x, 0xFC00008C, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(mtfsb1x, 0xFC00004C, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(mtfsfx, 0xFC00058E, XFL)(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(mtfsfix, 0xFC00010C, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
// Floating-point move (A-21)
XEEMITTER(fabsx, 0xFC000210, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fmrx, 0xFC000090, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fnabsx, 0xFC000110, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
XEEMITTER(fnegx, 0xFC000050, X )(X64Emitter& e, jit_function_t f, InstrData& i) {
XEINSTRNOTIMPLEMENTED();
return 1;
}
void X64RegisterEmitCategoryFPU() {
XEREGISTERINSTR(faddx, 0xFC00002A);
XEREGISTERINSTR(faddsx, 0xEC00002A);
XEREGISTERINSTR(fdivx, 0xFC000024);
XEREGISTERINSTR(fdivsx, 0xEC000024);
XEREGISTERINSTR(fmulx, 0xFC000032);
XEREGISTERINSTR(fmulsx, 0xEC000032);
XEREGISTERINSTR(fresx, 0xEC000030);
XEREGISTERINSTR(frsqrtex, 0xFC000034);
XEREGISTERINSTR(fsubx, 0xFC000028);
XEREGISTERINSTR(fsubsx, 0xEC000028);
XEREGISTERINSTR(fselx, 0xFC00002E);
XEREGISTERINSTR(fsqrtx, 0xFC00002C);
XEREGISTERINSTR(fsqrtsx, 0xEC00002C);
XEREGISTERINSTR(fmaddx, 0xFC00003A);
XEREGISTERINSTR(fmaddsx, 0xEC00003A);
XEREGISTERINSTR(fmsubx, 0xFC000038);
XEREGISTERINSTR(fmsubsx, 0xEC000038);
XEREGISTERINSTR(fnmaddx, 0xFC00003E);
XEREGISTERINSTR(fnmaddsx, 0xEC00003E);
XEREGISTERINSTR(fnmsubx, 0xFC00003C);
XEREGISTERINSTR(fnmsubsx, 0xEC00003C);
XEREGISTERINSTR(fcfidx, 0xFC00069C);
XEREGISTERINSTR(fctidx, 0xFC00065C);
XEREGISTERINSTR(fctidzx, 0xFC00065E);
XEREGISTERINSTR(fctiwx, 0xFC00001C);
XEREGISTERINSTR(fctiwzx, 0xFC00001E);
XEREGISTERINSTR(frspx, 0xFC000018);
XEREGISTERINSTR(fcmpo, 0xFC000040);
XEREGISTERINSTR(fcmpu, 0xFC000000);
XEREGISTERINSTR(mcrfs, 0xFC000080);
XEREGISTERINSTR(mffsx, 0xFC00048E);
XEREGISTERINSTR(mtfsb0x, 0xFC00008C);
XEREGISTERINSTR(mtfsb1x, 0xFC00004C);
XEREGISTERINSTR(mtfsfx, 0xFC00058E);
XEREGISTERINSTR(mtfsfix, 0xFC00010C);
XEREGISTERINSTR(fabsx, 0xFC000210);
XEREGISTERINSTR(fmrx, 0xFC000090);
XEREGISTERINSTR(fnabsx, 0xFC000110);
XEREGISTERINSTR(fnegx, 0xFC000050);
}
} // namespace x64
} // namespace cpu
} // namespace xe

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,154 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#ifndef XENIA_CPU_X64_X64_EMITTER_H_
#define XENIA_CPU_X64_X64_EMITTER_H_
#include <xenia/cpu/global_exports.h>
#include <xenia/cpu/sdb.h>
#include <xenia/cpu/ppc/instr.h>
#include <asmjit/asmjit.h>
namespace xe {
namespace cpu {
namespace x64 {
class X64Emitter {
public:
X64Emitter(xe_memory_ref memory, jit_context_t context);
~X64Emitter();
jit_context_t context();
int PrepareFunction(sdb::FunctionSymbol* symbol);
int MakeFunction(sdb::FunctionSymbol* symbol, jit_function_t fn);
sdb::FunctionSymbol* symbol();
jit_function_t fn();
sdb::FunctionBlock* fn_block();
jit_value_t get_int32(int32_t value);
jit_value_t get_uint32(uint32_t value);
jit_value_t get_int64(int64_t value);
jit_value_t get_uint64(uint64_t value);
jit_value_t make_signed(jit_value_t value);
jit_value_t make_unsigned(jit_value_t value);
jit_value_t sign_extend(jit_value_t value, jit_type_t target_type);
jit_value_t zero_extend(jit_value_t value, jit_type_t target_type);
jit_value_t trunc_to_sbyte(jit_value_t value);
jit_value_t trunc_to_ubyte(jit_value_t value);
jit_value_t trunc_to_short(jit_value_t value);
jit_value_t trunc_to_int(jit_value_t value);
int branch_to_block(uint32_t address);
int branch_to_block_if(uint32_t address, jit_value_t value);
int branch_to_block_if_not(uint32_t address, jit_value_t value);
int branch_to_return();
int branch_to_return_if(jit_value_t value);
int branch_to_return_if_not(jit_value_t value);
int call_function(sdb::FunctionSymbol* target_symbol, jit_value_t lr,
bool tail);
void TraceBranch(uint32_t cia);
int GenerateIndirectionBranch(uint32_t cia, jit_value_t target,
bool lk, bool likely_local);
jit_value_t LoadStateValue(size_t offset, jit_type_t type,
const char* name = "");
void StoreStateValue(size_t offset, jit_type_t type, jit_value_t value);
jit_value_t SetupLocal(jit_type_t type, const char* name);
void FillRegisters();
void SpillRegisters();
jit_value_t xer_value();
void update_xer_value(jit_value_t value);
void update_xer_with_overflow(jit_value_t value);
void update_xer_with_carry(jit_value_t value);
void update_xer_with_overflow_and_carry(jit_value_t value);
jit_value_t lr_value();
void update_lr_value(jit_value_t value);
jit_value_t ctr_value();
void update_ctr_value(jit_value_t value);
jit_value_t cr_value(uint32_t n);
void update_cr_value(uint32_t n, jit_value_t value);
void update_cr_with_cond(uint32_t n, jit_value_t lhs, jit_value_t rhs,
bool is_signed);
jit_value_t gpr_value(uint32_t n);
void update_gpr_value(uint32_t n, jit_value_t value);
jit_value_t fpr_value(uint32_t n);
void update_fpr_value(uint32_t n, jit_value_t value);
jit_value_t TouchMemoryAddress(uint32_t cia, jit_value_t addr);
jit_value_t ReadMemory(
uint32_t cia, jit_value_t addr, uint32_t size, bool acquire = false);
void WriteMemory(
uint32_t cia, jit_value_t addr, uint32_t size, jit_value_t value,
bool release = false);
private:
int MakeUserFunction();
int MakePresentImportFunction();
int MakeMissingImportFunction();
void GenerateBasicBlocks();
void GenerateSharedBlocks();
int PrepareBasicBlock(sdb::FunctionBlock* block);
void GenerateBasicBlock(sdb::FunctionBlock* block);
void SetupLocals();
xe_memory_ref memory_;
jit_context_t context_;
jit_type_t fn_signature_;
jit_type_t shim_signature_;
GlobalExports global_exports_;
jit_type_t global_export_signature_2_;
jit_type_t global_export_signature_3_;
jit_type_t global_export_signature_4_;
sdb::FunctionSymbol* symbol_;
jit_function_t fn_;
sdb::FunctionBlock* fn_block_;
jit_label_t return_block_;
jit_label_t internal_indirection_block_;
jit_label_t external_indirection_block_;
std::map<uint32_t, jit_label_t> bbs_;
// Address of the instruction being generated.
uint32_t cia_;
ppc::InstrAccessBits access_bits_;
struct {
jit_value_t indirection_target;
jit_value_t indirection_cia;
jit_value_t xer;
jit_value_t lr;
jit_value_t ctr;
jit_value_t cr[8];
jit_value_t gpr[32];
jit_value_t fpr[32];
} locals_;
};
} // namespace x64
} // namespace cpu
} // namespace xe
#endif // XENIA_CPU_X64_X64_EMITTER_H_

View File

@ -0,0 +1,93 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include <xenia/cpu/x64/x64_jit.h>
#include <xenia/cpu/cpu-private.h>
#include <xenia/cpu/exec_module.h>
#include <xenia/cpu/sdb.h>
using namespace xe;
using namespace xe::cpu;
using namespace xe::cpu::sdb;
using namespace xe::cpu::x64;
X64JIT::X64JIT(xe_memory_ref memory, SymbolTable* sym_table) :
JIT(memory, sym_table),
context_(NULL), emitter_(NULL) {
}
X64JIT::~X64JIT() {
delete emitter_;
if (context_) {
jit_context_destroy(context_);
}
}
int X64JIT::Setup() {
int result_code = 1;
// Shared libjit context.
context_ = jit_context_create();
XEEXPECTNOTNULL(context_);
// Create the emitter used to generate functions.
emitter_ = new X64Emitter(memory_, context_);
// Inject global functions/variables/etc.
XEEXPECTZERO(InjectGlobals());
result_code = 0;
XECLEANUP:
return result_code;
}
int X64JIT::InjectGlobals() {
return 0;
}
int X64JIT::InitModule(ExecModule* module) {
return 0;
}
int X64JIT::UninitModule(ExecModule* module) {
return 0;
}
int X64JIT::Execute(xe_ppc_state_t* ppc_state, FunctionSymbol* fn_symbol) {
XELOGCPU("Execute(%.8X): %s...", fn_symbol->start_address, fn_symbol->name());
// Check function.
jit_function_t jit_fn = (jit_function_t)fn_symbol->impl_value;
if (!jit_fn) {
// Function hasn't been prepped yet - prep it.
if (emitter_->PrepareFunction(fn_symbol)) {
XELOGCPU("Execute(%.8X): unable to make function %s",
fn_symbol->start_address, fn_symbol->name());
return 1;
}
jit_fn = (jit_function_t)fn_symbol->impl_value;
XEASSERTNOTNULL(jit_fn);
}
// Call into the function. This will compile it if needed.
jit_nuint lr = ppc_state->lr;
void* args[] = {&ppc_state, &lr};
uint64_t return_value;
int apply_result = jit_function_apply(jit_fn, (void**)&args, &return_value);
if (!apply_result) {
XELOGCPU("Execute(%.8X): apply failed with %d",
fn_symbol->start_address, apply_result);
return 1;
}
return 0;
}

View File

@ -0,0 +1,54 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#ifndef XENIA_CPU_X64_X64_JIT_H_
#define XENIA_CPU_X64_X64_JIT_H_
#include <xenia/core.h>
#include <xenia/cpu/jit.h>
#include <xenia/cpu/ppc.h>
#include <xenia/cpu/sdb.h>
#include <xenia/cpu/x64/x64_emitter.h>
#include <jit/jit.h>
namespace xe {
namespace cpu {
namespace x64 {
class X64JIT : public JIT {
public:
X64JIT(xe_memory_ref memory, sdb::SymbolTable* sym_table);
virtual ~X64JIT();
virtual int Setup();
virtual int InitModule(ExecModule* module);
virtual int UninitModule(ExecModule* module);
virtual int Execute(xe_ppc_state_t* ppc_state,
sdb::FunctionSymbol* fn_symbol);
protected:
int InjectGlobals();
jit_context_t context_;
X64Emitter* emitter_;
};
} // namespace x64
} // namespace cpu
} // namespace xe
#endif // XENIA_CPU_X64_X64_JIT_H_

View File

@ -46,7 +46,7 @@ int Run::Setup() {
xe_zero_struct(&pal_options, sizeof(pal_options)); xe_zero_struct(&pal_options, sizeof(pal_options));
XEEXPECTZERO(xe_pal_init(pal_options)); XEEXPECTZERO(xe_pal_init(pal_options));
//backend_ = shared_ptr<Backend>(new xe::cpu::libjit::LibjitBackend()); backend_ = shared_ptr<Backend>(new xe::cpu::x64::X64Backend());
debugger_ = shared_ptr<Debugger>(new Debugger()); debugger_ = shared_ptr<Debugger>(new Debugger());

View File

@ -120,7 +120,7 @@ int run_test(string& src_file_path) {
memory = xe_memory_create(memory_options); memory = xe_memory_create(memory_options);
XEEXPECTNOTNULL(memory); XEEXPECTNOTNULL(memory);
backend_ = shared_ptr<Backend>(new xe::cpu::libjit::LibjitBackend()); backend_ = shared_ptr<Backend>(new xe::cpu::x64::X64Backend());
processor = shared_ptr<Processor>(new Processor(memory, backend)); processor = shared_ptr<Processor>(new Processor(memory, backend));
XEEXPECTZERO(processor->Setup()); XEEXPECTZERO(processor->Setup());