[x64] Factor out a lot of the opcode handling code

This commit is contained in:
Dr. Chat 2018-11-17 15:32:11 -06:00
parent 696c3cd439
commit 6861cce492
3 changed files with 651 additions and 613 deletions

View File

@ -0,0 +1,629 @@
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2018 Xenia Developers. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#ifndef XENIA_CPU_BACKEND_X64_X64_OP_H_
#define XENIA_CPU_BACKEND_X64_X64_OP_H_
#include "xenia/cpu/backend/x64/x64_emitter.h"
#include "xenia/cpu/hir/instr.h"
namespace xe {
namespace cpu {
namespace backend {
namespace x64 {
// TODO(benvanik): direct usings.
using namespace xe::cpu;
using namespace xe::cpu::hir;
using namespace Xbyak;
// Selects the right byte/word/etc from a vector. We need to flip logical
// indices (0,1,2,3,4,5,6,7,...) = (3,2,1,0,7,6,5,4,...)
#define VEC128_B(n) ((n) ^ 0x3)
#define VEC128_W(n) ((n) ^ 0x1)
#define VEC128_D(n) (n)
#define VEC128_F(n) (n)
enum KeyType {
KEY_TYPE_X = OPCODE_SIG_TYPE_X,
KEY_TYPE_L = OPCODE_SIG_TYPE_L,
KEY_TYPE_O = OPCODE_SIG_TYPE_O,
KEY_TYPE_S = OPCODE_SIG_TYPE_S,
KEY_TYPE_V_I8 = OPCODE_SIG_TYPE_V + INT8_TYPE,
KEY_TYPE_V_I16 = OPCODE_SIG_TYPE_V + INT16_TYPE,
KEY_TYPE_V_I32 = OPCODE_SIG_TYPE_V + INT32_TYPE,
KEY_TYPE_V_I64 = OPCODE_SIG_TYPE_V + INT64_TYPE,
KEY_TYPE_V_F32 = OPCODE_SIG_TYPE_V + FLOAT32_TYPE,
KEY_TYPE_V_F64 = OPCODE_SIG_TYPE_V + FLOAT64_TYPE,
KEY_TYPE_V_V128 = OPCODE_SIG_TYPE_V + VEC128_TYPE,
};
#pragma pack(push, 1)
union InstrKey {
struct {
uint32_t opcode : 8;
uint32_t dest : 5;
uint32_t src1 : 5;
uint32_t src2 : 5;
uint32_t src3 : 5;
uint32_t reserved : 4;
};
uint32_t value;
operator uint32_t() const { return value; }
InstrKey() : value(0) {}
InstrKey(uint32_t v) : value(v) {}
InstrKey(const Instr* i) : value(0) {
opcode = i->opcode->num;
uint32_t sig = i->opcode->signature;
dest =
GET_OPCODE_SIG_TYPE_DEST(sig) ? OPCODE_SIG_TYPE_V + i->dest->type : 0;
src1 = GET_OPCODE_SIG_TYPE_SRC1(sig);
if (src1 == OPCODE_SIG_TYPE_V) {
src1 += i->src1.value->type;
}
src2 = GET_OPCODE_SIG_TYPE_SRC2(sig);
if (src2 == OPCODE_SIG_TYPE_V) {
src2 += i->src2.value->type;
}
src3 = GET_OPCODE_SIG_TYPE_SRC3(sig);
if (src3 == OPCODE_SIG_TYPE_V) {
src3 += i->src3.value->type;
}
}
template <Opcode OPCODE, KeyType DEST = KEY_TYPE_X, KeyType SRC1 = KEY_TYPE_X,
KeyType SRC2 = KEY_TYPE_X, KeyType SRC3 = KEY_TYPE_X>
struct Construct {
static const uint32_t value =
(OPCODE) | (DEST << 8) | (SRC1 << 13) | (SRC2 << 18) | (SRC3 << 23);
};
};
#pragma pack(pop)
static_assert(sizeof(InstrKey) <= 4, "Key must be 4 bytes");
template <typename... Ts>
struct CombinedStruct;
template <>
struct CombinedStruct<> {};
template <typename T, typename... Ts>
struct CombinedStruct<T, Ts...> : T, CombinedStruct<Ts...> {};
struct OpBase {};
template <typename T, KeyType KEY_TYPE>
struct Op : OpBase {
static const KeyType key_type = KEY_TYPE;
};
struct VoidOp : Op<VoidOp, KEY_TYPE_X> {
protected:
template <typename T, KeyType KEY_TYPE>
friend struct Op;
template <hir::Opcode OPCODE, typename... Ts>
friend struct I;
void Load(const Instr::Op& op) {}
};
struct OffsetOp : Op<OffsetOp, KEY_TYPE_O> {
uint64_t value;
protected:
template <typename T, KeyType KEY_TYPE>
friend struct Op;
template <hir::Opcode OPCODE, typename... Ts>
friend struct I;
void Load(const Instr::Op& op) { this->value = op.offset; }
};
struct SymbolOp : Op<SymbolOp, KEY_TYPE_S> {
Function* value;
protected:
template <typename T, KeyType KEY_TYPE>
friend struct Op;
template <hir::Opcode OPCODE, typename... Ts>
friend struct I;
bool Load(const Instr::Op& op) {
this->value = op.symbol;
return true;
}
};
struct LabelOp : Op<LabelOp, KEY_TYPE_L> {
hir::Label* value;
protected:
template <typename T, KeyType KEY_TYPE>
friend struct Op;
template <hir::Opcode OPCODE, typename... Ts>
friend struct I;
void Load(const Instr::Op& op) { this->value = op.label; }
};
template <typename T, KeyType KEY_TYPE, typename REG_TYPE, typename CONST_TYPE>
struct ValueOp : Op<ValueOp<T, KEY_TYPE, REG_TYPE, CONST_TYPE>, KEY_TYPE> {
typedef REG_TYPE reg_type;
const Value* value;
bool is_constant;
virtual bool ConstantFitsIn32Reg() const { return true; }
const REG_TYPE& reg() const {
assert_true(!is_constant);
return reg_;
}
operator const REG_TYPE&() const { return reg(); }
bool IsEqual(const T& b) const {
if (is_constant && b.is_constant) {
return reinterpret_cast<const T*>(this)->constant() == b.constant();
} else if (!is_constant && !b.is_constant) {
return reg_.getIdx() == b.reg_.getIdx();
} else {
return false;
}
}
bool IsEqual(const Xbyak::Reg& b) const {
if (is_constant) {
return false;
} else if (!is_constant) {
return reg_.getIdx() == b.getIdx();
} else {
return false;
}
}
bool operator==(const T& b) const { return IsEqual(b); }
bool operator!=(const T& b) const { return !IsEqual(b); }
bool operator==(const Xbyak::Reg& b) const { return IsEqual(b); }
bool operator!=(const Xbyak::Reg& b) const { return !IsEqual(b); }
void Load(const Instr::Op& op) {
value = op.value;
is_constant = value->IsConstant();
if (!is_constant) {
X64Emitter::SetupReg(value, reg_);
}
}
protected:
REG_TYPE reg_;
};
struct I8Op : ValueOp<I8Op, KEY_TYPE_V_I8, Reg8, int8_t> {
typedef ValueOp<I8Op, KEY_TYPE_V_I8, Reg8, int8_t> BASE;
const int8_t constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.i8;
}
};
struct I16Op : ValueOp<I16Op, KEY_TYPE_V_I16, Reg16, int16_t> {
typedef ValueOp<I16Op, KEY_TYPE_V_I16, Reg16, int16_t> BASE;
const int16_t constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.i16;
}
};
struct I32Op : ValueOp<I32Op, KEY_TYPE_V_I32, Reg32, int32_t> {
typedef ValueOp<I32Op, KEY_TYPE_V_I32, Reg32, int32_t> BASE;
const int32_t constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.i32;
}
};
struct I64Op : ValueOp<I64Op, KEY_TYPE_V_I64, Reg64, int64_t> {
typedef ValueOp<I64Op, KEY_TYPE_V_I64, Reg64, int64_t> BASE;
const int64_t constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.i64;
}
bool ConstantFitsIn32Reg() const override {
int64_t v = BASE::value->constant.i64;
if ((v & ~0x7FFFFFFF) == 0) {
// Fits under 31 bits, so just load using normal mov.
return true;
} else if ((v & ~0x7FFFFFFF) == ~0x7FFFFFFF) {
// Negative number that fits in 32bits.
return true;
}
return false;
}
};
struct F32Op : ValueOp<F32Op, KEY_TYPE_V_F32, Xmm, float> {
typedef ValueOp<F32Op, KEY_TYPE_V_F32, Xmm, float> BASE;
const float constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.f32;
}
};
struct F64Op : ValueOp<F64Op, KEY_TYPE_V_F64, Xmm, double> {
typedef ValueOp<F64Op, KEY_TYPE_V_F64, Xmm, double> BASE;
const double constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.f64;
}
};
struct V128Op : ValueOp<V128Op, KEY_TYPE_V_V128, Xmm, vec128_t> {
typedef ValueOp<V128Op, KEY_TYPE_V_V128, Xmm, vec128_t> BASE;
const vec128_t& constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.v128;
}
};
template <typename DEST, typename... Tf>
struct DestField;
template <typename DEST>
struct DestField<DEST> {
DEST dest;
protected:
bool LoadDest(const Instr* i) {
Instr::Op op;
op.value = i->dest;
dest.Load(op);
return true;
}
};
template <>
struct DestField<VoidOp> {
protected:
bool LoadDest(const Instr* i) { return true; }
};
template <hir::Opcode OPCODE, typename... Ts>
struct I;
template <hir::Opcode OPCODE, typename DEST>
struct I<OPCODE, DEST> : DestField<DEST> {
typedef DestField<DEST> BASE;
static const hir::Opcode opcode = OPCODE;
static const uint32_t key =
InstrKey::Construct<OPCODE, DEST::key_type>::value;
static const KeyType dest_type = DEST::key_type;
const Instr* instr;
protected:
template <typename SEQ, typename T>
friend struct Sequence;
bool Load(const Instr* i) {
if (InstrKey(i).value == key && BASE::LoadDest(i)) {
instr = i;
return true;
}
return false;
}
};
template <hir::Opcode OPCODE, typename DEST, typename SRC1>
struct I<OPCODE, DEST, SRC1> : DestField<DEST> {
typedef DestField<DEST> BASE;
static const hir::Opcode opcode = OPCODE;
static const uint32_t key =
InstrKey::Construct<OPCODE, DEST::key_type, SRC1::key_type>::value;
static const KeyType dest_type = DEST::key_type;
static const KeyType src1_type = SRC1::key_type;
const Instr* instr;
SRC1 src1;
protected:
template <typename SEQ, typename T>
friend struct Sequence;
bool Load(const Instr* i) {
if (InstrKey(i).value == key && BASE::LoadDest(i)) {
instr = i;
src1.Load(i->src1);
return true;
}
return false;
}
};
template <hir::Opcode OPCODE, typename DEST, typename SRC1, typename SRC2>
struct I<OPCODE, DEST, SRC1, SRC2> : DestField<DEST> {
typedef DestField<DEST> BASE;
static const hir::Opcode opcode = OPCODE;
static const uint32_t key =
InstrKey::Construct<OPCODE, DEST::key_type, SRC1::key_type,
SRC2::key_type>::value;
static const KeyType dest_type = DEST::key_type;
static const KeyType src1_type = SRC1::key_type;
static const KeyType src2_type = SRC2::key_type;
const Instr* instr;
SRC1 src1;
SRC2 src2;
protected:
template <typename SEQ, typename T>
friend struct Sequence;
bool Load(const Instr* i) {
if (InstrKey(i).value == key && BASE::LoadDest(i)) {
instr = i;
src1.Load(i->src1);
src2.Load(i->src2);
return true;
}
return false;
}
};
template <hir::Opcode OPCODE, typename DEST, typename SRC1, typename SRC2,
typename SRC3>
struct I<OPCODE, DEST, SRC1, SRC2, SRC3> : DestField<DEST> {
typedef DestField<DEST> BASE;
static const hir::Opcode opcode = OPCODE;
static const uint32_t key =
InstrKey::Construct<OPCODE, DEST::key_type, SRC1::key_type,
SRC2::key_type, SRC3::key_type>::value;
static const KeyType dest_type = DEST::key_type;
static const KeyType src1_type = SRC1::key_type;
static const KeyType src2_type = SRC2::key_type;
static const KeyType src3_type = SRC3::key_type;
const Instr* instr;
SRC1 src1;
SRC2 src2;
SRC3 src3;
protected:
template <typename SEQ, typename T>
friend struct Sequence;
bool Load(const Instr* i) {
if (InstrKey(i).value == key && BASE::LoadDest(i)) {
instr = i;
src1.Load(i->src1);
src2.Load(i->src2);
src3.Load(i->src3);
return true;
}
return false;
}
};
template <typename T>
static const T GetTempReg(X64Emitter& e);
template <>
const Reg8 GetTempReg<Reg8>(X64Emitter& e) {
return e.al;
}
template <>
const Reg16 GetTempReg<Reg16>(X64Emitter& e) {
return e.ax;
}
template <>
const Reg32 GetTempReg<Reg32>(X64Emitter& e) {
return e.eax;
}
template <>
const Reg64 GetTempReg<Reg64>(X64Emitter& e) {
return e.rax;
}
template <typename SEQ, typename T>
struct Sequence {
typedef T EmitArgType;
static constexpr uint32_t head_key() { return T::key; }
static bool Select(X64Emitter& e, const Instr* i) {
T args;
if (!args.Load(i)) {
return false;
}
SEQ::Emit(e, args);
return true;
}
template <typename REG_FN>
static void EmitUnaryOp(X64Emitter& e, const EmitArgType& i,
const REG_FN& reg_fn) {
if (i.src1.is_constant) {
e.mov(i.dest, i.src1.constant());
reg_fn(e, i.dest);
} else {
if (i.dest != i.src1) {
e.mov(i.dest, i.src1);
}
reg_fn(e, i.dest);
}
}
template <typename REG_REG_FN, typename REG_CONST_FN>
static void EmitCommutativeBinaryOp(X64Emitter& e, const EmitArgType& i,
const REG_REG_FN& reg_reg_fn,
const REG_CONST_FN& reg_const_fn) {
if (i.src1.is_constant) {
if (i.src2.is_constant) {
// Both constants.
if (i.src1.ConstantFitsIn32Reg()) {
e.mov(i.dest, i.src2.constant());
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src1.constant()));
} else if (i.src2.ConstantFitsIn32Reg()) {
e.mov(i.dest, i.src1.constant());
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src2.constant()));
} else {
e.mov(i.dest, i.src1.constant());
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2.constant());
reg_reg_fn(e, i.dest, temp);
}
} else {
// src1 constant.
if (i.dest == i.src2) {
if (i.src1.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src1.constant()));
} else {
auto temp = GetTempReg<typename decltype(i.src1)::reg_type>(e);
e.mov(temp, i.src1.constant());
reg_reg_fn(e, i.dest, temp);
}
} else {
e.mov(i.dest, i.src1.constant());
reg_reg_fn(e, i.dest, i.src2);
}
}
} else if (i.src2.is_constant) {
if (i.dest == i.src1) {
if (i.src2.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src2.constant()));
} else {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2.constant());
reg_reg_fn(e, i.dest, temp);
}
} else {
e.mov(i.dest, i.src2.constant());
reg_reg_fn(e, i.dest, i.src1);
}
} else {
if (i.dest == i.src1) {
reg_reg_fn(e, i.dest, i.src2);
} else if (i.dest == i.src2) {
reg_reg_fn(e, i.dest, i.src1);
} else {
e.mov(i.dest, i.src1);
reg_reg_fn(e, i.dest, i.src2);
}
}
}
template <typename REG_REG_FN, typename REG_CONST_FN>
static void EmitAssociativeBinaryOp(X64Emitter& e, const EmitArgType& i,
const REG_REG_FN& reg_reg_fn,
const REG_CONST_FN& reg_const_fn) {
if (i.src1.is_constant) {
assert_true(!i.src2.is_constant);
if (i.dest == i.src2) {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2);
e.mov(i.dest, i.src1.constant());
reg_reg_fn(e, i.dest, temp);
} else {
e.mov(i.dest, i.src1.constant());
reg_reg_fn(e, i.dest, i.src2);
}
} else if (i.src2.is_constant) {
if (i.dest == i.src1) {
if (i.src2.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src2.constant()));
} else {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2.constant());
reg_reg_fn(e, i.dest, temp);
}
} else {
e.mov(i.dest, i.src1);
if (i.src2.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src2.constant()));
} else {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2.constant());
reg_reg_fn(e, i.dest, temp);
}
}
} else {
if (i.dest == i.src1) {
reg_reg_fn(e, i.dest, i.src2);
} else if (i.dest == i.src2) {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2);
e.mov(i.dest, i.src1);
reg_reg_fn(e, i.dest, temp);
} else {
e.mov(i.dest, i.src1);
reg_reg_fn(e, i.dest, i.src2);
}
}
}
template <typename FN>
static void EmitCommutativeBinaryXmmOp(X64Emitter& e, const EmitArgType& i,
const FN& fn) {
if (i.src1.is_constant) {
assert_true(!i.src2.is_constant);
e.LoadConstantXmm(e.xmm0, i.src1.constant());
fn(e, i.dest, e.xmm0, i.src2);
} else if (i.src2.is_constant) {
assert_true(!i.src1.is_constant);
e.LoadConstantXmm(e.xmm0, i.src2.constant());
fn(e, i.dest, i.src1, e.xmm0);
} else {
fn(e, i.dest, i.src1, i.src2);
}
}
template <typename FN>
static void EmitAssociativeBinaryXmmOp(X64Emitter& e, const EmitArgType& i,
const FN& fn) {
if (i.src1.is_constant) {
assert_true(!i.src2.is_constant);
e.LoadConstantXmm(e.xmm0, i.src1.constant());
fn(e, i.dest, e.xmm0, i.src2);
} else if (i.src2.is_constant) {
assert_true(!i.src1.is_constant);
e.LoadConstantXmm(e.xmm0, i.src2.constant());
fn(e, i.dest, i.src1, e.xmm0);
} else {
fn(e, i.dest, i.src1, i.src2);
}
}
template <typename REG_REG_FN, typename REG_CONST_FN>
static void EmitCommutativeCompareOp(X64Emitter& e, const EmitArgType& i,
const REG_REG_FN& reg_reg_fn,
const REG_CONST_FN& reg_const_fn) {
if (i.src1.is_constant) {
assert_true(!i.src2.is_constant);
if (i.src1.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.src2, static_cast<int32_t>(i.src1.constant()));
} else {
auto temp = GetTempReg<typename decltype(i.src1)::reg_type>(e);
e.mov(temp, i.src1.constant());
reg_reg_fn(e, i.src2, temp);
}
} else if (i.src2.is_constant) {
assert_true(!i.src1.is_constant);
if (i.src2.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.src1, static_cast<int32_t>(i.src2.constant()));
} else {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2.constant());
reg_reg_fn(e, i.src1, temp);
}
} else {
reg_reg_fn(e, i.src1, i.src2);
}
}
template <typename REG_REG_FN, typename REG_CONST_FN>
static void EmitAssociativeCompareOp(X64Emitter& e, const EmitArgType& i,
const REG_REG_FN& reg_reg_fn,
const REG_CONST_FN& reg_const_fn) {
if (i.src1.is_constant) {
assert_true(!i.src2.is_constant);
if (i.src1.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.dest, i.src2, static_cast<int32_t>(i.src1.constant()),
true);
} else {
auto temp = GetTempReg<typename decltype(i.src1)::reg_type>(e);
e.mov(temp, i.src1.constant());
reg_reg_fn(e, i.dest, i.src2, temp, true);
}
} else if (i.src2.is_constant) {
assert_true(!i.src1.is_constant);
if (i.src2.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.dest, i.src1, static_cast<int32_t>(i.src2.constant()),
false);
} else {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2.constant());
reg_reg_fn(e, i.dest, i.src1, temp, false);
}
} else {
reg_reg_fn(e, i.dest, i.src1, i.src2, false);
}
}
};
} // namespace x64
} // namespace backend
} // namespace cpu
} // namespace xe
#endif // XENIA_CPU_BACKEND_X64_X64_OP_H_

View File

@ -33,6 +33,7 @@
#include "xenia/base/logging.h"
#include "xenia/base/threading.h"
#include "xenia/cpu/backend/x64/x64_emitter.h"
#include "xenia/cpu/backend/x64/x64_op.h"
#include "xenia/cpu/backend/x64/x64_tracers.h"
#include "xenia/cpu/hir/hir_builder.h"
#include "xenia/cpu/processor.h"
@ -56,619 +57,6 @@ using xe::cpu::hir::Instr;
typedef bool (*SequenceSelectFn)(X64Emitter&, const Instr*);
std::unordered_map<uint32_t, SequenceSelectFn> sequence_table;
// Selects the right byte/word/etc from a vector. We need to flip logical
// indices (0,1,2,3,4,5,6,7,...) = (3,2,1,0,7,6,5,4,...)
#define VEC128_B(n) ((n) ^ 0x3)
#define VEC128_W(n) ((n) ^ 0x1)
#define VEC128_D(n) (n)
#define VEC128_F(n) (n)
enum KeyType {
KEY_TYPE_X = OPCODE_SIG_TYPE_X,
KEY_TYPE_L = OPCODE_SIG_TYPE_L,
KEY_TYPE_O = OPCODE_SIG_TYPE_O,
KEY_TYPE_S = OPCODE_SIG_TYPE_S,
KEY_TYPE_V_I8 = OPCODE_SIG_TYPE_V + INT8_TYPE,
KEY_TYPE_V_I16 = OPCODE_SIG_TYPE_V + INT16_TYPE,
KEY_TYPE_V_I32 = OPCODE_SIG_TYPE_V + INT32_TYPE,
KEY_TYPE_V_I64 = OPCODE_SIG_TYPE_V + INT64_TYPE,
KEY_TYPE_V_F32 = OPCODE_SIG_TYPE_V + FLOAT32_TYPE,
KEY_TYPE_V_F64 = OPCODE_SIG_TYPE_V + FLOAT64_TYPE,
KEY_TYPE_V_V128 = OPCODE_SIG_TYPE_V + VEC128_TYPE,
};
#pragma pack(push, 1)
union InstrKey {
struct {
uint32_t opcode : 8;
uint32_t dest : 5;
uint32_t src1 : 5;
uint32_t src2 : 5;
uint32_t src3 : 5;
uint32_t reserved : 4;
};
uint32_t value;
operator uint32_t() const { return value; }
InstrKey() : value(0) {}
InstrKey(uint32_t v) : value(v) {}
InstrKey(const Instr* i) : value(0) {
opcode = i->opcode->num;
uint32_t sig = i->opcode->signature;
dest =
GET_OPCODE_SIG_TYPE_DEST(sig) ? OPCODE_SIG_TYPE_V + i->dest->type : 0;
src1 = GET_OPCODE_SIG_TYPE_SRC1(sig);
if (src1 == OPCODE_SIG_TYPE_V) {
src1 += i->src1.value->type;
}
src2 = GET_OPCODE_SIG_TYPE_SRC2(sig);
if (src2 == OPCODE_SIG_TYPE_V) {
src2 += i->src2.value->type;
}
src3 = GET_OPCODE_SIG_TYPE_SRC3(sig);
if (src3 == OPCODE_SIG_TYPE_V) {
src3 += i->src3.value->type;
}
}
template <Opcode OPCODE, KeyType DEST = KEY_TYPE_X, KeyType SRC1 = KEY_TYPE_X,
KeyType SRC2 = KEY_TYPE_X, KeyType SRC3 = KEY_TYPE_X>
struct Construct {
static const uint32_t value =
(OPCODE) | (DEST << 8) | (SRC1 << 13) | (SRC2 << 18) | (SRC3 << 23);
};
};
#pragma pack(pop)
static_assert(sizeof(InstrKey) <= 4, "Key must be 4 bytes");
template <typename... Ts>
struct CombinedStruct;
template <>
struct CombinedStruct<> {};
template <typename T, typename... Ts>
struct CombinedStruct<T, Ts...> : T, CombinedStruct<Ts...> {};
struct OpBase {};
template <typename T, KeyType KEY_TYPE>
struct Op : OpBase {
static const KeyType key_type = KEY_TYPE;
};
struct VoidOp : Op<VoidOp, KEY_TYPE_X> {
protected:
template <typename T, KeyType KEY_TYPE>
friend struct Op;
template <hir::Opcode OPCODE, typename... Ts>
friend struct I;
void Load(const Instr::Op& op) {}
};
struct OffsetOp : Op<OffsetOp, KEY_TYPE_O> {
uint64_t value;
protected:
template <typename T, KeyType KEY_TYPE>
friend struct Op;
template <hir::Opcode OPCODE, typename... Ts>
friend struct I;
void Load(const Instr::Op& op) { this->value = op.offset; }
};
struct SymbolOp : Op<SymbolOp, KEY_TYPE_S> {
Function* value;
protected:
template <typename T, KeyType KEY_TYPE>
friend struct Op;
template <hir::Opcode OPCODE, typename... Ts>
friend struct I;
bool Load(const Instr::Op& op) {
this->value = op.symbol;
return true;
}
};
struct LabelOp : Op<LabelOp, KEY_TYPE_L> {
hir::Label* value;
protected:
template <typename T, KeyType KEY_TYPE>
friend struct Op;
template <hir::Opcode OPCODE, typename... Ts>
friend struct I;
void Load(const Instr::Op& op) { this->value = op.label; }
};
template <typename T, KeyType KEY_TYPE, typename REG_TYPE, typename CONST_TYPE>
struct ValueOp : Op<ValueOp<T, KEY_TYPE, REG_TYPE, CONST_TYPE>, KEY_TYPE> {
typedef REG_TYPE reg_type;
const Value* value;
bool is_constant;
virtual bool ConstantFitsIn32Reg() const { return true; }
const REG_TYPE& reg() const {
assert_true(!is_constant);
return reg_;
}
operator const REG_TYPE&() const { return reg(); }
bool IsEqual(const T& b) const {
if (is_constant && b.is_constant) {
return reinterpret_cast<const T*>(this)->constant() == b.constant();
} else if (!is_constant && !b.is_constant) {
return reg_.getIdx() == b.reg_.getIdx();
} else {
return false;
}
}
bool IsEqual(const Xbyak::Reg& b) const {
if (is_constant) {
return false;
} else if (!is_constant) {
return reg_.getIdx() == b.getIdx();
} else {
return false;
}
}
bool operator==(const T& b) const { return IsEqual(b); }
bool operator!=(const T& b) const { return !IsEqual(b); }
bool operator==(const Xbyak::Reg& b) const { return IsEqual(b); }
bool operator!=(const Xbyak::Reg& b) const { return !IsEqual(b); }
void Load(const Instr::Op& op) {
value = op.value;
is_constant = value->IsConstant();
if (!is_constant) {
X64Emitter::SetupReg(value, reg_);
}
}
protected:
REG_TYPE reg_;
};
struct I8Op : ValueOp<I8Op, KEY_TYPE_V_I8, Reg8, int8_t> {
typedef ValueOp<I8Op, KEY_TYPE_V_I8, Reg8, int8_t> BASE;
const int8_t constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.i8;
}
};
struct I16Op : ValueOp<I16Op, KEY_TYPE_V_I16, Reg16, int16_t> {
typedef ValueOp<I16Op, KEY_TYPE_V_I16, Reg16, int16_t> BASE;
const int16_t constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.i16;
}
};
struct I32Op : ValueOp<I32Op, KEY_TYPE_V_I32, Reg32, int32_t> {
typedef ValueOp<I32Op, KEY_TYPE_V_I32, Reg32, int32_t> BASE;
const int32_t constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.i32;
}
};
struct I64Op : ValueOp<I64Op, KEY_TYPE_V_I64, Reg64, int64_t> {
typedef ValueOp<I64Op, KEY_TYPE_V_I64, Reg64, int64_t> BASE;
const int64_t constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.i64;
}
bool ConstantFitsIn32Reg() const override {
int64_t v = BASE::value->constant.i64;
if ((v & ~0x7FFFFFFF) == 0) {
// Fits under 31 bits, so just load using normal mov.
return true;
} else if ((v & ~0x7FFFFFFF) == ~0x7FFFFFFF) {
// Negative number that fits in 32bits.
return true;
}
return false;
}
};
struct F32Op : ValueOp<F32Op, KEY_TYPE_V_F32, Xmm, float> {
typedef ValueOp<F32Op, KEY_TYPE_V_F32, Xmm, float> BASE;
const float constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.f32;
}
};
struct F64Op : ValueOp<F64Op, KEY_TYPE_V_F64, Xmm, double> {
typedef ValueOp<F64Op, KEY_TYPE_V_F64, Xmm, double> BASE;
const double constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.f64;
}
};
struct V128Op : ValueOp<V128Op, KEY_TYPE_V_V128, Xmm, vec128_t> {
typedef ValueOp<V128Op, KEY_TYPE_V_V128, Xmm, vec128_t> BASE;
const vec128_t& constant() const {
assert_true(BASE::is_constant);
return BASE::value->constant.v128;
}
};
template <typename DEST, typename... Tf>
struct DestField;
template <typename DEST>
struct DestField<DEST> {
DEST dest;
protected:
bool LoadDest(const Instr* i) {
Instr::Op op;
op.value = i->dest;
dest.Load(op);
return true;
}
};
template <>
struct DestField<VoidOp> {
protected:
bool LoadDest(const Instr* i) { return true; }
};
template <hir::Opcode OPCODE, typename... Ts>
struct I;
template <hir::Opcode OPCODE, typename DEST>
struct I<OPCODE, DEST> : DestField<DEST> {
typedef DestField<DEST> BASE;
static const hir::Opcode opcode = OPCODE;
static const uint32_t key =
InstrKey::Construct<OPCODE, DEST::key_type>::value;
static const KeyType dest_type = DEST::key_type;
const Instr* instr;
protected:
template <typename SEQ, typename T>
friend struct Sequence;
bool Load(const Instr* i) {
if (InstrKey(i).value == key && BASE::LoadDest(i)) {
instr = i;
return true;
}
return false;
}
};
template <hir::Opcode OPCODE, typename DEST, typename SRC1>
struct I<OPCODE, DEST, SRC1> : DestField<DEST> {
typedef DestField<DEST> BASE;
static const hir::Opcode opcode = OPCODE;
static const uint32_t key =
InstrKey::Construct<OPCODE, DEST::key_type, SRC1::key_type>::value;
static const KeyType dest_type = DEST::key_type;
static const KeyType src1_type = SRC1::key_type;
const Instr* instr;
SRC1 src1;
protected:
template <typename SEQ, typename T>
friend struct Sequence;
bool Load(const Instr* i) {
if (InstrKey(i).value == key && BASE::LoadDest(i)) {
instr = i;
src1.Load(i->src1);
return true;
}
return false;
}
};
template <hir::Opcode OPCODE, typename DEST, typename SRC1, typename SRC2>
struct I<OPCODE, DEST, SRC1, SRC2> : DestField<DEST> {
typedef DestField<DEST> BASE;
static const hir::Opcode opcode = OPCODE;
static const uint32_t key =
InstrKey::Construct<OPCODE, DEST::key_type, SRC1::key_type,
SRC2::key_type>::value;
static const KeyType dest_type = DEST::key_type;
static const KeyType src1_type = SRC1::key_type;
static const KeyType src2_type = SRC2::key_type;
const Instr* instr;
SRC1 src1;
SRC2 src2;
protected:
template <typename SEQ, typename T>
friend struct Sequence;
bool Load(const Instr* i) {
if (InstrKey(i).value == key && BASE::LoadDest(i)) {
instr = i;
src1.Load(i->src1);
src2.Load(i->src2);
return true;
}
return false;
}
};
template <hir::Opcode OPCODE, typename DEST, typename SRC1, typename SRC2,
typename SRC3>
struct I<OPCODE, DEST, SRC1, SRC2, SRC3> : DestField<DEST> {
typedef DestField<DEST> BASE;
static const hir::Opcode opcode = OPCODE;
static const uint32_t key =
InstrKey::Construct<OPCODE, DEST::key_type, SRC1::key_type,
SRC2::key_type, SRC3::key_type>::value;
static const KeyType dest_type = DEST::key_type;
static const KeyType src1_type = SRC1::key_type;
static const KeyType src2_type = SRC2::key_type;
static const KeyType src3_type = SRC3::key_type;
const Instr* instr;
SRC1 src1;
SRC2 src2;
SRC3 src3;
protected:
template <typename SEQ, typename T>
friend struct Sequence;
bool Load(const Instr* i) {
if (InstrKey(i).value == key && BASE::LoadDest(i)) {
instr = i;
src1.Load(i->src1);
src2.Load(i->src2);
src3.Load(i->src3);
return true;
}
return false;
}
};
template <typename T>
const T GetTempReg(X64Emitter& e);
template <>
const Reg8 GetTempReg<Reg8>(X64Emitter& e) {
return e.al;
}
template <>
const Reg16 GetTempReg<Reg16>(X64Emitter& e) {
return e.ax;
}
template <>
const Reg32 GetTempReg<Reg32>(X64Emitter& e) {
return e.eax;
}
template <>
const Reg64 GetTempReg<Reg64>(X64Emitter& e) {
return e.rax;
}
template <typename SEQ, typename T>
struct Sequence {
typedef T EmitArgType;
static constexpr uint32_t head_key() { return T::key; }
static bool Select(X64Emitter& e, const Instr* i) {
T args;
if (!args.Load(i)) {
return false;
}
SEQ::Emit(e, args);
return true;
}
template <typename REG_FN>
static void EmitUnaryOp(X64Emitter& e, const EmitArgType& i,
const REG_FN& reg_fn) {
if (i.src1.is_constant) {
e.mov(i.dest, i.src1.constant());
reg_fn(e, i.dest);
} else {
if (i.dest != i.src1) {
e.mov(i.dest, i.src1);
}
reg_fn(e, i.dest);
}
}
template <typename REG_REG_FN, typename REG_CONST_FN>
static void EmitCommutativeBinaryOp(X64Emitter& e, const EmitArgType& i,
const REG_REG_FN& reg_reg_fn,
const REG_CONST_FN& reg_const_fn) {
if (i.src1.is_constant) {
if (i.src2.is_constant) {
// Both constants.
if (i.src1.ConstantFitsIn32Reg()) {
e.mov(i.dest, i.src2.constant());
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src1.constant()));
} else if (i.src2.ConstantFitsIn32Reg()) {
e.mov(i.dest, i.src1.constant());
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src2.constant()));
} else {
e.mov(i.dest, i.src1.constant());
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2.constant());
reg_reg_fn(e, i.dest, temp);
}
} else {
// src1 constant.
if (i.dest == i.src2) {
if (i.src1.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src1.constant()));
} else {
auto temp = GetTempReg<typename decltype(i.src1)::reg_type>(e);
e.mov(temp, i.src1.constant());
reg_reg_fn(e, i.dest, temp);
}
} else {
e.mov(i.dest, i.src1.constant());
reg_reg_fn(e, i.dest, i.src2);
}
}
} else if (i.src2.is_constant) {
if (i.dest == i.src1) {
if (i.src2.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src2.constant()));
} else {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2.constant());
reg_reg_fn(e, i.dest, temp);
}
} else {
e.mov(i.dest, i.src2.constant());
reg_reg_fn(e, i.dest, i.src1);
}
} else {
if (i.dest == i.src1) {
reg_reg_fn(e, i.dest, i.src2);
} else if (i.dest == i.src2) {
reg_reg_fn(e, i.dest, i.src1);
} else {
e.mov(i.dest, i.src1);
reg_reg_fn(e, i.dest, i.src2);
}
}
}
template <typename REG_REG_FN, typename REG_CONST_FN>
static void EmitAssociativeBinaryOp(X64Emitter& e, const EmitArgType& i,
const REG_REG_FN& reg_reg_fn,
const REG_CONST_FN& reg_const_fn) {
if (i.src1.is_constant) {
assert_true(!i.src2.is_constant);
if (i.dest == i.src2) {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2);
e.mov(i.dest, i.src1.constant());
reg_reg_fn(e, i.dest, temp);
} else {
e.mov(i.dest, i.src1.constant());
reg_reg_fn(e, i.dest, i.src2);
}
} else if (i.src2.is_constant) {
if (i.dest == i.src1) {
if (i.src2.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src2.constant()));
} else {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2.constant());
reg_reg_fn(e, i.dest, temp);
}
} else {
e.mov(i.dest, i.src1);
if (i.src2.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src2.constant()));
} else {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2.constant());
reg_reg_fn(e, i.dest, temp);
}
}
} else {
if (i.dest == i.src1) {
reg_reg_fn(e, i.dest, i.src2);
} else if (i.dest == i.src2) {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2);
e.mov(i.dest, i.src1);
reg_reg_fn(e, i.dest, temp);
} else {
e.mov(i.dest, i.src1);
reg_reg_fn(e, i.dest, i.src2);
}
}
}
template <typename FN>
static void EmitCommutativeBinaryXmmOp(X64Emitter& e, const EmitArgType& i,
const FN& fn) {
if (i.src1.is_constant) {
assert_true(!i.src2.is_constant);
e.LoadConstantXmm(e.xmm0, i.src1.constant());
fn(e, i.dest, e.xmm0, i.src2);
} else if (i.src2.is_constant) {
assert_true(!i.src1.is_constant);
e.LoadConstantXmm(e.xmm0, i.src2.constant());
fn(e, i.dest, i.src1, e.xmm0);
} else {
fn(e, i.dest, i.src1, i.src2);
}
}
template <typename FN>
static void EmitAssociativeBinaryXmmOp(X64Emitter& e, const EmitArgType& i,
const FN& fn) {
if (i.src1.is_constant) {
assert_true(!i.src2.is_constant);
e.LoadConstantXmm(e.xmm0, i.src1.constant());
fn(e, i.dest, e.xmm0, i.src2);
} else if (i.src2.is_constant) {
assert_true(!i.src1.is_constant);
e.LoadConstantXmm(e.xmm0, i.src2.constant());
fn(e, i.dest, i.src1, e.xmm0);
} else {
fn(e, i.dest, i.src1, i.src2);
}
}
template <typename REG_REG_FN, typename REG_CONST_FN>
static void EmitCommutativeCompareOp(X64Emitter& e, const EmitArgType& i,
const REG_REG_FN& reg_reg_fn,
const REG_CONST_FN& reg_const_fn) {
if (i.src1.is_constant) {
assert_true(!i.src2.is_constant);
if (i.src1.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.src2, static_cast<int32_t>(i.src1.constant()));
} else {
auto temp = GetTempReg<typename decltype(i.src1)::reg_type>(e);
e.mov(temp, i.src1.constant());
reg_reg_fn(e, i.src2, temp);
}
} else if (i.src2.is_constant) {
assert_true(!i.src1.is_constant);
if (i.src2.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.src1, static_cast<int32_t>(i.src2.constant()));
} else {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2.constant());
reg_reg_fn(e, i.src1, temp);
}
} else {
reg_reg_fn(e, i.src1, i.src2);
}
}
template <typename REG_REG_FN, typename REG_CONST_FN>
static void EmitAssociativeCompareOp(X64Emitter& e, const EmitArgType& i,
const REG_REG_FN& reg_reg_fn,
const REG_CONST_FN& reg_const_fn) {
if (i.src1.is_constant) {
assert_true(!i.src2.is_constant);
if (i.src1.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.dest, i.src2, static_cast<int32_t>(i.src1.constant()),
true);
} else {
auto temp = GetTempReg<typename decltype(i.src1)::reg_type>(e);
e.mov(temp, i.src1.constant());
reg_reg_fn(e, i.dest, i.src2, temp, true);
}
} else if (i.src2.is_constant) {
assert_true(!i.src1.is_constant);
if (i.src2.ConstantFitsIn32Reg()) {
reg_const_fn(e, i.dest, i.src1, static_cast<int32_t>(i.src2.constant()),
false);
} else {
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
e.mov(temp, i.src2.constant());
reg_reg_fn(e, i.dest, i.src1, temp, false);
}
} else {
reg_reg_fn(e, i.dest, i.src1, i.src2, false);
}
}
};
template <typename T>
static bool Register() {
sequence_table.insert({T::head_key(), T::Select});
return true;
}
template <typename T, typename Tn, typename... Ts>
static bool Register() {
bool b = true;
b = b && Register<T>(); // Call the above function
b = b && Register<Tn, Ts...>(); // Call ourself again (recursively)
return b;
}
#define EMITTER_OPCODE_TABLE(name, ...) \
static bool Registered_##name = Register<__VA_ARGS__>();
// ============================================================================
// OPCODE_COMMENT
// ============================================================================

View File

@ -12,6 +12,8 @@
#include "xenia/cpu/hir/instr.h"
#include <unordered_map>
namespace xe {
namespace cpu {
namespace backend {
@ -19,6 +21,25 @@ namespace x64 {
class X64Emitter;
typedef bool (*SequenceSelectFn)(X64Emitter&, const hir::Instr*);
extern std::unordered_map<uint32_t, SequenceSelectFn> sequence_table;
template <typename T>
bool Register() {
sequence_table.insert({T::head_key(), T::Select});
return true;
}
template <typename T, typename Tn, typename... Ts>
static bool Register() {
bool b = true;
b = b && Register<T>(); // Call the above function
b = b && Register<Tn, Ts...>(); // Call ourself again (recursively)
return b;
}
#define EMITTER_OPCODE_TABLE(name, ...) \
const auto X64_INSTR_##name = Register<__VA_ARGS__>();
void RegisterSequences();
bool SelectSequence(X64Emitter* e, const hir::Instr* i,
const hir::Instr** new_tail);