- GPU: Removal of deprecated TextureInfo fields.

- GPU: Replicated removed deprecated fields into local struct for GL.
- GPU: Improved texture copies for Vulkan, no more pitch changes.
- GPU: Stubbed code for CTX1 conversion in Vulkan.
This commit is contained in:
gibbed 2017-08-07 19:30:06 -05:00
parent 906f24cb1a
commit b4ae5b9a01
5 changed files with 344 additions and 415 deletions

View File

@ -689,6 +689,82 @@ void TextureCache::EvictTexture(TextureEntry* entry) {
delete entry; delete entry;
} }
struct HostTextureInfo {
uint32_t output_length;
union {
struct {
uint32_t output_width;
uint32_t output_pitch;
} size_1d;
struct {
uint32_t output_width;
uint32_t output_height;
uint32_t output_pitch;
} size_2d;
struct {
} size_3d;
struct {
uint32_t output_width;
uint32_t output_height;
uint32_t output_pitch;
uint32_t output_face_length;
} size_cube;
};
static bool Setup(const TextureInfo& guest_info, HostTextureInfo* out_info) {
auto& info = *out_info;
auto format = guest_info.format_info();
uint32_t bytes_per_block = format->block_width * format->bits_per_pixel / 8;
switch (guest_info.dimension) {
case Dimension::k1D: {
uint32_t block_width = xe::round_up(guest_info.size_1d.logical_width,
format->block_width) /
format->block_width;
info.size_1d.output_width = block_width * format->block_width;
info.size_1d.output_pitch = block_width * bytes_per_block;
info.output_length = info.size_1d.output_pitch;
return true;
}
case Dimension::k2D: {
uint32_t block_width = xe::round_up(guest_info.size_2d.logical_width,
format->block_width) /
format->block_width;
uint32_t block_height = xe::round_up(guest_info.size_2d.logical_height,
format->block_height) /
format->block_height;
info.size_2d.output_width = block_width * format->block_width;
info.size_2d.output_height = block_height * format->block_height;
info.size_2d.output_pitch = block_width * bytes_per_block;
info.output_length = info.size_2d.output_pitch * block_height;
return true;
};
case Dimension::k3D: {
return false;
}
case Dimension::kCube: {
uint32_t block_width = xe::round_up(guest_info.size_cube.logical_width,
format->block_width) /
format->block_width;
uint32_t block_height =
xe::round_up(guest_info.size_cube.logical_height,
format->block_height) /
format->block_height;
info.size_cube.output_width = block_width * format->block_width;
info.size_cube.output_height = block_height * format->block_height;
info.size_cube.output_pitch = block_width * bytes_per_block;
info.size_cube.output_face_length =
info.size_cube.output_pitch * block_height;
info.output_length = info.size_cube.output_face_length * 6;
return true;
}
}
return false;
}
};
void TextureSwap(Endian endianness, void* dest, const void* src, void TextureSwap(Endian endianness, void* dest, const void* src,
size_t length) { size_t length) {
switch (endianness) { switch (endianness) {
@ -720,14 +796,20 @@ bool TextureCache::UploadTexture1D(GLuint texture,
return false; return false;
} }
size_t unpack_length = texture_info.output_length; HostTextureInfo host_info;
if (!HostTextureInfo::Setup(texture_info, &host_info)) {
assert_always("Failed to set up host texture info");
return false;
}
size_t unpack_length = host_info.output_length;
glTextureStorage1D(texture, 1, config.internal_format, glTextureStorage1D(texture, 1, config.internal_format,
texture_info.size_1d.output_width); host_info.size_1d.output_width);
auto allocation = scratch_buffer_->Acquire(unpack_length); auto allocation = scratch_buffer_->Acquire(unpack_length);
if (!texture_info.is_tiled) { if (!texture_info.is_tiled) {
if (texture_info.size_1d.input_pitch == texture_info.size_1d.output_pitch) { if (texture_info.size_1d.input_pitch == host_info.size_1d.output_pitch) {
TextureSwap(texture_info.endianness, allocation.host_ptr, host_address, TextureSwap(texture_info.endianness, allocation.host_ptr, host_address,
unpack_length); unpack_length);
} else { } else {
@ -744,8 +826,8 @@ bool TextureCache::UploadTexture1D(GLuint texture,
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, scratch_buffer_->handle()); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, scratch_buffer_->handle());
if (texture_info.is_compressed()) { if (texture_info.is_compressed()) {
glCompressedTextureSubImage1D( glCompressedTextureSubImage1D(texture, 0, 0, host_info.size_1d.output_width,
texture, 0, 0, texture_info.size_1d.output_width, config.format, config.format,
static_cast<GLsizei>(unpack_length), static_cast<GLsizei>(unpack_length),
reinterpret_cast<void*>(unpack_offset)); reinterpret_cast<void*>(unpack_offset));
} else { } else {
@ -755,7 +837,7 @@ bool TextureCache::UploadTexture1D(GLuint texture,
// glPixelStorei(GL_UNPACK_ROW_LENGTH, texture_info.size_2d.input_width); // glPixelStorei(GL_UNPACK_ROW_LENGTH, texture_info.size_2d.input_width);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTextureSubImage1D(texture, 0, 0, texture_info.size_1d.output_width, glTextureSubImage1D(texture, 0, 0, host_info.size_1d.output_width,
config.format, config.type, config.format, config.type,
reinterpret_cast<void*>(unpack_offset)); reinterpret_cast<void*>(unpack_offset));
} }
@ -776,10 +858,16 @@ bool TextureCache::UploadTexture2D(GLuint texture,
return false; return false;
} }
size_t unpack_length = texture_info.output_length; HostTextureInfo host_info;
if (!HostTextureInfo::Setup(texture_info, &host_info)) {
assert_always("Failed to set up host texture info");
return false;
}
size_t unpack_length = host_info.output_length;
glTextureStorage2D(texture, 1, config.internal_format, glTextureStorage2D(texture, 1, config.internal_format,
texture_info.size_2d.output_width, host_info.size_2d.output_width,
texture_info.size_2d.output_height); host_info.size_2d.output_height);
auto allocation = scratch_buffer_->Acquire(unpack_length); auto allocation = scratch_buffer_->Acquire(unpack_length);
@ -796,16 +884,16 @@ bool TextureCache::UploadTexture2D(GLuint texture,
src += offset_x * bytes_per_block; src += offset_x * bytes_per_block;
uint8_t* dest = reinterpret_cast<uint8_t*>(allocation.host_ptr); uint8_t* dest = reinterpret_cast<uint8_t*>(allocation.host_ptr);
uint32_t pitch = std::min(texture_info.size_2d.input_pitch, uint32_t pitch = std::min(texture_info.size_2d.input_pitch,
texture_info.size_2d.output_pitch); host_info.size_2d.output_pitch);
for (uint32_t y = 0; y < std::min(texture_info.size_2d.block_height, for (uint32_t y = 0; y < std::min(texture_info.size_2d.block_height,
texture_info.size_2d.logical_height); texture_info.size_2d.logical_height);
y++) { y++) {
TextureSwap(texture_info.endianness, dest, src, pitch); TextureSwap(texture_info.endianness, dest, src, pitch);
src += texture_info.size_2d.input_pitch; src += texture_info.size_2d.input_pitch;
dest += texture_info.size_2d.output_pitch; dest += host_info.size_2d.output_pitch;
} }
} else if (texture_info.size_2d.input_pitch == } else if (texture_info.size_2d.input_pitch ==
texture_info.size_2d.output_pitch) { host_info.size_2d.output_pitch) {
// Fast path copy entire image. // Fast path copy entire image.
TextureSwap(texture_info.endianness, allocation.host_ptr, host_address, TextureSwap(texture_info.endianness, allocation.host_ptr, host_address,
unpack_length); unpack_length);
@ -816,13 +904,13 @@ bool TextureCache::UploadTexture2D(GLuint texture,
const uint8_t* src = host_address; const uint8_t* src = host_address;
uint8_t* dest = reinterpret_cast<uint8_t*>(allocation.host_ptr); uint8_t* dest = reinterpret_cast<uint8_t*>(allocation.host_ptr);
uint32_t pitch = std::min(texture_info.size_2d.input_pitch, uint32_t pitch = std::min(texture_info.size_2d.input_pitch,
texture_info.size_2d.output_pitch); host_info.size_2d.output_pitch);
for (uint32_t y = 0; y < std::min(texture_info.size_2d.block_height, for (uint32_t y = 0; y < std::min(texture_info.size_2d.block_height,
texture_info.size_2d.logical_height); texture_info.size_2d.logical_height);
y++) { y++) {
TextureSwap(texture_info.endianness, dest, src, pitch); TextureSwap(texture_info.endianness, dest, src, pitch);
src += texture_info.size_2d.input_pitch; src += texture_info.size_2d.input_pitch;
dest += texture_info.size_2d.output_pitch; dest += host_info.size_2d.output_pitch;
} }
} }
} else { } else {
@ -846,7 +934,7 @@ bool TextureCache::UploadTexture2D(GLuint texture,
for (uint32_t y = 0, output_base_offset = 0; for (uint32_t y = 0, output_base_offset = 0;
y < std::min(texture_info.size_2d.block_height, y < std::min(texture_info.size_2d.block_height,
texture_info.size_2d.logical_height); texture_info.size_2d.logical_height);
y++, output_base_offset += texture_info.size_2d.output_pitch) { y++, output_base_offset += host_info.size_2d.output_pitch) {
auto input_base_offset = TextureInfo::TiledOffset2DOuter( auto input_base_offset = TextureInfo::TiledOffset2DOuter(
offset_y + y, (texture_info.size_2d.input_width / offset_y + y, (texture_info.size_2d.input_width /
texture_info.format_info()->block_width), texture_info.format_info()->block_width),
@ -872,8 +960,8 @@ bool TextureCache::UploadTexture2D(GLuint texture,
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, scratch_buffer_->handle()); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, scratch_buffer_->handle());
if (texture_info.is_compressed()) { if (texture_info.is_compressed()) {
glCompressedTextureSubImage2D( glCompressedTextureSubImage2D(
texture, 0, 0, 0, texture_info.size_2d.output_width, texture, 0, 0, 0, host_info.size_2d.output_width,
texture_info.size_2d.output_height, config.format, host_info.size_2d.output_height, config.format,
static_cast<GLsizei>(unpack_length), static_cast<GLsizei>(unpack_length),
reinterpret_cast<void*>(unpack_offset)); reinterpret_cast<void*>(unpack_offset));
} else { } else {
@ -883,8 +971,8 @@ bool TextureCache::UploadTexture2D(GLuint texture,
// glPixelStorei(GL_UNPACK_ROW_LENGTH, texture_info.size_2d.input_width); // glPixelStorei(GL_UNPACK_ROW_LENGTH, texture_info.size_2d.input_width);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTextureSubImage2D(texture, 0, 0, 0, texture_info.size_2d.output_width, glTextureSubImage2D(texture, 0, 0, 0, host_info.size_2d.output_width,
texture_info.size_2d.output_height, config.format, host_info.size_2d.output_height, config.format,
config.type, reinterpret_cast<void*>(unpack_offset)); config.type, reinterpret_cast<void*>(unpack_offset));
} }
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
@ -904,15 +992,21 @@ bool TextureCache::UploadTextureCube(GLuint texture,
return false; return false;
} }
size_t unpack_length = texture_info.output_length; HostTextureInfo host_info;
if (!HostTextureInfo::Setup(texture_info, &host_info)) {
assert_always("Failed to set up host texture info");
return false;
}
size_t unpack_length = host_info.output_length;
glTextureStorage2D(texture, 1, config.internal_format, glTextureStorage2D(texture, 1, config.internal_format,
texture_info.size_cube.output_width, host_info.size_cube.output_width,
texture_info.size_cube.output_height); host_info.size_cube.output_height);
auto allocation = scratch_buffer_->Acquire(unpack_length); auto allocation = scratch_buffer_->Acquire(unpack_length);
if (!texture_info.is_tiled) { if (!texture_info.is_tiled) {
if (texture_info.size_cube.input_pitch == if (texture_info.size_cube.input_pitch ==
texture_info.size_cube.output_pitch) { host_info.size_cube.output_pitch) {
// Fast path copy entire image. // Fast path copy entire image.
TextureSwap(texture_info.endianness, allocation.host_ptr, host_address, TextureSwap(texture_info.endianness, allocation.host_ptr, host_address,
unpack_length); unpack_length);
@ -924,11 +1018,11 @@ bool TextureCache::UploadTextureCube(GLuint texture,
uint8_t* dest = reinterpret_cast<uint8_t*>(allocation.host_ptr); uint8_t* dest = reinterpret_cast<uint8_t*>(allocation.host_ptr);
for (int face = 0; face < 6; ++face) { for (int face = 0; face < 6; ++face) {
uint32_t pitch = std::min(texture_info.size_cube.input_pitch, uint32_t pitch = std::min(texture_info.size_cube.input_pitch,
texture_info.size_cube.output_pitch); host_info.size_cube.output_pitch);
for (uint32_t y = 0; y < texture_info.size_cube.block_height; y++) { for (uint32_t y = 0; y < texture_info.size_cube.block_height; y++) {
TextureSwap(texture_info.endianness, dest, src, pitch); TextureSwap(texture_info.endianness, dest, src, pitch);
src += texture_info.size_cube.input_pitch; src += texture_info.size_cube.input_pitch;
dest += texture_info.size_cube.output_pitch; dest += host_info.size_cube.output_pitch;
} }
} }
} }
@ -948,7 +1042,7 @@ bool TextureCache::UploadTextureCube(GLuint texture,
for (int face = 0; face < 6; ++face) { for (int face = 0; face < 6; ++face) {
for (uint32_t y = 0, output_base_offset = 0; for (uint32_t y = 0, output_base_offset = 0;
y < texture_info.size_cube.block_height; y < texture_info.size_cube.block_height;
y++, output_base_offset += texture_info.size_cube.output_pitch) { y++, output_base_offset += host_info.size_cube.output_pitch) {
auto input_base_offset = TextureInfo::TiledOffset2DOuter( auto input_base_offset = TextureInfo::TiledOffset2DOuter(
offset_y + y, (texture_info.size_cube.input_width / offset_y + y, (texture_info.size_cube.input_width /
texture_info.format_info()->block_width), texture_info.format_info()->block_width),
@ -965,7 +1059,7 @@ bool TextureCache::UploadTextureCube(GLuint texture,
} }
} }
src += texture_info.size_cube.input_face_length; src += texture_info.size_cube.input_face_length;
dest += texture_info.size_cube.output_face_length; dest += host_info.size_cube.output_face_length;
} }
} }
size_t unpack_offset = allocation.offset; size_t unpack_offset = allocation.offset;
@ -977,8 +1071,8 @@ bool TextureCache::UploadTextureCube(GLuint texture,
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, scratch_buffer_->handle()); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, scratch_buffer_->handle());
if (texture_info.is_compressed()) { if (texture_info.is_compressed()) {
glCompressedTextureSubImage3D( glCompressedTextureSubImage3D(
texture, 0, 0, 0, 0, texture_info.size_cube.output_width, texture, 0, 0, 0, 0, host_info.size_cube.output_width,
texture_info.size_cube.output_height, 6, config.format, host_info.size_cube.output_height, 6, config.format,
static_cast<GLsizei>(unpack_length), static_cast<GLsizei>(unpack_length),
reinterpret_cast<void*>(unpack_offset)); reinterpret_cast<void*>(unpack_offset));
} else { } else {
@ -988,9 +1082,8 @@ bool TextureCache::UploadTextureCube(GLuint texture,
// glPixelStorei(GL_UNPACK_ROW_LENGTH, texture_info.size_2d.input_width); // glPixelStorei(GL_UNPACK_ROW_LENGTH, texture_info.size_2d.input_width);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTextureSubImage3D(texture, 0, 0, 0, 0, glTextureSubImage3D(texture, 0, 0, 0, 0, host_info.size_cube.output_width,
texture_info.size_cube.output_width, host_info.size_cube.output_height, 6, config.format,
texture_info.size_cube.output_height, 6, config.format,
config.type, reinterpret_cast<void*>(unpack_offset)); config.type, reinterpret_cast<void*>(unpack_offset));
} }
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);

View File

@ -56,7 +56,6 @@ bool TextureInfo::Prepare(const xe_gpu_texture_fetch_t& fetch,
info.is_tiled = fetch.tiled; info.is_tiled = fetch.tiled;
info.has_packed_mips = fetch.packed_mips; info.has_packed_mips = fetch.packed_mips;
info.input_length = 0; // Populated below. info.input_length = 0; // Populated below.
info.output_length = 0;
if (info.format_info()->format == TextureFormat::kUnknown) { if (info.format_info()->format == TextureFormat::kUnknown) {
assert_true("Unsupported texture format"); assert_true("Unsupported texture format");
@ -71,15 +70,6 @@ bool TextureInfo::Prepare(const xe_gpu_texture_fetch_t& fetch,
case Dimension::k2D: { case Dimension::k2D: {
info.CalculateTextureSizes2D(fetch.size_2d.width + 1, info.CalculateTextureSizes2D(fetch.size_2d.width + 1,
fetch.size_2d.height + 1); fetch.size_2d.height + 1);
// DEBUG: Make sure our calculated pitch is equal to the fetch pitch.
uint32_t bytes_per_block = info.format_info()->block_width *
info.format_info()->block_height *
info.format_info()->bits_per_pixel / 8;
assert_true(info.size_2d.input_pitch ==
(bytes_per_block * fetch.pitch << 5) /
info.format_info()->block_width);
} break; } break;
case Dimension::k3D: { case Dimension::k3D: {
// TODO(benvanik): calculate size. // TODO(benvanik): calculate size.
@ -110,7 +100,6 @@ bool TextureInfo::PrepareResolve(uint32_t physical_address,
info.is_tiled = true; info.is_tiled = true;
info.has_packed_mips = false; info.has_packed_mips = false;
info.input_length = 0; info.input_length = 0;
info.output_length = 0;
if (info.format_info()->format == TextureFormat::kUnknown) { if (info.format_info()->format == TextureFormat::kUnknown) {
assert_true("Unsupported texture format"); assert_true("Unsupported texture format");
@ -145,11 +134,6 @@ void TextureInfo::CalculateTextureSizes1D(uint32_t width) {
size_1d.input_width = tile_width * 32 * format->block_width; size_1d.input_width = tile_width * 32 * format->block_width;
size_1d.input_pitch = byte_pitch; size_1d.input_pitch = byte_pitch;
input_length = size_1d.input_pitch; input_length = size_1d.input_pitch;
// TODO(DrChat): Remove this, leave it up to the backend.
size_1d.output_width = block_width * format->block_width;
size_1d.output_pitch = block_width * bytes_per_block;
output_length = size_1d.output_pitch;
} }
void TextureInfo::CalculateTextureSizes2D(uint32_t width, uint32_t height) { void TextureInfo::CalculateTextureSizes2D(uint32_t width, uint32_t height) {
@ -190,13 +174,6 @@ void TextureInfo::CalculateTextureSizes2D(uint32_t width, uint32_t height) {
size_2d.input_pitch = byte_pitch; size_2d.input_pitch = byte_pitch;
input_length = size_2d.input_pitch * size_2d.block_height; input_length = size_2d.input_pitch * size_2d.block_height;
// TODO(DrChat): Remove this, leave it up to the backend.
size_2d.output_width = block_width * format->block_width;
size_2d.output_height = block_height * format->block_height;
size_2d.output_pitch = block_width * bytes_per_block;
output_length = size_2d.output_pitch * block_height;
} }
void TextureInfo::CalculateTextureSizesCube(uint32_t width, uint32_t height, void TextureInfo::CalculateTextureSizesCube(uint32_t width, uint32_t height,
@ -235,14 +212,6 @@ void TextureInfo::CalculateTextureSizesCube(uint32_t width, uint32_t height,
size_cube.input_face_length = size_cube.input_pitch * size_cube.block_height; size_cube.input_face_length = size_cube.input_pitch * size_cube.block_height;
input_length = size_cube.input_face_length * 6; input_length = size_cube.input_face_length * 6;
// TODO(DrChat): Remove this, leave it up to the backend.
size_cube.output_width = block_width * format->block_width;
size_cube.output_height = block_height * format->block_height;
size_cube.output_pitch = block_width * bytes_per_block;
size_cube.output_face_length = size_cube.output_pitch * block_height;
output_length = size_cube.output_face_length * 6;
} }
bool TextureInfo::GetPackedTileOffset(const TextureInfo& texture_info, bool TextureInfo::GetPackedTileOffset(const TextureInfo& texture_info,

View File

@ -256,7 +256,6 @@ struct TextureInfo {
bool is_tiled; bool is_tiled;
bool has_packed_mips; bool has_packed_mips;
uint32_t input_length; uint32_t input_length;
uint32_t output_length;
const FormatInfo* format_info() const { const FormatInfo* format_info() const {
return FormatInfo::Get(static_cast<uint32_t>(texture_format)); return FormatInfo::Get(static_cast<uint32_t>(texture_format));
@ -272,10 +271,6 @@ struct TextureInfo {
uint32_t block_width; // # of horizontal blocks uint32_t block_width; // # of horizontal blocks
uint32_t input_width; // pixel pitch uint32_t input_width; // pixel pitch
uint32_t input_pitch; // pitch in bytes uint32_t input_pitch; // pitch in bytes
// DEPRECATED: Do not use.
uint32_t output_width;
uint32_t output_pitch;
} size_1d; } size_1d;
struct { struct {
uint32_t logical_width; uint32_t logical_width;
@ -285,11 +280,6 @@ struct TextureInfo {
uint32_t input_width; // pixel pitch uint32_t input_width; // pixel pitch
uint32_t input_height; // pixel height uint32_t input_height; // pixel height
uint32_t input_pitch; // pitch in bytes uint32_t input_pitch; // pitch in bytes
// DEPRECATED: Do not use.
uint32_t output_width;
uint32_t output_height;
uint32_t output_pitch;
} size_2d; } size_2d;
struct { struct {
} size_3d; } size_3d;
@ -302,12 +292,6 @@ struct TextureInfo {
uint32_t input_height; // pixel height uint32_t input_height; // pixel height
uint32_t input_pitch; // pitch in bytes uint32_t input_pitch; // pitch in bytes
uint32_t input_face_length; // pitch of face in bytes uint32_t input_face_length; // pitch of face in bytes
// DEPRECATED: Do not use.
uint32_t output_width;
uint32_t output_height;
uint32_t output_pitch;
uint32_t output_face_length;
} size_cube; } size_cube;
}; };

View File

@ -98,7 +98,7 @@ static const TextureConfig texture_configs[64] = {
{TextureFormat::k_32_32_32_FLOAT, VK_FORMAT_R32G32B32_SFLOAT}, {TextureFormat::k_32_32_32_FLOAT, VK_FORMAT_R32G32B32_SFLOAT},
{TextureFormat::k_DXT3A, VK_FORMAT_UNDEFINED}, {TextureFormat::k_DXT3A, VK_FORMAT_UNDEFINED},
{TextureFormat::k_DXT5A, VK_FORMAT_UNDEFINED}, {TextureFormat::k_DXT5A, VK_FORMAT_UNDEFINED},
{TextureFormat::k_CTX1, VK_FORMAT_UNDEFINED}, {TextureFormat::k_CTX1, VK_FORMAT_R8G8_UINT},
{TextureFormat::k_DXT3A_AS_1_1_1_1, VK_FORMAT_UNDEFINED}, {TextureFormat::k_DXT3A_AS_1_1_1_1, VK_FORMAT_UNDEFINED},
{TextureFormat::kUnknown, VK_FORMAT_UNDEFINED}, {TextureFormat::kUnknown, VK_FORMAT_UNDEFINED},
{TextureFormat::kUnknown, VK_FORMAT_UNDEFINED}, {TextureFormat::kUnknown, VK_FORMAT_UNDEFINED},
@ -545,29 +545,7 @@ TextureCache::Texture* TextureCache::Demand(const TextureInfo& texture_info,
trace_writer_->WriteMemoryRead(texture_info.guest_address, trace_writer_->WriteMemoryRead(texture_info.guest_address,
texture_info.input_length); texture_info.input_length);
bool uploaded = false; if (!UploadTexture(command_buffer, completion_fence, texture, texture_info)) {
switch (texture_info.dimension) {
case Dimension::k1D: {
uploaded = UploadTexture1D(command_buffer, completion_fence, texture,
texture_info);
} break;
case Dimension::k2D: {
uploaded = UploadTexture2D(command_buffer, completion_fence, texture,
texture_info);
} break;
case Dimension::kCube: {
uploaded = UploadTextureCube(command_buffer, completion_fence, texture,
texture_info);
} break;
default:
assert_unhandled_case(texture_info.dimension);
break;
}
if (!uploaded) {
FreeTexture(texture); FreeTexture(texture);
return nullptr; return nullptr;
} }
@ -578,7 +556,7 @@ TextureCache::Texture* TextureCache::Demand(const TextureInfo& texture_info,
VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
xe::format_string( xe::format_string(
"0x%.8X - 0x%.8X", texture_info.guest_address, "0x%.8X - 0x%.8X", texture_info.guest_address,
texture_info.guest_address + texture_info.output_length)); texture_info.guest_address + texture_info.input_length));
// Okay. Now that the texture is uploaded from system memory, put a writewatch // Okay. Now that the texture is uploaded from system memory, put a writewatch
// on it to tell us if it's been modified from the guest. // on it to tell us if it's been modified from the guest.
@ -912,21 +890,33 @@ void TextureCache::FlushPendingCommands(VkCommandBuffer command_buffer,
vkBeginCommandBuffer(command_buffer, &begin_info); vkBeginCommandBuffer(command_buffer, &begin_info);
} }
void TextureCache::ConvertTexture1D(uint8_t* dest, const TextureInfo& src) { bool TextureCache::ConvertTexture1D(uint8_t* dest,
VkBufferImageCopy* copy_region,
const TextureInfo& src) {
void* host_address = memory_->TranslatePhysical(src.guest_address); void* host_address = memory_->TranslatePhysical(src.guest_address);
if (src.texture_format == TextureFormat::k_CTX1) {
assert_always();
} else {
if (!src.is_tiled) { if (!src.is_tiled) {
if (src.size_1d.input_pitch == src.size_1d.output_pitch) { TextureSwap(src.endianness, dest, host_address, src.input_length);
TextureSwap(src.endianness, dest, host_address, src.output_length); copy_region->bufferRowLength = src.size_1d.input_width;
copy_region->bufferImageHeight = 1;
copy_region->imageExtent = {src.size_1d.logical_width, 1, 1};
return true;
} else { } else {
assert_always(); assert_always();
} }
} else {
assert_always();
} }
return false;
} }
void TextureCache::ConvertTexture2D(uint8_t* dest, const TextureInfo& src) { bool TextureCache::ConvertTexture2D(uint8_t* dest,
VkBufferImageCopy* copy_region,
const TextureInfo& src) {
void* host_address = memory_->TranslatePhysical(src.guest_address); void* host_address = memory_->TranslatePhysical(src.guest_address);
if (src.texture_format == TextureFormat::k_CTX1) {
assert_always();
} else {
if (!src.is_tiled) { if (!src.is_tiled) {
uint32_t offset_x, offset_y; uint32_t offset_x, offset_y;
if (src.has_packed_mips && if (src.has_packed_mips &&
@ -938,36 +928,31 @@ void TextureCache::ConvertTexture2D(uint8_t* dest, const TextureInfo& src) {
const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address); const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address);
src_mem += offset_y * src.size_2d.input_pitch; src_mem += offset_y * src.size_2d.input_pitch;
src_mem += offset_x * bytes_per_block; src_mem += offset_x * bytes_per_block;
uint32_t pitch =
std::min(src.size_2d.input_pitch, src.size_2d.output_pitch);
for (uint32_t y = 0; for (uint32_t y = 0;
y < std::min(src.size_2d.block_height, src.size_2d.logical_height); y < std::min(src.size_2d.block_height, src.size_2d.logical_height);
y++) { y++) {
TextureSwap(src.endianness, dest, src_mem, pitch); TextureSwap(src.endianness, dest, src_mem, src.size_2d.input_pitch);
src_mem += src.size_2d.input_pitch; src_mem += src.size_2d.input_pitch;
dest += src.size_2d.output_pitch; dest += src.size_2d.input_pitch;
} }
} else if (src.size_2d.input_pitch == src.size_2d.output_pitch) { copy_region->bufferRowLength = src.size_2d.input_width;
// Fast path copy entire image. copy_region->bufferImageHeight = src.size_2d.input_height;
TextureSwap(src.endianness, dest, host_address, src.output_length); copy_region->imageExtent = {src.size_2d.logical_width,
src.size_2d.logical_height, 1};
return true;
} else { } else {
// Slow path copy row-by-row because strides differ. // Fast path copy entire image.
// UNPACK_ROW_LENGTH only works for uncompressed images, and likely does TextureSwap(src.endianness, dest, host_address, src.input_length);
// this exact thing under the covers, so we just always do it here. copy_region->bufferRowLength = src.size_2d.input_width;
const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address); copy_region->bufferImageHeight = src.size_2d.input_height;
uint32_t pitch = copy_region->imageExtent = {src.size_2d.logical_width,
std::min(src.size_2d.input_pitch, src.size_2d.output_pitch); src.size_2d.logical_height, 1};
for (uint32_t y = 0; return true;
y < std::min(src.size_2d.block_height, src.size_2d.logical_height);
y++) {
TextureSwap(src.endianness, dest, src_mem, pitch);
src_mem += src.size_2d.input_pitch;
dest += src.size_2d.output_pitch;
}
} }
} else { } else {
// Untile image. // Untile image.
// We could do this in a shader to speed things up, as this is pretty slow. // We could do this in a shader to speed things up, as this is pretty
// slow.
// TODO(benvanik): optimize this inner loop (or work by tiles). // TODO(benvanik): optimize this inner loop (or work by tiles).
const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address); const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address);
@ -997,37 +982,40 @@ void TextureCache::ConvertTexture2D(uint8_t* dest, const TextureInfo& src) {
log2_bpp; log2_bpp;
TextureSwap(src.endianness, dest + output_offset, TextureSwap(src.endianness, dest + output_offset,
src_mem + input_offset * bytes_per_block, bytes_per_block); src_mem + input_offset * bytes_per_block,
bytes_per_block);
output_offset += bytes_per_block; output_offset += bytes_per_block;
} }
output_row_offset += src.size_2d.output_pitch; output_row_offset += src.size_2d.input_pitch;
}
}
} }
void TextureCache::ConvertTextureCube(uint8_t* dest, const TextureInfo& src) { copy_region->bufferRowLength = src.size_2d.input_width;
copy_region->bufferImageHeight = src.size_2d.input_height;
copy_region->imageExtent = {src.size_2d.logical_width,
src.size_2d.logical_height, 1};
return true;
}
}
return false;
}
bool TextureCache::ConvertTextureCube(uint8_t* dest,
VkBufferImageCopy* copy_region,
const TextureInfo& src) {
void* host_address = memory_->TranslatePhysical(src.guest_address); void* host_address = memory_->TranslatePhysical(src.guest_address);
if (!src.is_tiled) { if (src.texture_format == TextureFormat::k_CTX1) {
if (src.size_cube.input_pitch == src.size_cube.output_pitch) { assert_always();
// Fast path copy entire image.
TextureSwap(src.endianness, dest, host_address, src.output_length);
} else { } else {
// Slow path copy row-by-row because strides differ. if (!src.is_tiled) {
// UNPACK_ROW_LENGTH only works for uncompressed images, and likely does // Fast path copy entire image.
// this exact thing under the covers, so we just always do it here. TextureSwap(src.endianness, dest, host_address, src.input_length);
const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address); copy_region->bufferRowLength = src.size_cube.input_width;
for (int face = 0; face < 6; ++face) { copy_region->bufferImageHeight = src.size_cube.input_height;
uint32_t pitch = copy_region->imageExtent = {src.size_cube.logical_width,
std::min(src.size_cube.input_pitch, src.size_cube.output_pitch); src.size_cube.logical_height, 6};
for (uint32_t y = 0; y < src.size_cube.block_height; y++) { return true;
TextureSwap(src.endianness, dest, src_mem, pitch);
src_mem += src.size_cube.input_pitch;
dest += src.size_cube.output_pitch;
}
}
}
} else { } else {
// TODO(benvanik): optimize this inner loop (or work by tiles). // TODO(benvanik): optimize this inner loop (or work by tiles).
const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address); const uint8_t* src_mem = reinterpret_cast<const uint8_t*>(host_address);
@ -1043,10 +1031,11 @@ void TextureCache::ConvertTextureCube(uint8_t* dest, const TextureInfo& src) {
for (int face = 0; face < 6; ++face) { for (int face = 0; face < 6; ++face) {
for (uint32_t y = 0, output_base_offset = 0; for (uint32_t y = 0, output_base_offset = 0;
y < src.size_cube.block_height; y < src.size_cube.block_height;
y++, output_base_offset += src.size_cube.output_pitch) { y++, output_base_offset += src.size_cube.input_pitch) {
auto input_base_offset = TextureInfo::TiledOffset2DOuter( auto input_base_offset = TextureInfo::TiledOffset2DOuter(
offset_y + y, offset_y + y,
(src.size_cube.input_width / src.format_info()->block_width), bpp); (src.size_cube.input_width / src.format_info()->block_width),
bpp);
for (uint32_t x = 0, output_offset = output_base_offset; for (uint32_t x = 0, output_offset = output_base_offset;
x < src.size_cube.block_width; x < src.size_cube.block_width;
x++, output_offset += bytes_per_block) { x++, output_offset += bytes_per_block) {
@ -1060,101 +1049,71 @@ void TextureCache::ConvertTextureCube(uint8_t* dest, const TextureInfo& src) {
} }
} }
src_mem += src.size_cube.input_face_length; src_mem += src.size_cube.input_face_length;
dest += src.size_cube.output_face_length; dest += src.size_cube.input_face_length;
}
}
} }
bool TextureCache::UploadTexture1D(VkCommandBuffer command_buffer, copy_region->bufferRowLength = src.size_cube.input_width;
VkFence completion_fence, Texture* dest, copy_region->bufferImageHeight = src.size_cube.input_height;
const TextureInfo& src) { copy_region->imageExtent = {src.size_cube.logical_width,
#if FINE_GRAINED_DRAW_SCOPES src.size_cube.logical_height, 6};
SCOPE_profile_cpu_f("gpu");
#endif // FINE_GRAINED_DRAW_SCOPES
assert_true(src.dimension == Dimension::k1D);
size_t unpack_length = src.output_length;
if (!staging_buffer_.CanAcquire(unpack_length)) {
// Need to have unique memory for every upload for at least one frame. If we
// run out of memory, we need to flush all queued upload commands to the
// GPU.
FlushPendingCommands(command_buffer, completion_fence);
// Uploads have been flushed. Continue.
if (!staging_buffer_.CanAcquire(unpack_length)) {
// The staging buffer isn't big enough to hold this texture.
XELOGE(
"TextureCache staging buffer is too small! (uploading 0x%.8X bytes)",
unpack_length);
assert_always();
return false;
}
}
// Grab some temporary memory for staging.
auto alloc = staging_buffer_.Acquire(unpack_length, completion_fence);
assert_not_null(alloc);
// Upload texture into GPU memory.
// TODO: If the GPU supports it, we can submit a compute batch to convert the
// texture and copy it to its destination. Otherwise, fallback to conversion
// on the CPU.
ConvertTexture1D(reinterpret_cast<uint8_t*>(alloc->host_ptr), src);
staging_buffer_.Flush(alloc);
// Transition the texture into a transfer destination layout.
VkImageMemoryBarrier barrier;
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.pNext = nullptr;
barrier.srcAccessMask = 0;
barrier.dstAccessMask =
VK_ACCESS_TRANSFER_WRITE_BIT | VK_ACCESS_HOST_WRITE_BIT;
barrier.oldLayout = dest->image_layout;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = dest->image;
barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, nullptr, 0,
nullptr, 1, &barrier);
// Now move the converted texture into the destination.
VkBufferImageCopy copy_region;
copy_region.bufferOffset = alloc->offset;
copy_region.bufferRowLength = src.size_1d.output_width;
copy_region.bufferImageHeight = 1;
copy_region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copy_region.imageOffset = {0, 0, 0};
copy_region.imageExtent = {src.size_1d.output_width, 1, 1};
vkCmdCopyBufferToImage(command_buffer, staging_buffer_.gpu_buffer(),
dest->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&copy_region);
// Now transition the texture into a shader readonly source.
barrier.srcAccessMask = barrier.dstAccessMask;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.oldLayout = barrier.newLayout;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, nullptr, 0,
nullptr, 1, &barrier);
dest->image_layout = barrier.newLayout;
return true; return true;
} }
}
return false;
}
bool TextureCache::UploadTexture2D(VkCommandBuffer command_buffer, bool TextureCache::ConvertTexture(uint8_t* dest, VkBufferImageCopy* copy_region,
const TextureInfo& src) {
switch (src.dimension) {
case Dimension::k1D:
return ConvertTexture1D(dest, copy_region, src);
case Dimension::k2D:
return ConvertTexture2D(dest, copy_region, src);
case Dimension::kCube:
return ConvertTextureCube(dest, copy_region, src);
}
return false;
}
bool TextureCache::ComputeTextureStorage(size_t* output_length,
const TextureInfo& src) {
if (src.texture_format == TextureFormat::k_CTX1) {
switch (src.dimension) {
case Dimension::k1D: {
*output_length = src.size_1d.logical_width * 2;
return true;
}
case Dimension::k2D: {
*output_length =
src.size_2d.logical_width * src.size_2d.logical_height * 2;
return true;
}
case Dimension::kCube: {
*output_length =
src.size_cube.logical_width * src.size_cube.logical_height * 2 * 6;
return true;
}
}
return false;
} else {
*output_length = src.input_length;
return true;
}
}
bool TextureCache::UploadTexture(VkCommandBuffer command_buffer,
VkFence completion_fence, Texture* dest, VkFence completion_fence, Texture* dest,
const TextureInfo& src) { const TextureInfo& src) {
#if FINE_GRAINED_DRAW_SCOPES #if FINE_GRAINED_DRAW_SCOPES
SCOPE_profile_cpu_f("gpu"); SCOPE_profile_cpu_f("gpu");
#endif // FINE_GRAINED_DRAW_SCOPES #endif // FINE_GRAINED_DRAW_SCOPES
assert_true(src.dimension == Dimension::k2D); size_t unpack_length;
if (!ComputeTextureStorage(&unpack_length, src)) {
XELOGW("Failed to compute texture storage");
return false;
}
size_t unpack_length = src.output_length;
if (!staging_buffer_.CanAcquire(unpack_length)) { if (!staging_buffer_.CanAcquire(unpack_length)) {
// Need to have unique memory for every upload for at least one frame. If we // Need to have unique memory for every upload for at least one frame. If we
// run out of memory, we need to flush all queued upload commands to the // run out of memory, we need to flush all queued upload commands to the
@ -1180,15 +1139,22 @@ bool TextureCache::UploadTexture2D(VkCommandBuffer command_buffer,
// TODO: If the GPU supports it, we can submit a compute batch to convert the // TODO: If the GPU supports it, we can submit a compute batch to convert the
// texture and copy it to its destination. Otherwise, fallback to conversion // texture and copy it to its destination. Otherwise, fallback to conversion
// on the CPU. // on the CPU.
ConvertTexture2D(reinterpret_cast<uint8_t*>(alloc->host_ptr), src); VkBufferImageCopy copy_region;
staging_buffer_.Flush(alloc); if (!ConvertTexture(reinterpret_cast<uint8_t*>(alloc->host_ptr), &copy_region,
src)) {
XELOGW("Failed to convert texture");
return false;
}
// Transition the texture into a transfer destination layout. // Transition the texture into a transfer destination layout.
VkImageMemoryBarrier barrier; VkImageMemoryBarrier barrier;
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.pNext = nullptr; barrier.pNext = nullptr;
barrier.srcAccessMask = 0; barrier.srcAccessMask = 0;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; // TODO(gibbed): is this correct? 1D+cube had VK_ACCESS_HOST_WRITE_BIT, but
// not 2D.
barrier.dstAccessMask =
VK_ACCESS_TRANSFER_WRITE_BIT | VK_ACCESS_HOST_WRITE_BIT;
barrier.oldLayout = dest->image_layout; barrier.oldLayout = dest->image_layout;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
@ -1207,91 +1173,9 @@ bool TextureCache::UploadTexture2D(VkCommandBuffer command_buffer,
nullptr, 1, &barrier); nullptr, 1, &barrier);
// Now move the converted texture into the destination. // Now move the converted texture into the destination.
VkBufferImageCopy copy_region;
copy_region.bufferOffset = alloc->offset; copy_region.bufferOffset = alloc->offset;
copy_region.bufferRowLength = src.size_2d.output_width;
copy_region.bufferImageHeight = src.size_2d.output_height;
copy_region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}; copy_region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copy_region.imageOffset = {0, 0, 0}; copy_region.imageOffset = {0, 0, 0};
copy_region.imageExtent = {src.size_2d.output_width,
src.size_2d.output_height, 1};
vkCmdCopyBufferToImage(command_buffer, staging_buffer_.gpu_buffer(),
dest->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&copy_region);
// Now transition the texture into a shader readonly source.
barrier.srcAccessMask = barrier.dstAccessMask;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.oldLayout = barrier.newLayout;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, nullptr, 0,
nullptr, 1, &barrier);
dest->image_layout = barrier.newLayout;
return true;
}
bool TextureCache::UploadTextureCube(VkCommandBuffer command_buffer,
VkFence completion_fence, Texture* dest,
const TextureInfo& src) {
assert_true(src.dimension == Dimension::kCube);
size_t unpack_length = src.output_length;
if (!staging_buffer_.CanAcquire(unpack_length)) {
// Need to have unique memory for every upload for at least one frame. If we
// run out of memory, we need to flush all queued upload commands to the
// GPU.
FlushPendingCommands(command_buffer, completion_fence);
// Uploads have been flushed. Continue.
if (!staging_buffer_.CanAcquire(unpack_length)) {
// The staging buffer isn't big enough to hold this texture.
XELOGE(
"TextureCache staging buffer is too small! (uploading 0x%.8X bytes)",
unpack_length);
assert_always();
return false;
}
}
// Grab some temporary memory for staging.
auto alloc = staging_buffer_.Acquire(unpack_length, completion_fence);
assert_not_null(alloc);
// Upload texture into GPU memory.
// TODO: If the GPU supports it, we can submit a compute batch to convert the
// texture and copy it to its destination. Otherwise, fallback to conversion
// on the CPU.
ConvertTextureCube(reinterpret_cast<uint8_t*>(alloc->host_ptr), src);
staging_buffer_.Flush(alloc);
// Transition the texture into a transfer destination layout.
VkImageMemoryBarrier barrier;
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.pNext = nullptr;
barrier.srcAccessMask = 0;
barrier.dstAccessMask =
VK_ACCESS_TRANSFER_WRITE_BIT | VK_ACCESS_HOST_WRITE_BIT;
barrier.oldLayout = dest->image_layout;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = dest->image;
barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0, nullptr, 0,
nullptr, 1, &barrier);
// Now move the converted texture into the destination.
VkBufferImageCopy copy_region;
copy_region.bufferOffset = alloc->offset;
copy_region.bufferRowLength = src.size_cube.output_width;
copy_region.bufferImageHeight = src.size_cube.output_height;
copy_region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copy_region.imageOffset = {0, 0, 0};
copy_region.imageExtent = {src.size_cube.output_width,
src.size_cube.output_height, 6};
vkCmdCopyBufferToImage(command_buffer, staging_buffer_.gpu_buffer(), vkCmdCopyBufferToImage(command_buffer, staging_buffer_.gpu_buffer(),
dest->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, dest->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
&copy_region); &copy_region);

View File

@ -142,23 +142,22 @@ class TextureCache {
void FlushPendingCommands(VkCommandBuffer command_buffer, void FlushPendingCommands(VkCommandBuffer command_buffer,
VkFence completion_fence); VkFence completion_fence);
void ConvertTexture1D(uint8_t* dest, const TextureInfo& src); bool ConvertTexture1D(uint8_t* dest, VkBufferImageCopy* copy_region,
void ConvertTexture2D(uint8_t* dest, const TextureInfo& src); const TextureInfo& src);
void ConvertTextureCube(uint8_t* dest, const TextureInfo& src); bool ConvertTexture2D(uint8_t* dest, VkBufferImageCopy* copy_region,
const TextureInfo& src);
bool ConvertTextureCube(uint8_t* dest, VkBufferImageCopy* copy_region,
const TextureInfo& src);
bool ConvertTexture(uint8_t* dest, VkBufferImageCopy* copy_region,
const TextureInfo& src);
bool ComputeTextureStorage(size_t* output_length, const TextureInfo& src);
// Queues commands to upload a texture from system memory, applying any // Queues commands to upload a texture from system memory, applying any
// conversions necessary. This may flush the command buffer to the GPU if we // conversions necessary. This may flush the command buffer to the GPU if we
// run out of staging memory. // run out of staging memory.
bool UploadTexture1D(VkCommandBuffer command_buffer, VkFence completion_fence, bool UploadTexture(VkCommandBuffer command_buffer, VkFence completion_fence,
Texture* dest, const TextureInfo& src); Texture* dest, const TextureInfo& src);
bool UploadTexture2D(VkCommandBuffer command_buffer, VkFence completion_fence,
Texture* dest, const TextureInfo& src);
bool UploadTextureCube(VkCommandBuffer command_buffer,
VkFence completion_fence, Texture* dest,
const TextureInfo& src);
void HashTextureBindings(XXH64_state_t* hash_state, uint32_t& fetch_mask, void HashTextureBindings(XXH64_state_t* hash_state, uint32_t& fetch_mask,
const std::vector<Shader::TextureBinding>& bindings); const std::vector<Shader::TextureBinding>& bindings);
bool SetupTextureBindings( bool SetupTextureBindings(