Merge branch 'master' of github.com:benvanik/xenia

This commit is contained in:
DrChat 2017-01-10 00:24:22 -06:00
commit bb9369b128
8 changed files with 226 additions and 5 deletions

View File

@ -477,13 +477,15 @@ TextureCache::TextureEntry* TextureCache::LookupOrInsertTexture(
// Upload/convert.
bool uploaded = false;
switch (texture_info.dimension) {
case Dimension::k1D:
uploaded = UploadTexture1D(entry->handle, texture_info);
break;
case Dimension::k2D:
uploaded = UploadTexture2D(entry->handle, texture_info);
break;
case Dimension::kCube:
uploaded = UploadTextureCube(entry->handle, texture_info);
break;
case Dimension::k1D:
case Dimension::k3D:
assert_unhandled_case(texture_info.dimension);
return nullptr;
@ -706,6 +708,62 @@ void TextureSwap(Endian endianness, void* dest, const void* src,
}
}
bool TextureCache::UploadTexture1D(GLuint texture,
const TextureInfo& texture_info) {
SCOPE_profile_cpu_f("gpu");
const auto host_address =
memory_->TranslatePhysical(texture_info.guest_address);
const auto& config =
texture_configs[uint32_t(texture_info.format_info->format)];
if (config.format == GL_INVALID_ENUM) {
assert_always("Unhandled texture format");
return false;
}
size_t unpack_length = texture_info.output_length;
glTextureStorage1D(texture, 1, config.internal_format,
texture_info.size_1d.output_width);
auto allocation = scratch_buffer_->Acquire(unpack_length);
if (!texture_info.is_tiled) {
if (texture_info.size_1d.input_pitch == texture_info.size_1d.output_pitch) {
TextureSwap(texture_info.endianness, allocation.host_ptr, host_address,
unpack_length);
} else {
assert_always();
}
} else {
assert_always();
}
size_t unpack_offset = allocation.offset;
scratch_buffer_->Commit(std::move(allocation));
// TODO(benvanik): avoid flush on entire buffer by using another texture
// buffer.
scratch_buffer_->Flush();
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, scratch_buffer_->handle());
if (texture_info.is_compressed()) {
glCompressedTextureSubImage1D(
texture, 0, 0, texture_info.size_1d.output_width, config.format,
static_cast<GLsizei>(unpack_length),
reinterpret_cast<void*>(unpack_offset));
} else {
// Most of these don't seem to have an effect on compressed images.
// glPixelStorei(GL_UNPACK_SWAP_BYTES, GL_TRUE);
// glPixelStorei(GL_UNPACK_ALIGNMENT, texture_info.texel_pitch);
// glPixelStorei(GL_UNPACK_ROW_LENGTH, texture_info.size_2d.input_width);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTextureSubImage1D(texture, 0, 0, texture_info.size_1d.output_width,
config.format, config.type,
reinterpret_cast<void*>(unpack_offset));
}
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
return true;
}
bool TextureCache::UploadTexture2D(GLuint texture,
const TextureInfo& texture_info) {
SCOPE_profile_cpu_f("gpu");

View File

@ -96,6 +96,7 @@ class TextureCache {
uint64_t opt_hash = 0);
void EvictTexture(TextureEntry* entry);
bool UploadTexture1D(GLuint texture, const TextureInfo& texture_info);
bool UploadTexture2D(GLuint texture, const TextureInfo& texture_info);
bool UploadTextureCube(GLuint texture, const TextureInfo& texture_info);

View File

@ -165,7 +165,33 @@ bool TextureInfo::Prepare(const xe_gpu_texture_fetch_t& fetch,
void TextureInfo::CalculateTextureSizes1D(const xe_gpu_texture_fetch_t& fetch) {
// ?
size_1d.width = fetch.size_1d.width;
size_1d.logical_width = 1 + fetch.size_1d.width;
uint32_t block_width =
xe::round_up(size_1d.logical_width, format_info->block_width) /
format_info->block_width;
uint32_t tile_width = uint32_t(std::ceil(block_width / 32.0f));
size_1d.block_width = tile_width * 32;
uint32_t bytes_per_block =
format_info->block_width * format_info->bits_per_pixel / 8;
uint32_t byte_pitch = tile_width * 32 * bytes_per_block;
if (!is_tiled) {
// Each row must be a multiple of 256 in linear textures.
byte_pitch = xe::round_up(byte_pitch, 256);
}
size_1d.input_width = tile_width * 32 * format_info->block_width;
size_1d.output_width = block_width * format_info->block_width;
size_1d.input_pitch = byte_pitch;
size_1d.output_pitch = block_width * bytes_per_block;
input_length = size_1d.input_pitch;
output_length = size_1d.output_pitch;
}
void TextureInfo::CalculateTextureSizes2D(const xe_gpu_texture_fetch_t& fetch) {

View File

@ -231,7 +231,12 @@ struct TextureInfo {
union {
struct {
uint32_t width;
uint32_t logical_width;
uint32_t block_width;
uint32_t input_width;
uint32_t input_pitch;
uint32_t output_width;
uint32_t output_pitch;
} size_1d;
struct {
uint32_t logical_width;

View File

@ -420,6 +420,11 @@ TextureCache::Texture* TextureCache::Demand(const TextureInfo& texture_info,
bool uploaded = false;
switch (texture_info.dimension) {
case Dimension::k1D: {
uploaded = UploadTexture1D(command_buffer, completion_fence, texture,
texture_info);
} break;
case Dimension::k2D: {
uploaded = UploadTexture2D(command_buffer, completion_fence, texture,
texture_info);
@ -822,6 +827,19 @@ void TextureCache::FlushPendingCommands(VkCommandBuffer command_buffer,
vkBeginCommandBuffer(command_buffer, &begin_info);
}
void TextureCache::ConvertTexture1D(uint8_t* dest, const TextureInfo& src) {
void* host_address = memory_->TranslatePhysical(src.guest_address);
if (!src.is_tiled) {
if (src.size_1d.input_pitch == src.size_1d.output_pitch) {
TextureSwap(src.endianness, dest, host_address, src.output_length);
} else {
assert_always();
}
} else {
assert_always();
}
}
void TextureCache::ConvertTexture2D(uint8_t* dest, const TextureInfo& src) {
void* host_address = memory_->TranslatePhysical(src.guest_address);
if (!src.is_tiled) {
@ -936,6 +954,86 @@ void TextureCache::ConvertTextureCube(uint8_t* dest, const TextureInfo& src) {
}
}
bool TextureCache::UploadTexture1D(VkCommandBuffer command_buffer,
VkFence completion_fence, Texture* dest,
const TextureInfo& src) {
#if FINE_GRAINED_DRAW_SCOPES
SCOPE_profile_cpu_f("gpu");
#endif // FINE_GRAINED_DRAW_SCOPES
assert_true(src.dimension == Dimension::k1D);
size_t unpack_length = src.output_length;
if (!staging_buffer_.CanAcquire(unpack_length)) {
// Need to have unique memory for every upload for at least one frame. If we
// run out of memory, we need to flush all queued upload commands to the
// GPU.
FlushPendingCommands(command_buffer, completion_fence);
// Uploads have been flushed. Continue.
if (!staging_buffer_.CanAcquire(unpack_length)) {
// The staging buffer isn't big enough to hold this texture.
XELOGE(
"TextureCache staging buffer is too small! (uploading 0x%.8X bytes)",
unpack_length);
assert_always();
return false;
}
}
// Grab some temporary memory for staging.
auto alloc = staging_buffer_.Acquire(unpack_length, completion_fence);
assert_not_null(alloc);
// Upload texture into GPU memory.
// TODO: If the GPU supports it, we can submit a compute batch to convert the
// texture and copy it to its destination. Otherwise, fallback to conversion
// on the CPU.
ConvertTexture1D(reinterpret_cast<uint8_t*>(alloc->host_ptr), src);
staging_buffer_.Flush(alloc);
// Transition the texture into a transfer destination layout.
VkImageMemoryBarrier barrier;
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.pNext = nullptr;
barrier.srcAccessMask = 0;
barrier.dstAccessMask =
VK_ACCESS_TRANSFER_WRITE_BIT | VK_ACCESS_HOST_WRITE_BIT;
barrier.oldLayout = dest->image_layout;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = dest->image;
barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, nullptr, 0,
nullptr, 1, &barrier);
// Now move the converted texture into the destination.
VkBufferImageCopy copy_region;
copy_region.bufferOffset = alloc->offset;
copy_region.bufferRowLength = src.size_1d.output_width;
copy_region.bufferImageHeight = 1;
copy_region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copy_region.imageOffset = {0, 0, 0};
copy_region.imageExtent = {src.size_1d.output_width, 1, 1};
vkCmdCopyBufferToImage(command_buffer, staging_buffer_.gpu_buffer(),
dest->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&copy_region);
// Now transition the texture into a shader readonly source.
barrier.srcAccessMask = barrier.dstAccessMask;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.oldLayout = barrier.newLayout;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, nullptr, 0,
nullptr, 1, &barrier);
dest->image_layout = barrier.newLayout;
return true;
}
bool TextureCache::UploadTexture2D(VkCommandBuffer command_buffer,
VkFence completion_fence, Texture* dest,
const TextureInfo& src) {

View File

@ -148,12 +148,16 @@ class TextureCache {
void FlushPendingCommands(VkCommandBuffer command_buffer,
VkFence completion_fence);
void ConvertTexture1D(uint8_t* dest, const TextureInfo& src);
void ConvertTexture2D(uint8_t* dest, const TextureInfo& src);
void ConvertTextureCube(uint8_t* dest, const TextureInfo& src);
// Queues commands to upload a texture from system memory, applying any
// conversions necessary. This may flush the command buffer to the GPU if we
// run out of staging memory.
bool UploadTexture1D(VkCommandBuffer command_buffer, VkFence completion_fence,
Texture* dest, const TextureInfo& src);
bool UploadTexture2D(VkCommandBuffer command_buffer, VkFence completion_fence,
Texture* dest, const TextureInfo& src);

View File

@ -378,6 +378,12 @@ inline void AppendParam(StringBuffer* string_buffer, lpstring_t param) {
string_buffer->AppendFormat("(%s)", param.value().c_str());
}
}
inline void AppendParam(StringBuffer* string_buffer, lpwstring_t param) {
string_buffer->AppendFormat("%.8X", param.guest_address());
if (param) {
string_buffer->AppendFormat("(%S)", param.value().c_str());
}
}
inline void AppendParam(StringBuffer* string_buffer,
pointer_t<X_OBJECT_ATTRIBUTES> record) {
string_buffer->AppendFormat("%.8X", record.guest_address());

View File

@ -503,13 +503,36 @@ dword_result_t NetDll_XNetGetEthernetLinkStatus(dword_t caller) { return 0; }
DECLARE_XAM_EXPORT(NetDll_XNetGetEthernetLinkStatus,
ExportTag::kStub | ExportTag::kNetworking);
dword_result_t NetDll_XNetDnsLookup(lpstring_t address, dword_t evt_handle,
pointer_t<XNDNS> host_out) {
dword_result_t NetDll_XNetDnsLookup(dword_t caller, lpstring_t host,
dword_t event_handle, lpdword_t pdns) {
// TODO(gibbed): actually implement this
if (pdns) {
auto dns_guest = kernel_memory()->SystemHeapAlloc(sizeof(XNDNS));
auto dns = kernel_memory()->TranslateVirtual<XNDNS*>(dns_guest);
dns->status = 1; // non-zero = error
*pdns = dns_guest;
}
if (event_handle) {
auto ev =
kernel_state()->object_table()->LookupObject<XEvent>(event_handle);
assert_not_null(ev);
ev->Set(0, false);
}
return 0;
}
DECLARE_XAM_EXPORT(NetDll_XNetDnsLookup,
ExportTag::kStub | ExportTag::kNetworking);
dword_result_t NetDll_XNetDnsRelease(dword_t caller, pointer_t<XNDNS> dns) {
if (!dns) {
return X_STATUS_INVALID_PARAMETER;
}
kernel_memory()->SystemHeapFree(dns.guest_address());
return 0;
}
DECLARE_XAM_EXPORT(NetDll_XNetDnsRelease,
ExportTag::kStub | ExportTag::kNetworking);
SHIM_CALL NetDll_XNetQosServiceLookup_shim(PPCContext* ppc_context,
KernelState* kernel_state) {
uint32_t caller = SHIM_GET_ARG_32(0);