Merge pull request #388 from DrChat/elf_modules

(Experimental) ELF module support
This commit is contained in:
Ben Vanik 2015-08-16 07:55:28 -07:00
commit ae183f918f
5 changed files with 302 additions and 34 deletions

144
src/xenia/cpu/elf_module.cc Normal file
View File

@ -0,0 +1,144 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2015 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include "xenia/cpu/elf_module.h"
#include <memory>
#include "xenia/base/byte_order.h"
#include "xenia/base/logging.h"
#include "xenia/cpu/processor.h"
namespace xe {
namespace cpu {
ElfModule::ElfModule(Processor* processor, kernel::KernelState* kernel_state)
: Module(processor), kernel_state_(kernel_state) {}
ElfModule::~ElfModule() {}
// ELF structures
struct elf32_ehdr {
uint8_t e_ident[16];
xe::be<uint16_t> e_type;
xe::be<uint16_t> e_machine;
xe::be<uint32_t> e_version;
xe::be<uint32_t> e_entry;
xe::be<uint32_t> e_phoff;
xe::be<uint32_t> e_shoff;
xe::be<uint32_t> e_flags;
xe::be<uint16_t> e_ehsize;
xe::be<uint16_t> e_phentsize;
xe::be<uint16_t> e_phnum;
xe::be<uint16_t> e_shentsize;
xe::be<uint16_t> e_shnum;
xe::be<uint16_t> e_shtrndx;
};
struct elf32_phdr {
xe::be<uint32_t> p_type;
xe::be<uint32_t> p_offset;
xe::be<uint32_t> p_vaddr;
xe::be<uint32_t> p_paddr;
xe::be<uint32_t> p_filesz;
xe::be<uint32_t> p_memsz;
xe::be<uint32_t> p_flags;
xe::be<uint32_t> p_align;
};
bool ElfModule::Load(const std::string& name, const std::string& path,
const void* elf_addr, size_t elf_length) {
name_ = name;
path_ = path;
uint8_t* pelf = (uint8_t*)elf_addr;
elf32_ehdr* hdr = (elf32_ehdr*)(pelf + 0x0);
if (hdr->e_ident[0] != 0x7F || hdr->e_ident[1] != 'E' ||
hdr->e_ident[2] != 'L' || hdr->e_ident[3] != 'F') {
// Not an ELF file!
return false;
}
assert_true(hdr->e_ident[4] == 1); // 32bit
if (hdr->e_type != 2 /* ET_EXEC */) {
// Not executable (shared objects not supported yet)
XELOGE("ELF: Could not load ELF because it isn't executable!");
return false;
}
if (hdr->e_machine != 20 /* EM_PPC */) {
// Not a PPC ELF!
XELOGE(
"ELF: Could not load ELF because target machine is not PPC! (target: "
"%d)",
hdr->e_machine);
return false;
}
// Parse LOAD program headers and load into memory.
if (!hdr->e_phoff) {
XELOGE("ELF: File doesn't have a program header!");
return false;
}
if (!hdr->e_entry) {
XELOGE("ELF: Executable has no entry point!");
return false;
}
// Entry point virtual address
entry_point_ = hdr->e_entry;
// Copy the ELF header
elf_header_mem_.resize(hdr->e_ehsize);
std::memcpy(elf_header_mem_.data(), hdr, hdr->e_ehsize);
assert_true(hdr->e_phentsize == sizeof(elf32_phdr));
elf32_phdr* phdr = (elf32_phdr*)(pelf + hdr->e_phoff);
for (uint32_t i = 0; i < hdr->e_phnum; i++) {
if (phdr[i].p_type == 1 /* PT_LOAD */) {
// Allocate and copy into memory.
// Base address @ 0x80000000
uint32_t virtual_addr = phdr[i].p_vaddr < 0x80000000
? phdr[i].p_vaddr + 0x80000000
: phdr[i].p_vaddr;
if (!memory()
->LookupHeap(virtual_addr)
->AllocFixed(
virtual_addr, phdr[i].p_memsz, phdr[i].p_align,
xe::kMemoryAllocationReserve | xe::kMemoryAllocationCommit,
xe::kMemoryProtectRead | xe::kMemoryProtectWrite)) {
XELOGE("ELF: Could not allocate memory!");
}
auto p = memory()->TranslateVirtual(virtual_addr);
std::memset(p, 0, phdr[i].p_memsz);
std::memcpy(p, pelf + phdr[i].p_offset,
std::min(phdr[i].p_memsz, phdr[i].p_filesz));
// Notify backend about executable code.
if (phdr[i].p_flags & 0x1 /* PF_X */) {
processor_->backend()->CommitExecutableRange(
virtual_addr, virtual_addr + phdr[i].p_memsz);
}
}
}
return true;
}
std::unique_ptr<Function> ElfModule::CreateFunction(uint32_t address) {
return std::unique_ptr<Function>(
processor_->backend()->CreateGuestFunction(this, address));
}
} // namespace cpu
} // namespace xe

View File

@ -0,0 +1,55 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2015 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#ifndef XENIA_CPU_ELF_MODULE_H_
#define XENIA_CPU_ELF_MODULE_H_
#include <vector>
#include "xenia/cpu/module.h"
namespace xe {
namespace kernel {
class KernelState;
} // namespace kernel
namespace cpu {
// ELF module: Used to load libxenon executables.
class ElfModule : public xe::cpu::Module {
public:
ElfModule(Processor* processor, kernel::KernelState* kernel_state);
virtual ~ElfModule();
bool loaded() const { return loaded_; }
uint32_t entry_point() const { return entry_point_; }
const std::string& name() const { return name_; }
const std::string& path() const { return path_; }
bool Load(const std::string& name, const std::string& path,
const void* elf_addr, size_t elf_length);
bool Unload();
protected:
std::unique_ptr<Function> CreateFunction(uint32_t address) override;
private:
std::string name_;
std::string path_;
kernel::KernelState* kernel_state_;
bool loaded_;
std::vector<uint8_t> elf_header_mem_; // Holds the ELF header
uint32_t entry_point_;
};
} // namespace cpu
} // namespace xe
#endif // XENIA_CPU_ELF_MODULE_H_

View File

@ -187,7 +187,8 @@ X_STATUS Emulator::LaunchPath(std::wstring path) {
if (last_dot == std::wstring::npos) { if (last_dot == std::wstring::npos) {
// Likely an STFS container. // Likely an STFS container.
return LaunchStfsContainer(path); return LaunchStfsContainer(path);
} else if (path.substr(last_dot) == L".xex") { } else if (path.substr(last_dot) == L".xex" ||
path.substr(last_dot) == L".elf") {
// Treat as a naked xex file. // Treat as a naked xex file.
return LaunchXexFile(path); return LaunchXexFile(path);
} else { } else {

View File

@ -12,6 +12,7 @@
#include <vector> #include <vector>
#include "xenia/base/logging.h" #include "xenia/base/logging.h"
#include "xenia/cpu/elf_module.h"
#include "xenia/cpu/processor.h" #include "xenia/cpu/processor.h"
#include "xenia/cpu/xex_module.h" #include "xenia/cpu/xex_module.h"
#include "xenia/emulator.h" #include "xenia/emulator.h"
@ -45,8 +46,16 @@ X_STATUS XUserModule::LoadFromFile(std::string path) {
return result; return result;
} }
ModuleFormat fmt;
auto magic = *(xe::be<uint32_t>*)mmap->data();
if (magic == 'XEX2') {
fmt = kModuleFormatXex;
} else if (magic == 0x7F454C46 /* 0x7F 'ELF' */) {
fmt = kModuleFormatElf;
}
// Load the module. // Load the module.
result = LoadFromMemory(mmap->data(), mmap->size()); result = LoadFromMemory(mmap->data(), mmap->size(), fmt);
} else { } else {
std::vector<uint8_t> buffer(fs_entry->size()); std::vector<uint8_t> buffer(fs_entry->size());
@ -66,45 +75,74 @@ X_STATUS XUserModule::LoadFromFile(std::string path) {
return result; return result;
} }
ModuleFormat fmt;
uint32_t magic = *(uint32_t*)buffer.data();
if (magic == 'XEX2') {
fmt = kModuleFormatXex;
} else if (magic == 0x7F454C46 /* 0x7F 'ELF' */) {
fmt = kModuleFormatElf;
}
// Load the module. // Load the module.
result = LoadFromMemory(buffer.data(), bytes_read); result = LoadFromMemory(buffer.data(), bytes_read, fmt);
} }
return result; return result;
} }
X_STATUS XUserModule::LoadFromMemory(const void* addr, const size_t length) { X_STATUS XUserModule::LoadFromMemory(const void* addr, const size_t length,
ModuleFormat module_format) {
auto processor = kernel_state()->processor(); auto processor = kernel_state()->processor();
module_format_ = module_format;
// Prepare the module for execution. if (module_format == kModuleFormatXex) {
// Runtime takes ownership. // Prepare the module for execution.
auto xex_module = std::make_unique<cpu::XexModule>(processor, kernel_state()); // Runtime takes ownership.
if (!xex_module->Load(name_, path_, addr, length)) { auto xex_module =
return X_STATUS_UNSUCCESSFUL; std::make_unique<cpu::XexModule>(processor, kernel_state());
if (!xex_module->Load(name_, path_, addr, length)) {
return X_STATUS_UNSUCCESSFUL;
}
processor_module_ = xex_module.get();
if (!processor->AddModule(std::move(xex_module))) {
return X_STATUS_UNSUCCESSFUL;
}
// Copy the xex2 header into guest memory.
const xex2_header* header = this->xex_module()->xex_header();
guest_xex_header_ = memory()->SystemHeapAlloc(header->header_size);
uint8_t* xex_header_ptr = memory()->TranslateVirtual(guest_xex_header_);
std::memcpy(xex_header_ptr, header, header->header_size);
// Setup the loader data entry
auto ldr_data =
memory()->TranslateVirtual<X_LDR_DATA_TABLE_ENTRY*>(hmodule_ptr_);
ldr_data->dll_base = 0; // GetProcAddress will read this.
ldr_data->xex_header_base = guest_xex_header_;
// Cache some commonly used headers...
this->xex_module()->GetOptHeader(XEX_HEADER_ENTRY_POINT, &entry_point_);
this->xex_module()->GetOptHeader(XEX_HEADER_DEFAULT_STACK_SIZE,
&stack_size_);
dll_module_ = !!(header->module_flags & XEX_MODULE_DLL_MODULE);
} else if (module_format == kModuleFormatElf) {
auto elf_module =
std::make_unique<cpu::ElfModule>(processor, kernel_state());
if (!elf_module->Load(name_, path_, addr, length)) {
return X_STATUS_UNSUCCESSFUL;
}
entry_point_ = elf_module->entry_point();
stack_size_ = 1024 * 1024; // 1 MB
dll_module_ = false; // Hardcoded not a DLL (for now)
processor_module_ = elf_module.get();
if (!processor->AddModule(std::move(elf_module))) {
return X_STATUS_UNSUCCESSFUL;
}
} }
processor_module_ = xex_module.get();
if (!processor->AddModule(std::move(xex_module))) {
return X_STATUS_UNSUCCESSFUL;
}
// Copy the xex2 header into guest memory.
const xex2_header* header = this->xex_module()->xex_header();
guest_xex_header_ = memory()->SystemHeapAlloc(header->header_size);
uint8_t* xex_header_ptr = memory()->TranslateVirtual(guest_xex_header_);
std::memcpy(xex_header_ptr, header, header->header_size);
// Setup the loader data entry
auto ldr_data =
memory()->TranslateVirtual<X_LDR_DATA_TABLE_ENTRY*>(hmodule_ptr_);
ldr_data->dll_base = 0; // GetProcAddress will read this.
ldr_data->xex_header_base = guest_xex_header_;
// Cache some commonly used headers...
this->xex_module()->GetOptHeader(XEX_HEADER_ENTRY_POINT, &entry_point_);
this->xex_module()->GetOptHeader(XEX_HEADER_DEFAULT_STACK_SIZE, &stack_size_);
dll_module_ = !!(header->module_flags & XEX_MODULE_DLL_MODULE);
OnLoad(); OnLoad();
@ -160,6 +198,11 @@ X_STATUS XUserModule::GetSection(const char* name, uint32_t* out_section_data,
X_STATUS XUserModule::GetOptHeader(xe_xex2_header_keys key, void** out_ptr) { X_STATUS XUserModule::GetOptHeader(xe_xex2_header_keys key, void** out_ptr) {
assert_not_null(out_ptr); assert_not_null(out_ptr);
if (module_format_ == kModuleFormatElf) {
// Quick die.
return X_STATUS_UNSUCCESSFUL;
}
bool ret = xex_module()->GetOptHeader(key, out_ptr); bool ret = xex_module()->GetOptHeader(key, out_ptr);
if (!ret) { if (!ret) {
return X_STATUS_NOT_FOUND; return X_STATUS_NOT_FOUND;
@ -170,6 +213,11 @@ X_STATUS XUserModule::GetOptHeader(xe_xex2_header_keys key, void** out_ptr) {
X_STATUS XUserModule::GetOptHeader(xe_xex2_header_keys key, X_STATUS XUserModule::GetOptHeader(xe_xex2_header_keys key,
uint32_t* out_header_guest_ptr) { uint32_t* out_header_guest_ptr) {
if (module_format_ == kModuleFormatElf) {
// Quick die.
return X_STATUS_UNSUCCESSFUL;
}
auto header = auto header =
memory()->TranslateVirtual<const xex2_header*>(guest_xex_header_); memory()->TranslateVirtual<const xex2_header*>(guest_xex_header_);
if (!header) { if (!header) {
@ -255,6 +303,11 @@ X_STATUS XUserModule::Launch(uint32_t flags) {
} }
void XUserModule::Dump() { void XUserModule::Dump() {
if (module_format_ == kModuleFormatElf) {
// Quick die.
return;
}
xe::cpu::ExportResolver* export_resolver = xe::cpu::ExportResolver* export_resolver =
kernel_state_->emulator()->export_resolver(); kernel_state_->emulator()->export_resolver();
auto header = xex_header(); auto header = xex_header();

View File

@ -19,6 +19,11 @@
#include "xenia/xbox.h" #include "xenia/xbox.h"
namespace xe { namespace xe {
namespace cpu {
class XexModule;
class ElfModule;
} // namespace cpu
namespace kernel { namespace kernel {
class XUserModule : public XModule { class XUserModule : public XModule {
@ -26,10 +31,18 @@ class XUserModule : public XModule {
XUserModule(KernelState* kernel_state, const char* path); XUserModule(KernelState* kernel_state, const char* path);
~XUserModule() override; ~XUserModule() override;
enum ModuleFormat {
kModuleFormatUndefined = 0,
kModuleFormatXex,
kModuleFormatElf,
};
const xe::cpu::XexModule* xex_module() const { const xe::cpu::XexModule* xex_module() const {
assert_true(module_format_ == kModuleFormatXex);
return reinterpret_cast<xe::cpu::XexModule*>(processor_module_); return reinterpret_cast<xe::cpu::XexModule*>(processor_module_);
} }
xe::cpu::XexModule* xex_module() { xe::cpu::XexModule* xex_module() {
assert_true(module_format_ == kModuleFormatXex);
return reinterpret_cast<xe::cpu::XexModule*>(processor_module_); return reinterpret_cast<xe::cpu::XexModule*>(processor_module_);
} }
@ -41,7 +54,8 @@ class XUserModule : public XModule {
uint32_t stack_size() const { return stack_size_; } uint32_t stack_size() const { return stack_size_; }
X_STATUS LoadFromFile(std::string path); X_STATUS LoadFromFile(std::string path);
X_STATUS LoadFromMemory(const void* addr, const size_t length); X_STATUS LoadFromMemory(const void* addr, const size_t length,
ModuleFormat module_type);
X_STATUS Unload(); X_STATUS Unload();
uint32_t GetProcAddressByOrdinal(uint16_t ordinal) override; uint32_t GetProcAddressByOrdinal(uint16_t ordinal) override;
@ -70,7 +84,8 @@ class XUserModule : public XModule {
void Dump(); void Dump();
private: private:
uint32_t guest_xex_header_; uint32_t guest_xex_header_ = 0;
ModuleFormat module_format_ = kModuleFormatUndefined;
bool dll_module_; bool dll_module_;
uint32_t entry_point_; uint32_t entry_point_;