More style cleanup.

This commit is contained in:
Ben Vanik 2015-08-06 20:17:01 -07:00
parent e6461f326c
commit 5e08889d93
76 changed files with 418 additions and 420 deletions

View File

@ -22,7 +22,7 @@ DEFINE_string(target, "", "Specifies the target .xex or .iso to execute.");
namespace xe {
namespace app {
int xenia_main(std::vector<std::wstring>& args) {
int xenia_main(const std::vector<std::wstring>& args) {
Profiler::Initialize();
Profiler::ThreadEnter("main");

View File

@ -13,11 +13,13 @@
#include "xenia/cpu/processor.h"
#include "xenia/cpu/thread_state.h"
using namespace xe;
using namespace xe::apu;
using namespace xe::cpu;
namespace xe {
namespace apu {
AudioDriver::AudioDriver(Emulator* emulator)
: emulator_(emulator), memory_(emulator->memory()) {}
AudioDriver::~AudioDriver() {}
AudioDriver::~AudioDriver() = default;
} // namespace apu
} // namespace xe

View File

@ -18,7 +18,7 @@ namespace apu {
class AudioDriver {
public:
AudioDriver(Emulator* emulator);
explicit AudioDriver(Emulator* emulator);
virtual ~AudioDriver();
virtual void SubmitFrame(uint32_t samples_ptr) = 0;

View File

@ -48,7 +48,7 @@ class AudioSystem {
void SubmitFrame(size_t index, uint32_t samples_ptr);
protected:
AudioSystem(Emulator* emulator);
explicit AudioSystem(Emulator* emulator);
virtual void Initialize();

View File

@ -18,7 +18,7 @@ namespace nop {
class NopAudioSystem : public AudioSystem {
public:
NopAudioSystem(Emulator* emulator);
explicit NopAudioSystem(Emulator* emulator);
~NopAudioSystem() override;
static std::unique_ptr<AudioSystem> Create(Emulator* emulator);

View File

@ -11,7 +11,7 @@
// Must be included before xaudio2.h so we get the right windows.h include.
#include "xenia/base/platform_win.h"
#include <xaudio2.h>
#include <xaudio2.h> // NOLINT(build/include_order)
#include "xenia/apu/apu_flags.h"
#include "xenia/base/clock.h"
@ -24,7 +24,8 @@ namespace xaudio2 {
class XAudio2AudioDriver::VoiceCallback : public IXAudio2VoiceCallback {
public:
VoiceCallback(xe::threading::Semaphore* semaphore) : semaphore_(semaphore) {}
explicit VoiceCallback(xe::threading::Semaphore* semaphore)
: semaphore_(semaphore) {}
~VoiceCallback() {}
void OnStreamEnd() {}
@ -52,15 +53,10 @@ XAudio2AudioDriver::XAudio2AudioDriver(Emulator* emulator,
XAudio2AudioDriver::~XAudio2AudioDriver() = default;
const DWORD ChannelMasks[] = {
0, // TODO: fixme
0, // TODO: fixme
SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_LOW_FREQUENCY,
0, // TODO: fixme
0, // TODO: fixme
0, // TODO: fixme
SPEAKER_FRONT_LEFT | SPEAKER_FRONT_CENTER | SPEAKER_FRONT_RIGHT |
0, 0, SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_LOW_FREQUENCY, 0,
0, 0, SPEAKER_FRONT_LEFT | SPEAKER_FRONT_CENTER | SPEAKER_FRONT_RIGHT |
SPEAKER_LOW_FREQUENCY | SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT,
0, // TODO: fixme
0,
};
void XAudio2AudioDriver::Initialize() {
@ -152,7 +148,7 @@ void XAudio2AudioDriver::SubmitFrame(uint32_t frame_ptr) {
XAUDIO2_BUFFER buffer;
buffer.Flags = 0;
buffer.pAudioData = (BYTE*)output_frame;
buffer.pAudioData = reinterpret_cast<BYTE*>(output_frame);
buffer.AudioBytes = frame_size_;
buffer.PlayBegin = 0;
buffer.PlayLength = channel_samples_;
@ -171,7 +167,8 @@ void XAudio2AudioDriver::SubmitFrame(uint32_t frame_ptr) {
// Update playback ratio to our time scalar.
// This will keep audio in sync with the game clock.
pcm_voice_->SetFrequencyRatio(float(xe::Clock::guest_time_scalar()));
pcm_voice_->SetFrequencyRatio(
static_cast<float>(xe::Clock::guest_time_scalar()));
}
void XAudio2AudioDriver::Shutdown() {

View File

@ -18,7 +18,7 @@ namespace xaudio2 {
class XAudio2AudioSystem : public AudioSystem {
public:
XAudio2AudioSystem(Emulator* emulator);
explicit XAudio2AudioSystem(Emulator* emulator);
~XAudio2AudioSystem() override;
static std::unique_ptr<AudioSystem> Create(Emulator* emulator);

View File

@ -8,13 +8,15 @@
*/
#include "xenia/apu/xma_context.h"
#include <algorithm>
#include <cstring>
#include "xenia/apu/xma_decoder.h"
#include "xenia/base/logging.h"
#include "xenia/base/ring_buffer.h"
#include "xenia/profiling.h"
#include <cstring>
extern "C" {
#include "libavcodec/avcodec.h"
#include "libavutil/channel_layout.h"
@ -54,7 +56,7 @@ int XmaContext::Setup(uint32_t id, Memory* memory, uint32_t guest_ptr) {
avcodec_initialized = true;
}
// Allocate important stuff
// Allocate important stuff.
codec_ = avcodec_find_decoder(AV_CODEC_ID_WMAPRO);
if (!codec_) {
return 1;
@ -78,14 +80,14 @@ int XmaContext::Setup(uint32_t id, Memory* memory, uint32_t guest_ptr) {
context_->sample_rate = 0;
context_->block_align = kBytesPerPacket;
// Extra data passed to the decoder
// Extra data passed to the decoder.
std::memset(&extra_data_, 0, sizeof(extra_data_));
extra_data_.bits_per_sample = 16;
extra_data_.channel_mask = AV_CH_FRONT_RIGHT;
extra_data_.decode_flags = 0x10D6;
context_->extradata_size = sizeof(extra_data_);
context_->extradata = (uint8_t*)&extra_data_;
context_->extradata = reinterpret_cast<uint8_t*>(&extra_data_);
// Current frame stuff whatever
// samples per frame * 2 max channels * output bytes
@ -107,7 +109,7 @@ void XmaContext::Work() {
auto context_ptr = memory()->TranslateVirtual(guest_ptr());
XMA_CONTEXT_DATA data(context_ptr);
DecodePackets(data);
DecodePackets(&data);
data.Store(context_ptr);
}
@ -165,7 +167,7 @@ void XmaContext::Disable() {
}
void XmaContext::Release() {
// Lock it in case the decoder thread is working on it now
// Lock it in case the decoder thread is working on it now.
std::lock_guard<xe::mutex> lock(lock_);
assert_true(is_allocated_ == true);
@ -191,7 +193,7 @@ int XmaContext::GetSampleRate(int id) {
return 0;
}
void XmaContext::DecodePackets(XMA_CONTEXT_DATA& data) {
void XmaContext::DecodePackets(XMA_CONTEXT_DATA* data) {
SCOPE_profile_cpu_f("apu");
// What I see:
@ -215,25 +217,26 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA& data) {
// SPUs also support stereo decoding. (data.is_stereo)
// Quick die if there's no data.
if (!data.input_buffer_0_valid && !data.input_buffer_1_valid) {
if (!data->input_buffer_0_valid && !data->input_buffer_1_valid) {
return;
}
// Check the output buffer - we cannot decode anything else if it's
// unavailable.
if (!data.output_buffer_valid) {
if (!data->output_buffer_valid) {
return;
}
// Output buffers are in raw PCM samples, 256 bytes per block.
// Output buffer is a ring buffer. We need to write from the write offset
// to the read offset.
uint8_t* output_buffer = memory()->TranslatePhysical(data.output_buffer_ptr);
uint32_t output_capacity = data.output_buffer_block_count * kBytesPerSubframe;
uint8_t* output_buffer = memory()->TranslatePhysical(data->output_buffer_ptr);
uint32_t output_capacity =
data->output_buffer_block_count * kBytesPerSubframe;
uint32_t output_read_offset =
data.output_buffer_read_offset * kBytesPerSubframe;
data->output_buffer_read_offset * kBytesPerSubframe;
uint32_t output_write_offset =
data.output_buffer_write_offset * kBytesPerSubframe;
data->output_buffer_write_offset * kBytesPerSubframe;
RingBuffer output_rb(output_buffer, output_capacity);
output_rb.set_read_offset(output_read_offset);
@ -245,7 +248,7 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA& data) {
while (output_remaining_bytes > 0) {
// This'll copy audio samples into the output buffer.
// The samples need to be 2 bytes long!
// Copies one frame at a time, so keep calling this until size == 0
// Copies one frame at a time, so keep calling this until size == 0.
int written_bytes = 0;
int decode_attempts_remaining = 3;
@ -278,7 +281,7 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA& data) {
-written_bytes);
// Failed out.
if (data.input_buffer_0_valid || data.input_buffer_1_valid) {
if (data->input_buffer_0_valid || data->input_buffer_1_valid) {
// There's new data available - maybe we'll be ok if we decode it?
written_bytes = 0;
DiscardPacket();
@ -288,20 +291,20 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA& data) {
}
}
data.output_buffer_write_offset = output_rb.write_offset() / 256;
data->output_buffer_write_offset = output_rb.write_offset() / 256;
output_remaining_bytes -= written_bytes;
// If we need more data and the input buffers have it, grab it.
if (written_bytes) {
// Haven't finished with current packet.
continue;
} else if (data.input_buffer_0_valid || data.input_buffer_1_valid) {
} else if (data->input_buffer_0_valid || data->input_buffer_1_valid) {
// Done with previous packet, so grab a new one.
int ret = StartPacket(data);
if (ret <= 0) {
// No more data (but may have prepared a packet)
data.input_buffer_0_valid = 0;
data.input_buffer_1_valid = 0;
data->input_buffer_0_valid = 0;
data->input_buffer_1_valid = 0;
}
} else {
// Decoder is out of data and there's no more to give.
@ -310,27 +313,29 @@ void XmaContext::DecodePackets(XMA_CONTEXT_DATA& data) {
}
// The game will kick us again with a new output buffer later.
data.output_buffer_valid = 0;
data->output_buffer_valid = 0;
}
int XmaContext::StartPacket(XMA_CONTEXT_DATA& data) {
int XmaContext::StartPacket(XMA_CONTEXT_DATA* data) {
// Translate pointers for future use.
uint8_t* in0 = data.input_buffer_0_valid
? memory()->TranslatePhysical(data.input_buffer_0_ptr)
uint8_t* in0 = data->input_buffer_0_valid
? memory()->TranslatePhysical(data->input_buffer_0_ptr)
: nullptr;
uint8_t* in1 = data.input_buffer_1_valid
? memory()->TranslatePhysical(data.input_buffer_1_ptr)
uint8_t* in1 = data->input_buffer_1_valid
? memory()->TranslatePhysical(data->input_buffer_1_ptr)
: nullptr;
int sample_rate = GetSampleRate(data.sample_rate);
int channels = data.is_stereo ? 2 : 1;
int sample_rate = GetSampleRate(data->sample_rate);
int channels = data->is_stereo ? 2 : 1;
// See if we've finished with the input.
// Block count is in packets, so expand by packet size.
uint32_t input_size_0_bytes =
data.input_buffer_0_valid ? (data.input_buffer_0_packet_count) * 2048 : 0;
uint32_t input_size_1_bytes =
data.input_buffer_1_valid ? (data.input_buffer_1_packet_count) * 2048 : 0;
uint32_t input_size_0_bytes = data->input_buffer_0_valid
? (data->input_buffer_0_packet_count) * 2048
: 0;
uint32_t input_size_1_bytes = data->input_buffer_1_valid
? (data->input_buffer_1_packet_count) * 2048
: 0;
// Total input size
uint32_t input_size_bytes = input_size_0_bytes + input_size_1_bytes;
@ -338,7 +343,7 @@ int XmaContext::StartPacket(XMA_CONTEXT_DATA& data) {
// Input read offset is in bits. Typically starts at 32 (4 bytes).
// "Sequence" offset - used internally for WMA Pro decoder.
// Just the read offset.
uint32_t seq_offset_bytes = (data.input_buffer_read_offset & ~0x7FF) / 8;
uint32_t seq_offset_bytes = (data->input_buffer_read_offset & ~0x7FF) / 8;
uint32_t input_remaining_bytes = input_size_bytes - seq_offset_bytes;
if (seq_offset_bytes < input_size_bytes) {
@ -348,7 +353,7 @@ int XmaContext::StartPacket(XMA_CONTEXT_DATA& data) {
if (seq_offset_bytes >= input_size_0_bytes && input_size_1_bytes) {
// Size overlap, select input buffer 1.
// TODO: This needs testing.
// TODO(DrChat): This needs testing.
input_offset_bytes -= input_size_0_bytes;
input_buffer = in1;
}
@ -358,11 +363,11 @@ int XmaContext::StartPacket(XMA_CONTEXT_DATA& data) {
assert_true(input_offset_bytes % 2048 == 0);
PreparePacket(packet, seq_offset_bytes, kBytesPerPacket, sample_rate,
channels);
data.input_buffer_read_offset += kBytesPerPacket * 8;
data->input_buffer_read_offset += kBytesPerPacket * 8;
input_remaining_bytes -= kBytesPerPacket;
if (input_remaining_bytes <= 0) {
// Used the last of the data but prepared a packet
// Used the last of the data but prepared a packet.
return 0;
}
} else {
@ -381,23 +386,24 @@ int XmaContext::PreparePacket(uint8_t* input, size_t seq_offset, size_t size,
return 1;
}
if (packet_->size > 0 || current_frame_pos_ != frame_samples_size_) {
// Haven't finished parsing another packet
// Haven't finished parsing another packet.
return 1;
}
std::memcpy(packet_data_, input, size);
// Modify the packet header so it's WMAPro compatible
*((int*)packet_data_) = (((seq_offset & 0x7800) | 0x400) >> 7) |
(*((int*)packet_data_) & 0xFFFEFF08);
// Modify the packet header so it's WMAPro compatible.
auto int_packet_data = reinterpret_cast<int*>(packet_data_);
*int_packet_data =
(((seq_offset & 0x7800) | 0x400) >> 7) | (*int_packet_data & 0xFFFEFF08);
packet_->data = packet_data_;
packet_->size = kBytesPerPacket;
// Re-initialize the context with new sample rate and channels
// Re-initialize the context with new sample rate and channels.
if (context_->sample_rate != sample_rate || context_->channels != channels) {
// We have to reopen the codec so it'll realloc whatever data it needs.
// TODO: Find a better way.
// TODO(DrChat): Find a better way.
avcodec_close(context_);
context_->sample_rate = sample_rate;
@ -444,11 +450,11 @@ int XmaContext::DecodePacket(uint8_t* output, size_t output_offset,
while (output_size > 0 && packet_->size > 0) {
int got_frame = 0;
// Decode the current frame
// Decode the current frame.
int len =
avcodec_decode_audio4(context_, decoded_frame_, &got_frame, packet_);
if (len < 0) {
// Error in codec (bad sample rate or something)
// Error in codec (bad sample rate or something).
return len;
}
@ -456,12 +462,12 @@ int XmaContext::DecodePacket(uint8_t* output, size_t output_offset,
*read_bytes += len;
}
// Offset by decoded length
// Offset by decoded length.
packet_->size -= len;
packet_->data += len;
packet_->dts = packet_->pts = AV_NOPTS_VALUE;
// Successfully decoded a frame
// Successfully decoded a frame.
if (got_frame) {
// Validity checks.
if (decoded_frame_->nb_samples > kSamplesPerFrame) {
@ -470,7 +476,7 @@ int XmaContext::DecodePacket(uint8_t* output, size_t output_offset,
return -3;
}
// Check the returned buffer size
// Check the returned buffer size.
if (av_samples_get_buffer_size(NULL, context_->channels,
decoded_frame_->nb_samples,
context_->sample_fmt, 1) !=
@ -480,12 +486,12 @@ int XmaContext::DecodePacket(uint8_t* output, size_t output_offset,
// Loop through every sample, convert and drop it into the output array.
// If more than one channel, the game wants the samples from each channel
// interleaved next to eachother
// interleaved next to each other.
uint32_t o = 0;
for (int i = 0; i < decoded_frame_->nb_samples; i++) {
for (int j = 0; j < context_->channels; j++) {
// Select the appropriate array based on the current channel.
float* sample_array = (float*)decoded_frame_->data[j];
auto sample_array = reinterpret_cast<float*>(decoded_frame_->data[j]);
// Raw sample should be within [-1, 1].
// Clamp it, just in case.
@ -500,8 +506,8 @@ int XmaContext::DecodePacket(uint8_t* output, size_t output_offset,
}
current_frame_pos_ = 0;
// Total size of the frame's samples
// Magic number 2 is sizeof an output sample
// Total size of the frame's samples.
// Magic number 2 is sizeof an output sample.
frame_samples_size_ = context_->channels * decoded_frame_->nb_samples * 2;
to_copy = std::min(output_size, (size_t)(frame_samples_size_));
@ -513,9 +519,9 @@ int XmaContext::DecodePacket(uint8_t* output, size_t output_offset,
}
}
// Return number of bytes written
return (int)(output_offset - original_offset);
// Return number of bytes written.
return static_cast<int>(output_offset - original_offset);
}
} // namespace xe
} // namespace apu
} // namespace xe

View File

@ -101,7 +101,7 @@ struct XMA_CONTEXT_DATA {
// DWORD 10-15
uint32_t unk_dwords_10_15[6]; // reserved?
XMA_CONTEXT_DATA(const void* ptr) {
explicit XMA_CONTEXT_DATA(const void* ptr) {
xe::copy_and_swap(reinterpret_cast<uint32_t*>(this),
reinterpret_cast<const uint32_t*>(ptr),
sizeof(XMA_CONTEXT_DATA) / 4);
@ -139,7 +139,7 @@ class XmaContext {
static const uint32_t kOutputBytesPerBlock = 256;
static const uint32_t kOutputMaxSizeBytes = 31 * kOutputBytesPerBlock;
XmaContext();
explicit XmaContext();
~XmaContext();
int Setup(uint32_t id, Memory* memory, uint32_t guest_ptr);
@ -164,8 +164,8 @@ class XmaContext {
private:
static int GetSampleRate(int id);
void DecodePackets(XMA_CONTEXT_DATA& data);
int StartPacket(XMA_CONTEXT_DATA& data);
void DecodePackets(XMA_CONTEXT_DATA* data);
int StartPacket(XMA_CONTEXT_DATA* data);
int PreparePacket(uint8_t* input, size_t seq_offset, size_t size,
int sample_rate, int channels);

View File

@ -50,8 +50,6 @@ extern "C" {
namespace xe {
namespace apu {
using namespace xe::cpu;
XmaDecoder::XmaDecoder(Emulator* emulator)
: emulator_(emulator),
memory_(emulator->memory()),
@ -75,8 +73,8 @@ X_STATUS XmaDecoder::Setup() {
// Let the processor know we want register access callbacks.
emulator_->memory()->AddVirtualMappedRange(
0x7FEA0000, 0xFFFF0000, 0x0000FFFF, this,
reinterpret_cast<MMIOReadCallback>(MMIOReadRegisterThunk),
reinterpret_cast<MMIOWriteCallback>(MMIOWriteRegisterThunk));
reinterpret_cast<cpu::MMIOReadCallback>(MMIOReadRegisterThunk),
reinterpret_cast<cpu::MMIOWriteCallback>(MMIOWriteRegisterThunk));
// Setup XMA context data.
context_data_first_ptr_ = memory()->SystemHeapAlloc(

View File

@ -14,9 +14,9 @@
#include <mutex>
#include <queue>
#include "xenia/apu/xma_context.h"
#include "xenia/emulator.h"
#include "xenia/xbox.h"
#include "xenia/apu/xma_context.h"
namespace xe {
namespace kernel {
@ -31,8 +31,8 @@ struct XMA_CONTEXT_DATA;
class XmaDecoder {
public:
XmaDecoder(Emulator* emulator);
virtual ~XmaDecoder();
explicit XmaDecoder(Emulator* emulator);
~XmaDecoder();
Emulator* emulator() const { return emulator_; }
Memory* memory() const { return memory_; }

View File

@ -14,12 +14,6 @@
#include "xenia/base/platform.h"
#if XE_PLATFORM_MAC
#include <libkern/OSAtomic.h>
#elif XE_PLATFORM_WIN32
#include <intrin.h>
#endif // XE_PLATFORM_MAC
namespace xe {
// These functions are modeled off of the Apple OSAtomic routines

View File

@ -77,8 +77,8 @@ inline T byte_swap(T value) {
template <typename T>
struct be {
be() = default;
be(const T& src) : value(xe::byte_swap(src)) {}
be(const be& other) { value = other.value; }
be(const T& src) : value(xe::byte_swap(src)) {} // NOLINT(runtime/explicit)
be(const be& other) { value = other.value; } // NOLINT(runtime/explicit)
operator T() const { return xe::byte_swap(value); }
be<T>& operator+=(int a) {

View File

@ -25,7 +25,7 @@ bool has_console_attached();
struct EntryInfo {
std::wstring name;
std::wstring usage;
int (*entry_point)(std::vector<std::wstring>& args);
int (*entry_point)(const std::vector<std::wstring>& args);
};
EntryInfo GetEntryInfo();

View File

@ -64,10 +64,10 @@ int Main() {
// Convert all args to narrow, as gflags doesn't support wchar.
int argca = argc;
char** argva = (char**)alloca(sizeof(char*) * argca);
char** argva = reinterpret_cast<char**>(alloca(sizeof(char*) * argca));
for (int n = 0; n < argca; n++) {
size_t len = wcslen(argv[n]);
argva[n] = (char*)alloca(len + 1);
argva[n] = reinterpret_cast<char*>(alloca(len + 1));
wcstombs_s(nullptr, argva[n], len + 1, argv[n], _TRUNCATE);
}
@ -110,17 +110,17 @@ int WINAPI wWinMain(HINSTANCE, HINSTANCE, LPWSTR command_line, int) {
#if defined _M_IX86
#pragma comment( \
linker, \
"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls' version='6.0.0.0' processorArchitecture='x86' publicKeyToken='6595b64144ccf1df' language='*'\"")
"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls' version='6.0.0.0' processorArchitecture='x86' publicKeyToken='6595b64144ccf1df' language='*'\"") // NOLINT(whitespace/line_length)
#elif defined _M_IA64
#pragma comment( \
linker, \
"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls' version='6.0.0.0' processorArchitecture='ia64' publicKeyToken='6595b64144ccf1df' language='*'\"")
"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls' version='6.0.0.0' processorArchitecture='ia64' publicKeyToken='6595b64144ccf1df' language='*'\"") // NOLINT(whitespace/line_length)
#elif defined _M_X64
#pragma comment( \
linker, \
"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls' version='6.0.0.0' processorArchitecture='amd64' publicKeyToken='6595b64144ccf1df' language='*'\"")
"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls' version='6.0.0.0' processorArchitecture='amd64' publicKeyToken='6595b64144ccf1df' language='*'\"") // NOLINT(whitespace/line_length)
#else
#pragma comment( \
linker, \
"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls' version='6.0.0.0' processorArchitecture='*' publicKeyToken='6595b64144ccf1df' language='*'\"")
"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls' version='6.0.0.0' processorArchitecture='*' publicKeyToken='6595b64144ccf1df' language='*'\"") // NOLINT(whitespace/line_length)
#endif

View File

@ -86,7 +86,6 @@ std::unique_ptr<MappedMemory> MappedMemory::Open(const std::wstring& path,
mm->mapping_handle = CreateFileMapping(mm->file_handle, nullptr,
mapping_protect, 0, 0, nullptr);
//(DWORD)(aligned_length >> 32), (DWORD)(aligned_length & 0xFFFFFFFF), NULL);
if (!mm->mapping_handle) {
return nullptr;
}
@ -156,7 +155,7 @@ class Win32ChunkedMappedMemoryWriter : public ChunkedMappedMemoryWriter {
private:
class Chunk {
public:
Chunk(size_t capacity)
explicit Chunk(size_t capacity)
: file_handle_(0),
mapping_handle_(0),
data_(nullptr),

View File

@ -16,7 +16,7 @@ namespace xe {
// Copyright (c) Microsoft Corporation. All rights reserved.
uint16_t float_to_half(float value) {
uint32_t Result;
uint32_t IValue = ((uint32_t*)(&value))[0];
uint32_t IValue = (reinterpret_cast<uint32_t*>(&value))[0];
uint32_t Sign = (IValue & 0x80000000U) >> 16U;
IValue = IValue & 0x7FFFFFFFU; // Hack off the sign
if (IValue > 0x47FFEFFFU) {
@ -63,7 +63,7 @@ float half_to_float(uint16_t value) {
uint32_t Result = ((value & 0x8000) << 16) | // Sign
((Exponent + 112) << 23) | // Exponent
(Mantissa << 13); // Mantissa
return *(float*)&Result;
return *reinterpret_cast<float*>(&Result);
}
} // namespace xe

View File

@ -14,10 +14,11 @@
#include "xenia/base/logging.h"
// winsock includes must come after platform_win.h:
#include "xenia/base/platform_win.h"
#include <mstcpip.h> // NOLINT(must follow platform_win.h)
#include <winsock2.h> // NOLINT(must follow platform_win.h)
#include <ws2tcpip.h> // NOLINT(must follow platform_win.h)
#include <mstcpip.h> // NOLINT(build/include_order)
#include <winsock2.h> // NOLINT(build/include_order)
#include <ws2tcpip.h> // NOLINT(build/include_order)
namespace xe {

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_BACKEND_ASSEMBLER_H_
#define XENIA_BACKEND_ASSEMBLER_H_
#ifndef XENIA_CPU_BACKEND_ASSEMBLER_H_
#define XENIA_CPU_BACKEND_ASSEMBLER_H_
#include <memory>
@ -30,7 +30,7 @@ class Backend;
class Assembler {
public:
Assembler(Backend* backend);
explicit Assembler(Backend* backend);
virtual ~Assembler();
virtual bool Initialize();
@ -49,4 +49,4 @@ class Assembler {
} // namespace cpu
} // namespace xe
#endif // XENIA_BACKEND_ASSEMBLER_H_
#endif // XENIA_CPU_BACKEND_ASSEMBLER_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_BACKEND_BACKEND_H_
#define XENIA_BACKEND_BACKEND_H_
#ifndef XENIA_CPU_BACKEND_BACKEND_H_
#define XENIA_CPU_BACKEND_BACKEND_H_
#include <memory>
@ -31,7 +31,7 @@ class CodeCache;
class Backend {
public:
Backend(Processor* processor);
explicit Backend(Processor* processor);
virtual ~Backend();
Processor* processor() const { return processor_; }
@ -61,4 +61,4 @@ class Backend {
} // namespace cpu
} // namespace xe
#endif // XENIA_BACKEND_BACKEND_H_
#endif // XENIA_CPU_BACKEND_BACKEND_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_BACKEND_CODE_CACHE_H_
#define XENIA_BACKEND_CODE_CACHE_H_
#ifndef XENIA_CPU_BACKEND_CODE_CACHE_H_
#define XENIA_CPU_BACKEND_CODE_CACHE_H_
#include <string>
@ -39,4 +39,4 @@ class CodeCache {
} // namespace cpu
} // namespace xe
#endif // XENIA_BACKEND_CODE_CACHE_H_
#endif // XENIA_CPU_BACKEND_CODE_CACHE_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_BACKEND_MACHINE_INFO_H_
#define XENIA_BACKEND_MACHINE_INFO_H_
#ifndef XENIA_CPU_BACKEND_MACHINE_INFO_H_
#define XENIA_CPU_BACKEND_MACHINE_INFO_H_
#include <cstdint>
@ -36,4 +36,4 @@ struct MachineInfo {
} // namespace cpu
} // namespace xe
#endif // XENIA_BACKEND_MACHINE_INFO_H_
#endif // XENIA_CPU_BACKEND_MACHINE_INFO_H_

View File

@ -26,9 +26,6 @@ namespace cpu {
namespace backend {
namespace x64 {
// TODO(benvanik): remove when enums redefined.
using namespace xe::cpu;
using xe::cpu::hir::HIRBuilder;
X64Assembler::X64Assembler(X64Backend* backend)
@ -78,7 +75,7 @@ bool X64Assembler::Assemble(GuestFunction* function, HIRBuilder* builder,
void* machine_code = nullptr;
size_t code_size = 0;
if (!emitter_->Emit(function, builder, debug_info_flags, debug_info.get(),
machine_code, code_size, function->source_map())) {
&machine_code, &code_size, &function->source_map())) {
return false;
}

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_BACKEND_X64_X64_ASSEMBLER_H_
#define XENIA_BACKEND_X64_X64_ASSEMBLER_H_
#ifndef XENIA_CPU_BACKEND_X64_X64_ASSEMBLER_H_
#define XENIA_CPU_BACKEND_X64_X64_ASSEMBLER_H_
#include <memory>
#include <vector>
@ -28,7 +28,7 @@ class XbyakAllocator;
class X64Assembler : public Assembler {
public:
X64Assembler(X64Backend* backend);
explicit X64Assembler(X64Backend* backend);
~X64Assembler() override;
bool Initialize() override;
@ -58,4 +58,4 @@ class X64Assembler : public Assembler {
} // namespace cpu
} // namespace xe
#endif // XENIA_BACKEND_X64_X64_ASSEMBLER_H_
#endif // XENIA_CPU_BACKEND_X64_X64_ASSEMBLER_H_

View File

@ -112,8 +112,6 @@ std::unique_ptr<GuestFunction> X64Backend::CreateGuestFunction(
return std::make_unique<X64Function>(module, address);
}
using namespace Xbyak;
X64ThunkEmitter::X64ThunkEmitter(X64Backend* backend, XbyakAllocator* allocator)
: X64Emitter(backend, allocator) {}

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_BACKEND_X64_X64_BACKEND_H_
#define XENIA_BACKEND_X64_X64_BACKEND_H_
#ifndef XENIA_CPU_BACKEND_X64_X64_BACKEND_H_
#define XENIA_CPU_BACKEND_X64_X64_BACKEND_H_
#include <gflags/gflags.h>
@ -33,9 +33,9 @@ typedef void (*ResolveFunctionThunk)();
class X64Backend : public Backend {
public:
const static uint32_t kForceReturnAddress = 0x9FFF0000u;
static const uint32_t kForceReturnAddress = 0x9FFF0000u;
X64Backend(Processor* processor);
explicit X64Backend(Processor* processor);
~X64Backend() override;
X64CodeCache* code_cache() const { return code_cache_.get(); }
@ -74,4 +74,4 @@ class X64Backend : public Backend {
} // namespace cpu
} // namespace xe
#endif // XENIA_BACKEND_X64_X64_BACKEND_H_
#endif // XENIA_CPU_BACKEND_X64_X64_BACKEND_H_

View File

@ -7,13 +7,14 @@
******************************************************************************
*/
#ifndef XENIA_BACKEND_X64_X64_CODE_CACHE_H_
#define XENIA_BACKEND_X64_X64_CODE_CACHE_H_
#ifndef XENIA_CPU_BACKEND_X64_X64_CODE_CACHE_H_
#define XENIA_CPU_BACKEND_X64_X64_CODE_CACHE_H_
#include <atomic>
#include <memory>
#include <mutex>
#include <string>
#include <utility>
#include <vector>
#include "xenia/base/memory.h"
@ -58,18 +59,18 @@ class X64CodeCache : public CodeCache {
protected:
// All executable code falls within 0x80000000 to 0x9FFFFFFF, so we can
// only map enough for lookups within that range.
const static uint64_t kIndirectionTableBase = 0x80000000;
const static uint64_t kIndirectionTableSize = 0x1FFFFFFF;
static const uint64_t kIndirectionTableBase = 0x80000000;
static const uint64_t kIndirectionTableSize = 0x1FFFFFFF;
// The code range is 512MB, but we know the total code games will have is
// pretty small (dozens of mb at most) and our expansion is reasonablish
// so 256MB should be more than enough.
const static uint64_t kGeneratedCodeBase = 0xA0000000;
const static uint64_t kGeneratedCodeSize = 0x0FFFFFFF;
static const uint64_t kGeneratedCodeBase = 0xA0000000;
static const uint64_t kGeneratedCodeSize = 0x0FFFFFFF;
// This is picked to be high enough to cover whatever we can reasonably
// expect. If we hit issues with this it probably means some corner case
// in analysis triggering.
const static size_t kMaximumFunctionCount = 30000;
static const size_t kMaximumFunctionCount = 30000;
struct UnwindReservation {
size_t data_size = 0;
@ -119,4 +120,4 @@ class X64CodeCache : public CodeCache {
} // namespace cpu
} // namespace xe
#endif // XENIA_BACKEND_X64_X64_CODE_CACHE_H_
#endif // XENIA_CPU_BACKEND_X64_X64_CODE_CACHE_H_

View File

@ -31,7 +31,7 @@ namespace x64 {
// Size of unwind info per function.
// TODO(benvanik): move this to emitter.
const static uint32_t kUnwindInfoSize = 4 + (2 * 1 + 2 + 2);
static const uint32_t kUnwindInfoSize = 4 + (2 * 1 + 2 + 2);
class Win32X64CodeCache : public X64CodeCache {
public:

View File

@ -42,11 +42,6 @@ namespace cpu {
namespace backend {
namespace x64 {
// TODO(benvanik): remove when enums redefined.
using namespace xe::cpu::hir;
using namespace xe::cpu;
using namespace Xbyak;
using xe::cpu::hir::HIRBuilder;
using xe::cpu::hir::Instr;
@ -56,7 +51,8 @@ static const size_t kStashOffset = 32;
// static const size_t kStashOffsetHigh = 32 + 32;
const uint32_t X64Emitter::gpr_reg_map_[X64Emitter::GPR_COUNT] = {
Operand::RBX, Operand::R12, Operand::R13, Operand::R14, Operand::R15,
Xbyak::Operand::RBX, Xbyak::Operand::R12, Xbyak::Operand::R13,
Xbyak::Operand::R14, Xbyak::Operand::R15,
};
const uint32_t X64Emitter::xmm_reg_map_[X64Emitter::XMM_COUNT] = {
@ -64,7 +60,7 @@ const uint32_t X64Emitter::xmm_reg_map_[X64Emitter::XMM_COUNT] = {
};
X64Emitter::X64Emitter(X64Backend* backend, XbyakAllocator* allocator)
: CodeGenerator(kMaxCodeSize, AutoGrow, allocator),
: CodeGenerator(kMaxCodeSize, Xbyak::AutoGrow, allocator),
processor_(backend->processor()),
backend_(backend),
code_cache_(backend->code_cache()),
@ -90,8 +86,8 @@ X64Emitter::~X64Emitter() = default;
bool X64Emitter::Emit(GuestFunction* function, HIRBuilder* builder,
uint32_t debug_info_flags, DebugInfo* debug_info,
void*& out_code_address, size_t& out_code_size,
std::vector<SourceMapEntry>& out_source_map) {
void** out_code_address, size_t* out_code_size,
std::vector<SourceMapEntry>* out_source_map) {
SCOPE_profile_cpu_f("cpu");
// Reset.
@ -102,16 +98,16 @@ bool X64Emitter::Emit(GuestFunction* function, HIRBuilder* builder,
// Fill the generator with code.
size_t stack_size = 0;
if (!Emit(builder, stack_size)) {
if (!Emit(builder, &stack_size)) {
return false;
}
// Copy the final code to the cache and relocate it.
out_code_size = getSize();
out_code_address = Emplace(stack_size, function);
*out_code_size = getSize();
*out_code_address = Emplace(stack_size, function);
// Stash source map.
source_map_arena_.CloneContents(&out_source_map);
source_map_arena_.CloneContents(out_source_map);
return true;
}
@ -129,14 +125,14 @@ void* X64Emitter::Emplace(size_t stack_size, GuestFunction* function) {
} else {
new_address = code_cache_->PlaceHostCode(0, top_, size_, stack_size);
}
top_ = (uint8_t*)new_address;
top_ = reinterpret_cast<uint8_t*>(new_address);
ready();
top_ = old_address;
reset();
return new_address;
}
bool X64Emitter::Emit(HIRBuilder* builder, size_t& out_stack_size) {
bool X64Emitter::Emit(HIRBuilder* builder, size_t* out_stack_size) {
Xbyak::Label epilog_label;
epilog_label_ = &epilog_label;
@ -169,7 +165,7 @@ bool X64Emitter::Emit(HIRBuilder* builder, size_t& out_stack_size) {
// Adding or changing anything here must be matched!
const size_t stack_size = StackLayout::GUEST_STACK_SIZE + stack_offset;
assert_true((stack_size + 8) % 16 == 0);
out_stack_size = stack_size;
*out_stack_size = stack_size;
stack_size_ = stack_size;
sub(rsp, (uint32_t)stack_size);
mov(qword[rsp + StackLayout::GUEST_RCX_HOME], rcx);
@ -190,10 +186,10 @@ bool X64Emitter::Emit(HIRBuilder* builder, size_t& out_stack_size) {
static_assert(debug::FunctionTraceData::kFunctionCallerHistoryCount == 4,
"bitmask depends on count");
mov(rax, qword[low_address(&trace_header->function_call_count)]);
and_(rax, B00000011);
and_(rax, 0b00000011);
// Record call history value into slot (guest addr in RDX).
mov(dword[RegExp(uint32_t(uint64_t(
mov(dword[Xbyak::RegExp(uint32_t(uint64_t(
low_address(&trace_header->function_caller_history)))) +
rax * 4],
edx);
@ -221,7 +217,7 @@ bool X64Emitter::Emit(HIRBuilder* builder, size_t& out_stack_size) {
const Instr* instr = block->instr_head;
while (instr) {
const Instr* new_tail = instr;
if (!SelectSequence(*this, instr, &new_tail)) {
if (!SelectSequence(this, instr, &new_tail)) {
// No sequence found!
assert_always();
XELOGE("Unable to process HIR opcode %s", instr->opcode->name);
@ -368,7 +364,7 @@ void X64Emitter::Call(const hir::Instr* instr, GuestFunction* function) {
}
// Actually jump/call to rax.
if (instr->flags & CALL_TAIL) {
if (instr->flags & hir::CALL_TAIL) {
// Since we skip the prolog we need to mark the return here.
EmitTraceUserCallReturn();
@ -385,9 +381,10 @@ void X64Emitter::Call(const hir::Instr* instr, GuestFunction* function) {
}
}
void X64Emitter::CallIndirect(const hir::Instr* instr, const Reg64& reg) {
void X64Emitter::CallIndirect(const hir::Instr* instr,
const Xbyak::Reg64& reg) {
// Check if return.
if (instr->flags & CALL_POSSIBLE_RETURN) {
if (instr->flags & hir::CALL_POSSIBLE_RETURN) {
cmp(reg.cvt32(), dword[rsp + StackLayout::GUEST_RET_ADDR]);
je(epilog_label(), CodeGenerator::T_NEAR);
}
@ -401,7 +398,7 @@ void X64Emitter::CallIndirect(const hir::Instr* instr, const Reg64& reg) {
mov(eax, dword[ebx]);
// Actually jump/call to rax.
if (instr->flags & CALL_TAIL) {
if (instr->flags & hir::CALL_TAIL) {
// Since we skip the prolog we need to mark the return here.
EmitTraceUserCallReturn();
@ -550,7 +547,7 @@ bool X64Emitter::ConstantFitsIn32Reg(uint64_t v) {
return false;
}
void X64Emitter::MovMem64(const RegExp& addr, uint64_t v) {
void X64Emitter::MovMem64(const Xbyak::RegExp& addr, uint64_t v) {
if ((v & ~0x7FFFFFFF) == 0) {
// Fits under 31 bits, so just load using normal mov.
mov(qword[addr], v);
@ -651,7 +648,7 @@ uint32_t X64Emitter::PlaceData(Memory* memory) {
return ptr;
}
Address X64Emitter::GetXmmConstPtr(XmmConst id) {
Xbyak::Address X64Emitter::GetXmmConstPtr(XmmConst id) {
// Load through fixed constant table setup by PlaceData.
return ptr[rdx + backend_->emitter_data() + sizeof(vec128_t) * id];
}
@ -712,7 +709,7 @@ void X64Emitter::LoadConstantXmm(Xbyak::Xmm dest, double v) {
}
}
Address X64Emitter::StashXmm(int index, const Xmm& r) {
Xbyak::Address X64Emitter::StashXmm(int index, const Xbyak::Xmm& r) {
auto addr = ptr[rsp + kStashOffset + (index * 16)];
vmovups(addr, r);
return addr;

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_BACKEND_X64_X64_EMITTER_H_
#define XENIA_BACKEND_X64_X64_EMITTER_H_
#ifndef XENIA_CPU_BACKEND_X64_X64_EMITTER_H_
#define XENIA_CPU_BACKEND_X64_X64_EMITTER_H_
#include <vector>
@ -116,8 +116,8 @@ class X64Emitter : public Xbyak::CodeGenerator {
bool Emit(GuestFunction* function, hir::HIRBuilder* builder,
uint32_t debug_info_flags, DebugInfo* debug_info,
void*& out_code_address, size_t& out_code_size,
std::vector<SourceMapEntry>& out_source_map);
void** out_code_address, size_t* out_code_size,
std::vector<SourceMapEntry>* out_source_map);
static uint32_t PlaceData(Memory* memory);
@ -196,7 +196,7 @@ class X64Emitter : public Xbyak::CodeGenerator {
protected:
void* Emplace(size_t stack_size, GuestFunction* function = nullptr);
bool Emit(hir::HIRBuilder* builder, size_t& out_stack_size);
bool Emit(hir::HIRBuilder* builder, size_t* out_stack_size);
void EmitGetCurrentThreadId();
void EmitTraceUserCallReturn();
@ -228,4 +228,4 @@ class X64Emitter : public Xbyak::CodeGenerator {
} // namespace cpu
} // namespace xe
#endif // XENIA_BACKEND_X64_X64_EMITTER_H_
#endif // XENIA_CPU_BACKEND_X64_X64_EMITTER_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_BACKEND_X64_X64_FUNCTION_H_
#define XENIA_BACKEND_X64_X64_FUNCTION_H_
#ifndef XENIA_CPU_BACKEND_X64_X64_FUNCTION_H_
#define XENIA_CPU_BACKEND_X64_X64_FUNCTION_H_
#include "xenia/cpu/function.h"
#include "xenia/cpu/thread_state.h"
@ -41,4 +41,4 @@ class X64Function : public GuestFunction {
} // namespace cpu
} // namespace xe
#endif // XENIA_BACKEND_X64_X64_FUNCTION_H_
#endif // XENIA_CPU_BACKEND_X64_X64_FUNCTION_H_

View File

@ -1477,16 +1477,16 @@ struct ROUND_F32 : Sequence<ROUND_F32, I<OPCODE_ROUND, F32Op, F32Op>> {
static void Emit(X64Emitter& e, const EmitArgType& i) {
switch (i.instr->flags) {
case ROUND_TO_ZERO:
e.vroundss(i.dest, i.src1, B00000011);
e.vroundss(i.dest, i.src1, 0b00000011);
break;
case ROUND_TO_NEAREST:
e.vroundss(i.dest, i.src1, B00000000);
e.vroundss(i.dest, i.src1, 0b00000000);
break;
case ROUND_TO_MINUS_INFINITY:
e.vroundss(i.dest, i.src1, B00000001);
e.vroundss(i.dest, i.src1, 0b00000001);
break;
case ROUND_TO_POSITIVE_INFINITY:
e.vroundss(i.dest, i.src1, B00000010);
e.vroundss(i.dest, i.src1, 0b00000010);
break;
}
}
@ -1495,16 +1495,16 @@ struct ROUND_F64 : Sequence<ROUND_F64, I<OPCODE_ROUND, F64Op, F64Op>> {
static void Emit(X64Emitter& e, const EmitArgType& i) {
switch (i.instr->flags) {
case ROUND_TO_ZERO:
e.vroundsd(i.dest, i.src1, B00000011);
e.vroundsd(i.dest, i.src1, 0b00000011);
break;
case ROUND_TO_NEAREST:
e.vroundsd(i.dest, i.src1, B00000000);
e.vroundsd(i.dest, i.src1, 0b00000000);
break;
case ROUND_TO_MINUS_INFINITY:
e.vroundsd(i.dest, i.src1, B00000001);
e.vroundsd(i.dest, i.src1, 0b00000001);
break;
case ROUND_TO_POSITIVE_INFINITY:
e.vroundsd(i.dest, i.src1, B00000010);
e.vroundsd(i.dest, i.src1, 0b00000010);
break;
}
}
@ -1513,16 +1513,16 @@ struct ROUND_V128 : Sequence<ROUND_V128, I<OPCODE_ROUND, V128Op, V128Op>> {
static void Emit(X64Emitter& e, const EmitArgType& i) {
switch (i.instr->flags) {
case ROUND_TO_ZERO:
e.vroundps(i.dest, i.src1, B00000011);
e.vroundps(i.dest, i.src1, 0b00000011);
break;
case ROUND_TO_NEAREST:
e.vroundps(i.dest, i.src1, B00000000);
e.vroundps(i.dest, i.src1, 0b00000000);
break;
case ROUND_TO_MINUS_INFINITY:
e.vroundps(i.dest, i.src1, B00000001);
e.vroundps(i.dest, i.src1, 0b00000001);
break;
case ROUND_TO_POSITIVE_INFINITY:
e.vroundps(i.dest, i.src1, B00000010);
e.vroundps(i.dest, i.src1, 0b00000010);
break;
}
}
@ -4791,7 +4791,7 @@ struct DOT_PRODUCT_3_V128
[](X64Emitter& e, Xmm dest, Xmm src1, Xmm src2) {
// TODO(benvanik): apparently this is very slow
// - find alternative?
e.vdpps(dest, src1, src2, B01110001);
e.vdpps(dest, src1, src2, 0b01110001);
});
}
};
@ -4809,7 +4809,7 @@ struct DOT_PRODUCT_4_V128
[](X64Emitter& e, Xmm dest, Xmm src1, Xmm src2) {
// TODO(benvanik): apparently this is very slow
// - find alternative?
e.vdpps(dest, src1, src2, B11110001);
e.vdpps(dest, src1, src2, 0b11110001);
});
}
};
@ -6454,7 +6454,7 @@ struct PACK : Sequence<PACK, I<OPCODE_PACK, V128Op, V128Op, V128Op>> {
if (e.IsFeatureEnabled(kX64EmitF16C)) {
// 0|0|0|0|W|Z|Y|X
e.vcvtps2ph(i.dest, i.dest, B00000011);
e.vcvtps2ph(i.dest, i.dest, 0b00000011);
// Shuffle to X|Y|0|0|0|0|0|0
e.vpshufb(i.dest, i.dest, e.GetXmmConstPtr(XMMPackFLOAT16_2));
} else {
@ -6481,7 +6481,7 @@ struct PACK : Sequence<PACK, I<OPCODE_PACK, V128Op, V128Op, V128Op>> {
if (e.IsFeatureEnabled(kX64EmitF16C)) {
// 0|0|0|0|W|Z|Y|X
e.vcvtps2ph(i.dest, i.src1, B00000011);
e.vcvtps2ph(i.dest, i.src1, 0b00000011);
// Shuffle to X|Y|Z|W|0|0|0|0
e.vpshufb(i.dest, i.dest, e.GetXmmConstPtr(XMMPackFLOAT16_4));
} else {
@ -6639,8 +6639,8 @@ struct PACK : Sequence<PACK, I<OPCODE_PACK, V128Op, V128Op, V128Op>> {
src2 = e.xmm0;
}
e.vpackusdw(i.dest, i.src1, src2);
e.vpshuflw(i.dest, i.dest, B10110001);
e.vpshufhw(i.dest, i.dest, B10110001);
e.vpshuflw(i.dest, i.dest, 0b10110001);
e.vpshufhw(i.dest, i.dest, 0b10110001);
} else {
// unsigned -> unsigned
assert_always();
@ -7125,11 +7125,11 @@ void RegisterSequences() {
Register_OPCODE_ATOMIC_EXCHANGE();
}
bool SelectSequence(X64Emitter& e, const Instr* i, const Instr** new_tail) {
bool SelectSequence(X64Emitter* e, const Instr* i, const Instr** new_tail) {
const InstrKey key(i);
auto it = sequence_table.find(key);
if (it != sequence_table.end()) {
if (it->second(e, i)) {
if (it->second(*e, i)) {
*new_tail = i->next;
return true;
}

View File

@ -7,16 +7,10 @@
******************************************************************************
*/
#ifndef XENIA_BACKEND_X64_X64_SEQUENCES_H_
#define XENIA_BACKEND_X64_X64_SEQUENCES_H_
#ifndef XENIA_CPU_BACKEND_X64_X64_SEQUENCES_H_
#define XENIA_CPU_BACKEND_X64_X64_SEQUENCES_H_
namespace xe {
namespace cpu {
namespace hir {
class Instr;
} // namespace hir
} // namespace cpu
} // namespace xe
#include "xenia/cpu/hir/instr.h"
namespace xe {
namespace cpu {
@ -26,7 +20,7 @@ namespace x64 {
class X64Emitter;
void RegisterSequences();
bool SelectSequence(X64Emitter& e, const hir::Instr* i,
bool SelectSequence(X64Emitter* e, const hir::Instr* i,
const hir::Instr** new_tail);
} // namespace x64
@ -34,4 +28,4 @@ bool SelectSequence(X64Emitter& e, const hir::Instr* i,
} // namespace cpu
} // namespace xe
#endif // XENIA_BACKEND_X64_X64_SEQUENCES_H_
#endif // XENIA_CPU_BACKEND_X64_X64_SEQUENCES_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_BACKEND_X64_X64_STACK_LAYOUT_H_
#define XENIA_BACKEND_X64_X64_STACK_LAYOUT_H_
#ifndef XENIA_CPU_BACKEND_X64_X64_STACK_LAYOUT_H_
#define XENIA_CPU_BACKEND_X64_X64_STACK_LAYOUT_H_
#include "xenia/cpu/backend/x64/x64_backend.h"
#include "xenia/cpu/backend/x64/x64_emitter.h"
@ -115,12 +115,12 @@ namespace x64 {
class StackLayout {
public:
const static size_t THUNK_STACK_SIZE = 120;
static const size_t THUNK_STACK_SIZE = 120;
const static size_t GUEST_STACK_SIZE = 104;
const static size_t GUEST_RCX_HOME = 80;
const static size_t GUEST_RET_ADDR = 88;
const static size_t GUEST_CALL_RET_ADDR = 96;
static const size_t GUEST_STACK_SIZE = 104;
static const size_t GUEST_RCX_HOME = 80;
static const size_t GUEST_RET_ADDR = 88;
static const size_t GUEST_CALL_RET_ADDR = 96;
};
} // namespace x64
@ -128,4 +128,4 @@ class StackLayout {
} // namespace cpu
} // namespace xe
#endif // XENIA_BACKEND_X64_X64_STACK_LAYOUT_H_
#endif // XENIA_CPU_BACKEND_X64_X64_STACK_LAYOUT_H_

View File

@ -58,41 +58,41 @@ uint32_t GetTracingMode() {
}
void TraceString(void* raw_context, const char* str) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
IPRINT("XE[t] :%d: %s\n", thread_state->thread_id(), str);
IFLUSH();
}
void TraceContextLoadI8(void* raw_context, uint64_t offset, uint8_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("%d (%X) = ctx i8 +%llu\n", (int8_t)value, value, offset);
}
void TraceContextLoadI16(void* raw_context, uint64_t offset, uint16_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("%d (%X) = ctx i16 +%llu\n", (int16_t)value, value, offset);
}
void TraceContextLoadI32(void* raw_context, uint64_t offset, uint32_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("%d (%X) = ctx i32 +%llu\n", (int32_t)value, value, offset);
}
void TraceContextLoadI64(void* raw_context, uint64_t offset, uint64_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("%lld (%llX) = ctx i64 +%llu\n", (int64_t)value, value, offset);
}
void TraceContextLoadF32(void* raw_context, uint64_t offset, __m128 value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("%e (%X) = ctx f32 +%llu\n", xe::m128_f32<0>(value),
xe::m128_i32<0>(value), offset);
}
void TraceContextLoadF64(void* raw_context, uint64_t offset,
const double* value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
auto v = _mm_loadu_pd(value);
DPRINT("%le (%llX) = ctx f64 +%llu\n", xe::m128_f64<0>(v), xe::m128_i64<0>(v),
offset);
}
void TraceContextLoadV128(void* raw_context, uint64_t offset, __m128 value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("[%e, %e, %e, %e] [%.8X, %.8X, %.8X, %.8X] = ctx v128 +%llu\n",
xe::m128_f32<0>(value), xe::m128_f32<1>(value), xe::m128_f32<2>(value),
xe::m128_f32<3>(value), xe::m128_i32<0>(value), xe::m128_i32<1>(value),
@ -100,35 +100,35 @@ void TraceContextLoadV128(void* raw_context, uint64_t offset, __m128 value) {
}
void TraceContextStoreI8(void* raw_context, uint64_t offset, uint8_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("ctx i8 +%llu = %d (%X)\n", offset, (int8_t)value, value);
}
void TraceContextStoreI16(void* raw_context, uint64_t offset, uint16_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("ctx i16 +%llu = %d (%X)\n", offset, (int16_t)value, value);
}
void TraceContextStoreI32(void* raw_context, uint64_t offset, uint32_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("ctx i32 +%llu = %d (%X)\n", offset, (int32_t)value, value);
}
void TraceContextStoreI64(void* raw_context, uint64_t offset, uint64_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("ctx i64 +%llu = %lld (%llX)\n", offset, (int64_t)value, value);
}
void TraceContextStoreF32(void* raw_context, uint64_t offset, __m128 value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("ctx f32 +%llu = %e (%X)\n", offset, xe::m128_f32<0>(value),
xe::m128_i32<0>(value));
}
void TraceContextStoreF64(void* raw_context, uint64_t offset,
const double* value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
auto v = _mm_loadu_pd(value);
DPRINT("ctx f64 +%llu = %le (%llX)\n", offset, xe::m128_f64<0>(v),
xe::m128_i64<0>(v));
}
void TraceContextStoreV128(void* raw_context, uint64_t offset, __m128 value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("ctx v128 +%llu = [%e, %e, %e, %e] [%.8X, %.8X, %.8X, %.8X]\n", offset,
xe::m128_f32<0>(value), xe::m128_f32<1>(value), xe::m128_f32<2>(value),
xe::m128_f32<3>(value), xe::m128_i32<0>(value), xe::m128_i32<1>(value),
@ -136,33 +136,33 @@ void TraceContextStoreV128(void* raw_context, uint64_t offset, __m128 value) {
}
void TraceMemoryLoadI8(void* raw_context, uint32_t address, uint8_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("%d (%X) = load.i8 %.8X\n", (int8_t)value, value, address);
}
void TraceMemoryLoadI16(void* raw_context, uint32_t address, uint16_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("%d (%X) = load.i16 %.8X\n", (int16_t)value, value, address);
}
void TraceMemoryLoadI32(void* raw_context, uint32_t address, uint32_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("%d (%X) = load.i32 %.8X\n", (int32_t)value, value, address);
}
void TraceMemoryLoadI64(void* raw_context, uint32_t address, uint64_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("%lld (%llX) = load.i64 %.8X\n", (int64_t)value, value, address);
}
void TraceMemoryLoadF32(void* raw_context, uint32_t address, __m128 value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("%e (%X) = load.f32 %.8X\n", xe::m128_f32<0>(value),
xe::m128_i32<0>(value), address);
}
void TraceMemoryLoadF64(void* raw_context, uint32_t address, __m128 value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("%le (%llX) = load.f64 %.8X\n", xe::m128_f64<0>(value),
xe::m128_i64<0>(value), address);
}
void TraceMemoryLoadV128(void* raw_context, uint32_t address, __m128 value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("[%e, %e, %e, %e] [%.8X, %.8X, %.8X, %.8X] = load.v128 %.8X\n",
xe::m128_f32<0>(value), xe::m128_f32<1>(value), xe::m128_f32<2>(value),
xe::m128_f32<3>(value), xe::m128_i32<0>(value), xe::m128_i32<1>(value),
@ -170,33 +170,33 @@ void TraceMemoryLoadV128(void* raw_context, uint32_t address, __m128 value) {
}
void TraceMemoryStoreI8(void* raw_context, uint32_t address, uint8_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("store.i8 %.8X = %d (%X)\n", address, (int8_t)value, value);
}
void TraceMemoryStoreI16(void* raw_context, uint32_t address, uint16_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("store.i16 %.8X = %d (%X)\n", address, (int16_t)value, value);
}
void TraceMemoryStoreI32(void* raw_context, uint32_t address, uint32_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("store.i32 %.8X = %d (%X)\n", address, (int32_t)value, value);
}
void TraceMemoryStoreI64(void* raw_context, uint32_t address, uint64_t value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("store.i64 %.8X = %lld (%llX)\n", address, (int64_t)value, value);
}
void TraceMemoryStoreF32(void* raw_context, uint32_t address, __m128 value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("store.f32 %.8X = %e (%X)\n", address, xe::m128_f32<0>(value),
xe::m128_i32<0>(value));
}
void TraceMemoryStoreF64(void* raw_context, uint32_t address, __m128 value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("store.f64 %.8X = %le (%llX)\n", address, xe::m128_f64<0>(value),
xe::m128_i64<0>(value));
}
void TraceMemoryStoreV128(void* raw_context, uint32_t address, __m128 value) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("store.v128 %.8X = [%e, %e, %e, %e] [%.8X, %.8X, %.8X, %.8X]\n",
address, xe::m128_f32<0>(value), xe::m128_f32<1>(value),
xe::m128_f32<2>(value), xe::m128_f32<3>(value), xe::m128_i32<0>(value),
@ -206,7 +206,7 @@ void TraceMemoryStoreV128(void* raw_context, uint32_t address, __m128 value) {
void TraceMemset(void* raw_context, uint32_t address, uint8_t value,
uint32_t length) {
auto thread_state = *((ThreadState**)raw_context);
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
DPRINT("memset %.8X-%.8X (%d) = %.2X", address, address + length, length,
value);
}

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_BACKEND_X64_X64_TRACERS_H_
#define XENIA_BACKEND_X64_X64_TRACERS_H_
#ifndef XENIA_CPU_BACKEND_X64_X64_TRACERS_H_
#define XENIA_CPU_BACKEND_X64_X64_TRACERS_H_
#include <xmmintrin.h>
#include <cstdint>
@ -72,4 +72,4 @@ void TraceMemset(void* raw_context, uint32_t address, uint8_t value,
} // namespace cpu
} // namespace xe
#endif // XENIA_BACKEND_X64_X64_TRACERS_H_
#endif // XENIA_CPU_BACKEND_X64_X64_TRACERS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_COMPILER_H_
#define XENIA_COMPILER_COMPILER_H_
#ifndef XENIA_CPU_COMPILER_COMPILER_H_
#define XENIA_CPU_COMPILER_COMPILER_H_
#include <memory>
#include <vector>
@ -30,7 +30,7 @@ class CompilerPass;
class Compiler {
public:
Compiler(Processor* processor);
explicit Compiler(Processor* processor);
~Compiler();
Processor* processor() const { return processor_; }
@ -53,4 +53,4 @@ class Compiler {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_COMPILER_H_
#endif // XENIA_CPU_COMPILER_COMPILER_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_COMPILER_PASS_H_
#define XENIA_COMPILER_COMPILER_PASS_H_
#ifndef XENIA_CPU_COMPILER_COMPILER_PASS_H_
#define XENIA_CPU_COMPILER_COMPILER_PASS_H_
#include "xenia/base/arena.h"
#include "xenia/cpu/hir/hir_builder.h"
@ -46,4 +46,4 @@ class CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_COMPILER_PASS_H_
#endif // XENIA_CPU_COMPILER_COMPILER_PASS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_COMPILER_PASSES_H_
#define XENIA_COMPILER_COMPILER_PASSES_H_
#ifndef XENIA_CPU_COMPILER_COMPILER_PASSES_H_
#define XENIA_CPU_COMPILER_COMPILER_PASSES_H_
#include "xenia/cpu/compiler/passes/constant_propagation_pass.h"
#include "xenia/cpu/compiler/passes/context_promotion_pass.h"
@ -16,7 +16,6 @@
#include "xenia/cpu/compiler/passes/control_flow_simplification_pass.h"
#include "xenia/cpu/compiler/passes/data_flow_analysis_pass.h"
#include "xenia/cpu/compiler/passes/dead_code_elimination_pass.h"
//#include "xenia/cpu/compiler/passes/dead_store_elimination_pass.h"
#include "xenia/cpu/compiler/passes/finalization_pass.h"
#include "xenia/cpu/compiler/passes/memory_sequence_combination_pass.h"
#include "xenia/cpu/compiler/passes/register_allocation_pass.h"
@ -24,4 +23,4 @@
#include "xenia/cpu/compiler/passes/validation_pass.h"
#include "xenia/cpu/compiler/passes/value_reduction_pass.h"
#endif // XENIA_COMPILER_COMPILER_PASSES_H_
#endif // XENIA_CPU_COMPILER_COMPILER_PASSES_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_PASSES_CONSTANT_PROPAGATION_PASS_H_
#define XENIA_COMPILER_PASSES_CONSTANT_PROPAGATION_PASS_H_
#ifndef XENIA_CPU_COMPILER_PASSES_CONSTANT_PROPAGATION_PASS_H_
#define XENIA_CPU_COMPILER_PASSES_CONSTANT_PROPAGATION_PASS_H_
#include "xenia/cpu/compiler/compiler_pass.h"
@ -32,4 +32,4 @@ class ConstantPropagationPass : public CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_PASSES_CONSTANT_PROPAGATION_PASS_H_
#endif // XENIA_CPU_COMPILER_PASSES_CONSTANT_PROPAGATION_PASS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_PASSES_CONTEXT_PROMOTION_PASS_H_
#define XENIA_COMPILER_PASSES_CONTEXT_PROMOTION_PASS_H_
#ifndef XENIA_CPU_COMPILER_PASSES_CONTEXT_PROMOTION_PASS_H_
#define XENIA_CPU_COMPILER_PASSES_CONTEXT_PROMOTION_PASS_H_
#include "xenia/base/platform.h"
#include "xenia/cpu/compiler/compiler_pass.h"
@ -52,4 +52,4 @@ class ContextPromotionPass : public CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_PASSES_CONTEXT_PROMOTION_PASS_H_
#endif // XENIA_CPU_COMPILER_PASSES_CONTEXT_PROMOTION_PASS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_PASSES_CONTROL_FLOW_ANALYSIS_PASS_H_
#define XENIA_COMPILER_PASSES_CONTROL_FLOW_ANALYSIS_PASS_H_
#ifndef XENIA_CPU_COMPILER_PASSES_CONTROL_FLOW_ANALYSIS_PASS_H_
#define XENIA_CPU_COMPILER_PASSES_CONTROL_FLOW_ANALYSIS_PASS_H_
#include "xenia/cpu/compiler/compiler_pass.h"
@ -32,4 +32,4 @@ class ControlFlowAnalysisPass : public CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_PASSES_CONTROL_FLOW_ANALYSIS_PASS_H_
#endif // XENIA_CPU_COMPILER_PASSES_CONTROL_FLOW_ANALYSIS_PASS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_PASSES_CONTROL_FLOW_SIMPLIFICATION_PASS_H_
#define XENIA_COMPILER_PASSES_CONTROL_FLOW_SIMPLIFICATION_PASS_H_
#ifndef XENIA_CPU_COMPILER_PASSES_CONTROL_FLOW_SIMPLIFICATION_PASS_H_
#define XENIA_CPU_COMPILER_PASSES_CONTROL_FLOW_SIMPLIFICATION_PASS_H_
#include "xenia/cpu/compiler/compiler_pass.h"
@ -32,4 +32,4 @@ class ControlFlowSimplificationPass : public CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_PASSES_CONTROL_FLOW_SIMPLIFICATION_PASS_H_
#endif // XENIA_CPU_COMPILER_PASSES_CONTROL_FLOW_SIMPLIFICATION_PASS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_PASSES_DATA_FLOW_ANALYSIS_PASS_H_
#define XENIA_COMPILER_PASSES_DATA_FLOW_ANALYSIS_PASS_H_
#ifndef XENIA_CPU_COMPILER_PASSES_DATA_FLOW_ANALYSIS_PASS_H_
#define XENIA_CPU_COMPILER_PASSES_DATA_FLOW_ANALYSIS_PASS_H_
#include "xenia/cpu/compiler/compiler_pass.h"
@ -34,4 +34,4 @@ class DataFlowAnalysisPass : public CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_PASSES_DATA_FLOW_ANALYSIS_PASS_H_
#endif // XENIA_CPU_COMPILER_PASSES_DATA_FLOW_ANALYSIS_PASS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_PASSES_DEAD_CODE_ELIMINATION_PASS_H_
#define XENIA_COMPILER_PASSES_DEAD_CODE_ELIMINATION_PASS_H_
#ifndef XENIA_CPU_COMPILER_PASSES_DEAD_CODE_ELIMINATION_PASS_H_
#define XENIA_CPU_COMPILER_PASSES_DEAD_CODE_ELIMINATION_PASS_H_
#include "xenia/cpu/compiler/compiler_pass.h"
@ -35,4 +35,4 @@ class DeadCodeEliminationPass : public CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_PASSES_DEAD_CODE_ELIMINATION_PASS_H_
#endif // XENIA_CPU_COMPILER_PASSES_DEAD_CODE_ELIMINATION_PASS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_PASSES_FINALIZATION_PASS_H_
#define XENIA_COMPILER_PASSES_FINALIZATION_PASS_H_
#ifndef XENIA_CPU_COMPILER_PASSES_FINALIZATION_PASS_H_
#define XENIA_CPU_COMPILER_PASSES_FINALIZATION_PASS_H_
#include "xenia/cpu/compiler/compiler_pass.h"
@ -32,4 +32,4 @@ class FinalizationPass : public CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_PASSES_FINALIZATION_PASS_H_
#endif // XENIA_CPU_COMPILER_PASSES_FINALIZATION_PASS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_PASSES_MEMORY_SEQUENCE_COMBINATION_PASS_H_
#define XENIA_COMPILER_PASSES_MEMORY_SEQUENCE_COMBINATION_PASS_H_
#ifndef XENIA_CPU_COMPILER_PASSES_MEMORY_SEQUENCE_COMBINATION_PASS_H_
#define XENIA_CPU_COMPILER_PASSES_MEMORY_SEQUENCE_COMBINATION_PASS_H_
#include "xenia/cpu/compiler/compiler_pass.h"
@ -35,4 +35,4 @@ class MemorySequenceCombinationPass : public CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_PASSES_MEMORY_SEQUENCE_COMBINATION_PASS_H_
#endif // XENIA_CPU_COMPILER_PASSES_MEMORY_SEQUENCE_COMBINATION_PASS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_PASSES_REGISTER_ALLOCATION_PASS_H_
#define XENIA_COMPILER_PASSES_REGISTER_ALLOCATION_PASS_H_
#ifndef XENIA_CPU_COMPILER_PASSES_REGISTER_ALLOCATION_PASS_H_
#define XENIA_CPU_COMPILER_PASSES_REGISTER_ALLOCATION_PASS_H_
#include <algorithm>
#include <bitset>
@ -84,4 +84,4 @@ class RegisterAllocationPass : public CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_PASSES_REGISTER_ALLOCATION_PASS_H_
#endif // XENIA_CPU_COMPILER_PASSES_REGISTER_ALLOCATION_PASS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_PASSES_SIMPLIFICATION_PASS_H_
#define XENIA_COMPILER_PASSES_SIMPLIFICATION_PASS_H_
#ifndef XENIA_CPU_COMPILER_PASSES_SIMPLIFICATION_PASS_H_
#define XENIA_CPU_COMPILER_PASSES_SIMPLIFICATION_PASS_H_
#include "xenia/cpu/compiler/compiler_pass.h"
@ -38,4 +38,4 @@ class SimplificationPass : public CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_PASSES_SIMPLIFICATION_PASS_H_
#endif // XENIA_CPU_COMPILER_PASSES_SIMPLIFICATION_PASS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_PASSES_VALIDATION_PASS_H_
#define XENIA_COMPILER_PASSES_VALIDATION_PASS_H_
#ifndef XENIA_CPU_COMPILER_PASSES_VALIDATION_PASS_H_
#define XENIA_CPU_COMPILER_PASSES_VALIDATION_PASS_H_
#include "xenia/cpu/compiler/compiler_pass.h"
@ -34,4 +34,4 @@ class ValidationPass : public CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_PASSES_VALIDATION_PASS_H_
#endif // XENIA_CPU_COMPILER_PASSES_VALIDATION_PASS_H_

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_COMPILER_PASSES_VALUE_REDUCTION_PASS_H_
#define XENIA_COMPILER_PASSES_VALUE_REDUCTION_PASS_H_
#ifndef XENIA_CPU_COMPILER_PASSES_VALUE_REDUCTION_PASS_H_
#define XENIA_CPU_COMPILER_PASSES_VALUE_REDUCTION_PASS_H_
#include "xenia/cpu/compiler/compiler_pass.h"
@ -33,4 +33,4 @@ class ValueReductionPass : public CompilerPass {
} // namespace cpu
} // namespace xe
#endif // XENIA_COMPILER_PASSES_VALUE_REDUCTION_PASS_H_
#endif // XENIA_CPU_COMPILER_PASSES_VALUE_REDUCTION_PASS_H_

View File

@ -437,7 +437,7 @@ bool RunTests(const std::wstring& test_name) {
return failed_count ? false : true;
}
int main(std::vector<std::wstring>& args) {
int main(const std::vector<std::wstring>& args) {
// Grab test name, if present.
std::wstring test_name;
if (args.size() >= 2) {

View File

@ -1933,7 +1933,7 @@ Value* HIRBuilder::CountLeadingZeros(Value* value) {
ASSERT_INTEGER_TYPE(value);
if (value->IsConstantZero()) {
const static uint8_t zeros[] = {
static const uint8_t zeros[] = {
8, 16, 32, 64,
};
assert_true(value->type <= INT64_TYPE);

View File

@ -223,7 +223,7 @@ struct DecodedMov {
int32_t constant;
};
bool TryDecodeMov(const uint8_t* p, DecodedMov& mov) {
bool TryDecodeMov(const uint8_t* p, DecodedMov* mov) {
uint8_t i = 0; // Current byte decode index.
uint8_t rex = 0;
if ((p[i] & 0xF0) == 0x40) {
@ -236,8 +236,8 @@ bool TryDecodeMov(const uint8_t* p, DecodedMov& mov) {
// 44 0f 38 f1 a4 02 00 movbe DWORD PTR [rdx+rax*1+0x0],r12d
// 42 0f 38 f1 8c 22 00 movbe DWORD PTR [rdx+r12*1+0x0],ecx
// 0f 38 f1 8c 02 00 00 movbe DWORD PTR [rdx + rax * 1 + 0x0], ecx
mov.is_load = false;
mov.byte_swap = true;
mov->is_load = false;
mov->byte_swap = true;
i += 3;
} else if (p[i] == 0x0F && p[i + 1] == 0x38 && p[i + 2] == 0xF0) {
// MOVBE r32, m32 (load)
@ -247,8 +247,8 @@ bool TryDecodeMov(const uint8_t* p, DecodedMov& mov) {
// 46 0f 38 f0 a4 22 00 movbe r12d,DWORD PTR [rdx+r12*1+0x0]
// 0f 38 f0 8c 02 00 00 movbe ecx,DWORD PTR [rdx+rax*1+0x0]
// 0F 38 F0 1C 02 movbe ebx,dword ptr [rdx+rax]
mov.is_load = true;
mov.byte_swap = true;
mov->is_load = true;
mov->byte_swap = true;
i += 3;
} else if (p[i] == 0x89) {
// MOV m32, r32 (store)
@ -256,8 +256,8 @@ bool TryDecodeMov(const uint8_t* p, DecodedMov& mov) {
// 44 89 24 02 mov DWORD PTR[rdx + rax * 1], r12d
// 42 89 0c 22 mov DWORD PTR[rdx + r12 * 1], ecx
// 89 0c 02 mov DWORD PTR[rdx + rax * 1], ecx
mov.is_load = false;
mov.byte_swap = false;
mov->is_load = false;
mov->byte_swap = false;
++i;
} else if (p[i] == 0x8B) {
// MOV r32, m32 (load)
@ -266,16 +266,16 @@ bool TryDecodeMov(const uint8_t* p, DecodedMov& mov) {
// 42 8b 0c 22 mov ecx, DWORD PTR[rdx + r12 * 1]
// 46 8b 24 22 mov r12d, DWORD PTR[rdx + r12 * 1]
// 8b 0c 02 mov ecx, DWORD PTR[rdx + rax * 1]
mov.is_load = true;
mov.byte_swap = false;
mov->is_load = true;
mov->byte_swap = false;
++i;
} else if (p[i] == 0xC7) {
// MOV m32, simm32
// http://www.asmpedia.org/index.php?title=MOV
// C7 04 02 02 00 00 00 mov dword ptr [rdx+rax],2
mov.is_load = false;
mov.byte_swap = false;
mov.is_constant = true;
mov->is_load = false;
mov->byte_swap = false;
mov->is_constant = true;
++i;
} else {
return false;
@ -292,13 +292,13 @@ bool TryDecodeMov(const uint8_t* p, DecodedMov& mov) {
uint8_t mod = (modrm & 0b11000000) >> 6;
uint8_t reg = (modrm & 0b00111000) >> 3;
uint8_t rm = (modrm & 0b00000111);
mov.value_reg = reg + (rex_r ? 8 : 0);
mov.mem_has_base = false;
mov.mem_base_reg = 0;
mov.mem_has_index = false;
mov.mem_index_reg = 0;
mov.mem_scale = 1;
mov.mem_displacement = 0;
mov->value_reg = reg + (rex_r ? 8 : 0);
mov->mem_has_base = false;
mov->mem_base_reg = 0;
mov->mem_has_index = false;
mov->mem_index_reg = 0;
mov->mem_scale = 1;
mov->mem_displacement = 0;
bool has_sib = false;
switch (rm) {
case 0b100: // SIB
@ -309,17 +309,17 @@ bool TryDecodeMov(const uint8_t* p, DecodedMov& mov) {
// RIP-relative not supported.
return false;
}
mov.mem_has_base = true;
mov.mem_base_reg = rm + (rex_b ? 8 : 0);
mov->mem_has_base = true;
mov->mem_base_reg = rm + (rex_b ? 8 : 0);
break;
default:
mov.mem_has_base = true;
mov.mem_base_reg = rm + (rex_b ? 8 : 0);
mov->mem_has_base = true;
mov->mem_base_reg = rm + (rex_b ? 8 : 0);
break;
}
if (has_sib) {
uint8_t sib = p[i++];
mov.mem_scale = 1 << ((sib & 0b11000000) >> 8);
mov->mem_scale = 1 << ((sib & 0b11000000) >> 8);
uint8_t sib_index = (sib & 0b00111000) >> 3;
uint8_t sib_base = (sib & 0b00000111);
switch (sib_index) {
@ -327,8 +327,8 @@ bool TryDecodeMov(const uint8_t* p, DecodedMov& mov) {
// No index.
break;
default:
mov.mem_has_index = true;
mov.mem_index_reg = sib_index + (rex_x ? 8 : 0);
mov->mem_has_index = true;
mov->mem_index_reg = sib_index + (rex_x ? 8 : 0);
break;
}
switch (sib_base) {
@ -337,29 +337,28 @@ bool TryDecodeMov(const uint8_t* p, DecodedMov& mov) {
assert_zero(mod);
return false;
default:
mov.mem_has_base = true;
mov.mem_base_reg = sib_base + (rex_b ? 8 : 0);
;
mov->mem_has_base = true;
mov->mem_base_reg = sib_base + (rex_b ? 8 : 0);
break;
}
}
switch (mod) {
case 0b00: {
mov.mem_displacement += 0;
mov->mem_displacement += 0;
} break;
case 0b01: {
mov.mem_displacement += int8_t(p[i++]);
mov->mem_displacement += int8_t(p[i++]);
} break;
case 0b10: {
mov.mem_displacement += xe::load<int32_t>(p + i);
mov->mem_displacement += xe::load<int32_t>(p + i);
i += 4;
} break;
}
if (mov.is_constant) {
mov.constant = xe::load<int32_t>(p + i);
if (mov->is_constant) {
mov->constant = xe::load<int32_t>(p + i);
i += 4;
}
mov.length = i;
mov->length = i;
return true;
}
@ -391,7 +390,7 @@ bool MMIOHandler::HandleAccessFault(void* thread_state,
auto rip = GetThreadStateRip(thread_state);
auto p = reinterpret_cast<const uint8_t*>(rip);
DecodedMov mov = {0};
bool decoded = TryDecodeMov(p, mov);
bool decoded = TryDecodeMov(p, &mov);
if (!decoded) {
XELOGE("Unable to decode MMIO mov at %p", p);
assert_always("Unknown MMIO instruction type");

View File

@ -33,7 +33,7 @@ namespace cpu {
class MachMMIOHandler : public MMIOHandler {
public:
MachMMIOHandler(uint8_t* mapping_base);
explicit MachMMIOHandler(uint8_t* mapping_base);
~MachMMIOHandler() override;
protected:

View File

@ -9,8 +9,10 @@
#include "xenia/cpu/module.h"
#include <algorithm>
#include <fstream>
#include <sstream>
#include <sstream> // NOLINT(readability/streams): should be replaced.
#include <string>
#include "xenia/base/threading.h"
#include "xenia/cpu/processor.h"
@ -138,11 +140,11 @@ Symbol::Status Module::DefineSymbol(Symbol* symbol) {
}
Symbol::Status Module::DefineFunction(Function* symbol) {
return DefineSymbol((Symbol*)symbol);
return DefineSymbol(symbol);
}
Symbol::Status Module::DefineVariable(Symbol* symbol) {
return DefineSymbol((Symbol*)symbol);
return DefineSymbol(symbol);
}
void Module::ForEachFunction(std::function<void(Function*)> callback) {

View File

@ -13,6 +13,7 @@
#include <functional>
#include <memory>
#include <mutex>
#include <string>
#include <unordered_map>
#include <vector>
@ -28,7 +29,7 @@ class Processor;
class Module {
public:
Module(Processor* processor);
explicit Module(Processor* processor);
virtual ~Module();
Memory* memory() const { return memory_; }

View File

@ -36,8 +36,11 @@ using PPCContext = xe::cpu::frontend::PPCContext;
class BuiltinModule : public Module {
public:
BuiltinModule(Processor* processor) : Module(processor), name_("builtin") {}
explicit BuiltinModule(Processor* processor)
: Module(processor), name_("builtin") {}
const std::string& name() const override { return name_; }
bool ContainsAddress(uint32_t address) override {
return (address & 0xFFFFFFF0) == 0xFFFFFFF0;
}

View File

@ -12,6 +12,7 @@
#include <memory>
#include <mutex>
#include <string>
#include <vector>
#include "xenia/base/mutex.h"

View File

@ -19,7 +19,7 @@ namespace cpu {
class RawModule : public Module {
public:
RawModule(Processor* processor);
explicit RawModule(Processor* processor);
~RawModule() override;
bool LoadFile(uint32_t base_address, const std::wstring& path);

View File

@ -25,7 +25,7 @@ DEFINE_bool(debug_symbol_loader, false,
// Must be included after platform_win.h:
#pragma warning(push)
#pragma warning(disable : 4091)
#include <dbghelp.h>
#include <dbghelp.h> // NOLINT(build/include_order)
#pragma warning(pop)
typedef DWORD(__stdcall* LPSYMGETOPTIONS)(VOID);
@ -115,7 +115,7 @@ bool InitializeStackWalker() {
class Win32StackWalker : public StackWalker {
public:
Win32StackWalker(backend::CodeCache* code_cache) {
explicit Win32StackWalker(backend::CodeCache* code_cache) {
// Get the boundaries of the code cache so we can quickly tell if a symbol
// is ours or not.
// We store these globally so that the Sym* callbacks can access them.

View File

@ -7,8 +7,8 @@
******************************************************************************
*/
#ifndef XENIA_CPU_SYMBOL_INFO_H_
#define XENIA_CPU_SYMBOL_INFO_H_
#ifndef XENIA_CPU_SYMBOL_H_
#define XENIA_CPU_SYMBOL_H_
#include <cstdint>
#include <string>
@ -59,4 +59,4 @@ class Symbol {
} // namespace cpu
} // namespace xe
#endif // XENIA_CPU_SYMBOL_INFO_H_
#endif // XENIA_CPU_SYMBOL_H_

View File

@ -7,8 +7,10 @@
******************************************************************************
*/
#ifndef XENIA_CPU_thread_state_H_
#define XENIA_CPU_thread_state_H_
#ifndef XENIA_CPU_THREAD_STATE_H_
#define XENIA_CPU_THREAD_STATE_H_
#include <string>
#include "xenia/cpu/frontend/ppc_context.h"
#include "xenia/cpu/thread_state.h"
@ -70,4 +72,4 @@ class ThreadState {
} // namespace cpu
} // namespace xe
#endif // XENIA_CPU_thread_state_H_
#endif // XENIA_CPU_THREAD_STATE_H_

View File

@ -26,9 +26,8 @@
namespace xe {
namespace cpu {
using namespace xe::kernel;
using PPCContext = xe::cpu::frontend::PPCContext;
using xe::cpu::frontend::PPCContext;
using xe::kernel::KernelState;
void UndefinedImport(PPCContext* ppc_context, KernelState* kernel_state) {
XELOGE("call to undefined import");
@ -52,7 +51,8 @@ bool XexModule::GetOptHeader(const xex2_header* header, xe_xex2_header_keys key,
case 0x00: {
// We just return the value of the optional header.
// Assume that the output pointer points to a uint32_t.
*(uint32_t*)out_ptr = (uint32_t)opt_header.value;
*reinterpret_cast<uint32_t*>(out_ptr) =
static_cast<uint32_t>(opt_header.value);
} break;
case 0x01: {
// Pointer to the value on the optional header.
@ -60,7 +60,8 @@ bool XexModule::GetOptHeader(const xex2_header* header, xe_xex2_header_keys key,
} break;
default: {
// Pointer to the header.
*out_ptr = (void*)((uint8_t*)header + opt_header.offset);
*out_ptr =
reinterpret_cast<void*>(uintptr_t(header) + opt_header.offset);
} break;
}
@ -77,7 +78,7 @@ bool XexModule::GetOptHeader(xe_xex2_header_keys key, void** out_ptr) const {
const xex2_security_info* XexModule::GetSecurityInfo(
const xex2_header* header) {
return reinterpret_cast<const xex2_security_info*>((uint8_t*)header +
return reinterpret_cast<const xex2_security_info*>(uintptr_t(header) +
header->security_offset);
}
@ -109,7 +110,8 @@ uint32_t XexModule::GetProcAddress(uint16_t ordinal) const {
*exe_address + pe_export_directory->offset);
assert_not_null(e);
uint32_t* function_table = (uint32_t*)((uint8_t*)e + e->AddressOfFunctions);
uint32_t* function_table =
reinterpret_cast<uint32_t*>(uintptr_t(e) + e->AddressOfFunctions);
if (ordinal < e->NumberOfFunctions) {
return xex_security_info()->load_address + function_table[ordinal];
@ -135,20 +137,22 @@ uint32_t XexModule::GetProcAddress(const char* name) const {
assert_not_null(e);
// e->AddressOfX RVAs are relative to the IMAGE_EXPORT_DIRECTORY!
uint32_t* function_table = (uint32_t*)((uint64_t)e + e->AddressOfFunctions);
uint32_t* function_table =
reinterpret_cast<uint32_t*>(uintptr_t(e) + e->AddressOfFunctions);
// Names relative to directory
uint32_t* name_table = (uint32_t*)((uint64_t)e + e->AddressOfNames);
uint32_t* name_table =
reinterpret_cast<uint32_t*>(uintptr_t(e) + e->AddressOfNames);
// Table of ordinals (by name)
uint16_t* ordinal_table = (uint16_t*)((uint64_t)e + e->AddressOfNameOrdinals);
uint16_t* ordinal_table =
reinterpret_cast<uint16_t*>(uintptr_t(e) + e->AddressOfNameOrdinals);
for (uint32_t i = 0; i < e->NumberOfNames; i++) {
const char* fn_name = (const char*)((uint64_t)e + name_table[i]);
auto fn_name = reinterpret_cast<const char*>(uintptr_t(e) + name_table[i]);
uint16_t ordinal = ordinal_table[i];
uint32_t addr = *exe_address + function_table[ordinal];
if (!strcmp(name, fn_name)) {
if (!std::strcmp(name, fn_name)) {
// We have a match!
return addr;
}
@ -170,17 +174,17 @@ bool XexModule::ApplyPatch(XexModule* module) {
// Grab the delta descriptor and get to work.
xex2_opt_delta_patch_descriptor* patch_header = nullptr;
GetOptHeader(header, XEX_HEADER_DELTA_PATCH_DESCRIPTOR,
(void**)&patch_header);
reinterpret_cast<void**>(&patch_header));
assert_not_null(patch_header);
// TODO!
// TODO(benvanik): patching code!
return true;
}
bool XexModule::Load(const std::string& name, const std::string& path,
const void* xex_addr, size_t xex_length) {
// TODO: Move loading code here
// TODO(DrChat): Move loading code here.
xex_ = xe_xex2_load(memory(), xex_addr, xex_length, {0});
if (!xex_) {
return false;
@ -210,7 +214,7 @@ bool XexModule::Load(const std::string& name, const std::string& path,
// Scan and find the low/high addresses.
// All code sections are continuous, so this should be easy.
// TODO: Use the new xex header to do this.
// TODO(DrChat): Use the new xex header to do this.
low_address_ = UINT_MAX;
high_address_ = 0;
for (uint32_t n = 0, i = 0; n < old_header->section_count; n++) {
@ -252,14 +256,13 @@ bool XexModule::Load(const std::string& name, const std::string& path,
}
}
auto libraries =
(uint8_t*)opt_import_header + opt_import_header->string_table_size + 12;
auto libraries_ptr = reinterpret_cast<uint8_t*>(opt_import_header) +
opt_import_header->string_table_size + 12;
uint32_t library_offset = 0;
for (uint32_t i = 0; i < opt_import_header->library_count; i++) {
auto library = reinterpret_cast<xex2_import_library*>((uint8_t*)libraries +
library_offset);
auto library =
reinterpret_cast<xex2_import_library*>(libraries_ptr + library_offset);
SetupLibraryImports(string_table[library->name_index], library);
library_offset += library->size;
}

View File

@ -11,18 +11,19 @@
#define XENIA_CPU_XEX_MODULE_H_
#include <string>
#include <vector>
#include "xenia/cpu/module.h"
#include "xenia/kernel/util/xex2.h"
#include "xenia/kernel/util/xex2_info.h"
namespace xe {
// KernelState forward decl.
namespace kernel {
class KernelState;
}
} // namespace kernel
} // namespace xe
namespace xe {
namespace cpu {
class Runtime;

View File

@ -18,7 +18,7 @@ namespace xe {
namespace debug {
namespace ui {
int main(std::vector<std::wstring>& args) {
int main(const std::vector<std::wstring>& args) {
auto app = Application::Create();
app->loop()->AwaitQuit();
return 0;

View File

@ -33,13 +33,6 @@ DEFINE_double(time_scalar, 1.0,
namespace xe {
using namespace xe::apu;
using namespace xe::cpu;
using namespace xe::gpu;
using namespace xe::hid;
using namespace xe::ui;
using namespace xe::vfs;
Emulator::Emulator(const std::wstring& command_line)
: command_line_(command_line) {}
@ -107,7 +100,7 @@ X_STATUS Emulator::Setup(ui::Window* display_window) {
}
// Initialize the CPU.
processor_ = std::make_unique<Processor>(
processor_ = std::make_unique<xe::cpu::Processor>(
memory_.get(), export_resolver_.get(), debugger_.get());
// Initialize the APU.
@ -116,7 +109,7 @@ X_STATUS Emulator::Setup(ui::Window* display_window) {
return X_STATUS_NOT_IMPLEMENTED;
}
xma_decoder_ = std::make_unique<XmaDecoder>(this);
xma_decoder_ = std::make_unique<xe::apu::XmaDecoder>(this);
// Initialize the GPU.
graphics_system_ = xe::gpu::GraphicsSystem::Create(this);
@ -140,10 +133,10 @@ X_STATUS Emulator::Setup(ui::Window* display_window) {
}
// Bring up the virtual filesystem used by the kernel.
file_system_ = std::make_unique<VirtualFileSystem>();
file_system_ = std::make_unique<xe::vfs::VirtualFileSystem>();
// Shared kernel state.
kernel_state_ = std::make_unique<kernel::KernelState>(this);
kernel_state_ = std::make_unique<xe::kernel::KernelState>(this);
// Setup the core components.
if (!processor_->Setup()) {

View File

@ -43,7 +43,7 @@ namespace xe {
class Emulator {
public:
Emulator(const std::wstring& command_line);
explicit Emulator(const std::wstring& command_line);
~Emulator();
const std::wstring& command_line() const { return command_line_; }

View File

@ -2187,7 +2187,7 @@ void DrawUI(xe::ui::Window* window, TracePlayer& player, Memory* memory) {
void ImImpl_Setup();
void ImImpl_Shutdown();
int trace_viewer_main(std::vector<std::wstring>& args) {
int trace_viewer_main(const std::vector<std::wstring>& args) {
// Create the emulator but don't initialize so we can setup the window.
auto emulator = std::make_unique<Emulator>(L"");

View File

@ -427,10 +427,10 @@ int xe_xex2_read_header(const uint8_t* addr, const size_t length,
}
int xe_xex2_decrypt_key(xe_xex2_header_t* header) {
const static uint8_t xe_xex2_retail_key[16] = {
static const uint8_t xe_xex2_retail_key[16] = {
0x20, 0xB1, 0x85, 0xA5, 0x9D, 0x28, 0xFD, 0xC3,
0x40, 0x58, 0x3F, 0xBB, 0x08, 0x96, 0xBF, 0x91};
const static uint8_t xe_xex2_devkit_key[16] = {
static const uint8_t xe_xex2_devkit_key[16] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

View File

@ -308,25 +308,25 @@ DECLARE_XAM_EXPORT(NetDll_WSAResetEvent,
struct XnAddrStatus {
// Address acquisition is not yet complete
const static uint32_t XNET_GET_XNADDR_PENDING = 0x00000000;
static const uint32_t XNET_GET_XNADDR_PENDING = 0x00000000;
// XNet is uninitialized or no debugger found
const static uint32_t XNET_GET_XNADDR_NONE = 0x00000001;
static const uint32_t XNET_GET_XNADDR_NONE = 0x00000001;
// Host has ethernet address (no IP address)
const static uint32_t XNET_GET_XNADDR_ETHERNET = 0x00000002;
static const uint32_t XNET_GET_XNADDR_ETHERNET = 0x00000002;
// Host has statically assigned IP address
const static uint32_t XNET_GET_XNADDR_STATIC = 0x00000004;
static const uint32_t XNET_GET_XNADDR_STATIC = 0x00000004;
// Host has DHCP assigned IP address
const static uint32_t XNET_GET_XNADDR_DHCP = 0x00000008;
static const uint32_t XNET_GET_XNADDR_DHCP = 0x00000008;
// Host has PPPoE assigned IP address
const static uint32_t XNET_GET_XNADDR_PPPOE = 0x00000010;
static const uint32_t XNET_GET_XNADDR_PPPOE = 0x00000010;
// Host has one or more gateways configured
const static uint32_t XNET_GET_XNADDR_GATEWAY = 0x00000020;
static const uint32_t XNET_GET_XNADDR_GATEWAY = 0x00000020;
// Host has one or more DNS servers configured
const static uint32_t XNET_GET_XNADDR_DNS = 0x00000040;
static const uint32_t XNET_GET_XNADDR_DNS = 0x00000040;
// Host is currently connected to online service
const static uint32_t XNET_GET_XNADDR_ONLINE = 0x00000080;
static const uint32_t XNET_GET_XNADDR_ONLINE = 0x00000080;
// Network configuration requires troubleshooting
const static uint32_t XNET_GET_XNADDR_TROUBLESHOOT = 0x00008000;
static const uint32_t XNET_GET_XNADDR_TROUBLESHOOT = 0x00008000;
};
dword_result_t NetDll_XNetGetTitleXnAddr(dword_t caller,

View File

@ -127,7 +127,7 @@ int Memory::Initialize() {
// we pick, so try a few times.
mapping_base_ = 0;
for (size_t n = 32; n < 64; n++) {
uint8_t* mapping_base = (uint8_t*)(1ull << n);
auto mapping_base = reinterpret_cast<uint8_t*>(1ull << n);
if (!MapViews(mapping_base)) {
mapping_base_ = mapping_base;
break;
@ -192,7 +192,7 @@ int Memory::Initialize() {
return 0;
}
const static struct {
static const struct {
uint64_t virtual_address_start;
uint64_t virtual_address_end;
uint64_t target_address;

View File

@ -165,11 +165,11 @@ class Memory {
inline uint8_t* virtual_membase() const { return virtual_membase_; }
inline uint8_t* TranslateVirtual(uint32_t guest_address) const {
return virtual_membase_ + guest_address;
};
}
template <typename T>
inline T TranslateVirtual(uint32_t guest_address) const {
return reinterpret_cast<T>(virtual_membase_ + guest_address);
};
}
inline uint8_t* physical_membase() const { return physical_membase_; }
inline uint8_t* TranslatePhysical(uint32_t guest_address) const {

View File

@ -7,10 +7,15 @@
******************************************************************************
*/
#include "xenia/base/logging.h"
#include <gflags/gflags.h>
#include <string>
// NOTE: this must be included before microprofile as macro expansion needs
// XELOGI.
#include "xenia/base/logging.h"
// NOTE: microprofile must be setup first, before profiling.h is included.
#define MICROPROFILE_ENABLED 1
#define MICROPROFILEUI_ENABLED 1
#define MICROPROFILE_IMPL 1
@ -22,10 +27,10 @@
#define MICROPROFILE_WEBSERVER 1
#define MICROPROFILE_DEBUG 0
#if MICROPROFILE_WEBSERVER
#include <winsock.h>
#include <winsock.h> // NOLINT(build/include_order)
#endif // MICROPROFILE_WEBSERVER
#include <microprofile/microprofile.h>
#include <microprofile/microprofileui.h>
#include "third_party/microprofile/microprofile.h"
#include "third_party/microprofile/microprofileui.h"
#include "xenia/profiling.h"

View File

@ -51,7 +51,7 @@ bool DiscImageDevice::Initialize() {
DiscImageDevice::Error DiscImageDevice::Verify(ParseState& state) {
// Find sector 32 of the game partition - try at a few points.
const static size_t likely_offsets[] = {
static const size_t likely_offsets[] = {
0x00000000, 0x0000FB20, 0x00020600, 0x0FD90000,
};
bool magic_found = false;

View File

@ -76,7 +76,10 @@ typedef uint32_t X_STATUS;
// Windows is a weird place.
typedef uint32_t X_RESULT;
#define X_FACILITY_WIN32 7
#define X_RESULT_FROM_WIN32(x) x //((X_RESULT)(x) <= 0 ? ((X_RESULT)(x)) : ((X_RESULT) (((x) & 0x0000FFFF) | (X_FACILITY_WIN32 << 16) | 0x80000000)))
#define X_RESULT_FROM_WIN32(x) x
// Maybe X_RESULT_FROM_WIN32 is this instead?:
// ((X_RESULT)(x) <= 0 ? ((X_RESULT)(x)) :
// ((X_RESULT) (((x) & 0x0000FFFF) | (X_FACILITY_WIN32 << 16) | 0x80000000)))
#define X_ERROR_SUCCESS X_RESULT_FROM_WIN32(0x00000000L)
#define X_ERROR_FILE_NOT_FOUND X_RESULT_FROM_WIN32(0x00000002L)
#define X_ERROR_PATH_NOT_FOUND X_RESULT_FROM_WIN32(0x00000003L)
@ -338,8 +341,10 @@ struct X_LIST_ENTRY {
// Assumes X_LIST_ENTRY is within guest memory!
void initialize(uint8_t* virtual_membase) {
flink_ptr = (uint32_t)((uint8_t*)this - virtual_membase);
blink_ptr = (uint32_t)((uint8_t*)this - virtual_membase);
flink_ptr = static_cast<uint32_t>(reinterpret_cast<uint8_t*>(this) -
virtual_membase);
blink_ptr = static_cast<uint32_t>(reinterpret_cast<uint8_t*>(this) -
virtual_membase);
}
};
static_assert_size(X_LIST_ENTRY, 8);