Merge branch 'master' into d3d12
This commit is contained in:
commit
5c1efe7b9a
|
@ -4,8 +4,11 @@ Xenia - Xbox 360 Emulator Research Project
|
|||
Xenia is an experimental emulator for the Xbox 360. For more information see the
|
||||
[main xenia website](https://xenia.jp/).
|
||||
|
||||
**Interested in supporting the core contributors?
|
||||
[Xenia Project on Patreon](https://www.patreon.com/xenia_project).**
|
||||
|
||||
Come chat with us about **emulator-related topics** on [Discord](https://discord.gg/Q9mxZf9).
|
||||
For developer chat join `#dev` but stay on topic. Lurking is fine.
|
||||
For developer chat join `#dev` but stay on topic. Lurking is not only fine, but encouraged!
|
||||
Please check the [frequently asked questions](https://xenia.jp/faq/) page before
|
||||
asking questions. We've got jobs/lives/etc, so don't expect instant answers.
|
||||
|
||||
|
|
|
@ -0,0 +1,428 @@
|
|||
Attribution-ShareAlike 4.0 International
|
||||
|
||||
=======================================================================
|
||||
|
||||
Creative Commons Corporation ("Creative Commons") is not a law firm and
|
||||
does not provide legal services or legal advice. Distribution of
|
||||
Creative Commons public licenses does not create a lawyer-client or
|
||||
other relationship. Creative Commons makes its licenses and related
|
||||
information available on an "as-is" basis. Creative Commons gives no
|
||||
warranties regarding its licenses, any material licensed under their
|
||||
terms and conditions, or any related information. Creative Commons
|
||||
disclaims all liability for damages resulting from their use to the
|
||||
fullest extent possible.
|
||||
|
||||
Using Creative Commons Public Licenses
|
||||
|
||||
Creative Commons public licenses provide a standard set of terms and
|
||||
conditions that creators and other rights holders may use to share
|
||||
original works of authorship and other material subject to copyright
|
||||
and certain other rights specified in the public license below. The
|
||||
following considerations are for informational purposes only, are not
|
||||
exhaustive, and do not form part of our licenses.
|
||||
|
||||
Considerations for licensors: Our public licenses are
|
||||
intended for use by those authorized to give the public
|
||||
permission to use material in ways otherwise restricted by
|
||||
copyright and certain other rights. Our licenses are
|
||||
irrevocable. Licensors should read and understand the terms
|
||||
and conditions of the license they choose before applying it.
|
||||
Licensors should also secure all rights necessary before
|
||||
applying our licenses so that the public can reuse the
|
||||
material as expected. Licensors should clearly mark any
|
||||
material not subject to the license. This includes other CC-
|
||||
licensed material, or material used under an exception or
|
||||
limitation to copyright. More considerations for licensors:
|
||||
wiki.creativecommons.org/Considerations_for_licensors
|
||||
|
||||
Considerations for the public: By using one of our public
|
||||
licenses, a licensor grants the public permission to use the
|
||||
licensed material under specified terms and conditions. If
|
||||
the licensor's permission is not necessary for any reason--for
|
||||
example, because of any applicable exception or limitation to
|
||||
copyright--then that use is not regulated by the license. Our
|
||||
licenses grant only permissions under copyright and certain
|
||||
other rights that a licensor has authority to grant. Use of
|
||||
the licensed material may still be restricted for other
|
||||
reasons, including because others have copyright or other
|
||||
rights in the material. A licensor may make special requests,
|
||||
such as asking that all changes be marked or described.
|
||||
Although not required by our licenses, you are encouraged to
|
||||
respect those requests where reasonable. More considerations
|
||||
for the public:
|
||||
wiki.creativecommons.org/Considerations_for_licensees
|
||||
|
||||
=======================================================================
|
||||
|
||||
Creative Commons Attribution-ShareAlike 4.0 International Public
|
||||
License
|
||||
|
||||
By exercising the Licensed Rights (defined below), You accept and agree
|
||||
to be bound by the terms and conditions of this Creative Commons
|
||||
Attribution-ShareAlike 4.0 International Public License ("Public
|
||||
License"). To the extent this Public License may be interpreted as a
|
||||
contract, You are granted the Licensed Rights in consideration of Your
|
||||
acceptance of these terms and conditions, and the Licensor grants You
|
||||
such rights in consideration of benefits the Licensor receives from
|
||||
making the Licensed Material available under these terms and
|
||||
conditions.
|
||||
|
||||
|
||||
Section 1 -- Definitions.
|
||||
|
||||
a. Adapted Material means material subject to Copyright and Similar
|
||||
Rights that is derived from or based upon the Licensed Material
|
||||
and in which the Licensed Material is translated, altered,
|
||||
arranged, transformed, or otherwise modified in a manner requiring
|
||||
permission under the Copyright and Similar Rights held by the
|
||||
Licensor. For purposes of this Public License, where the Licensed
|
||||
Material is a musical work, performance, or sound recording,
|
||||
Adapted Material is always produced where the Licensed Material is
|
||||
synched in timed relation with a moving image.
|
||||
|
||||
b. Adapter's License means the license You apply to Your Copyright
|
||||
and Similar Rights in Your contributions to Adapted Material in
|
||||
accordance with the terms and conditions of this Public License.
|
||||
|
||||
c. BY-SA Compatible License means a license listed at
|
||||
creativecommons.org/compatiblelicenses, approved by Creative
|
||||
Commons as essentially the equivalent of this Public License.
|
||||
|
||||
d. Copyright and Similar Rights means copyright and/or similar rights
|
||||
closely related to copyright including, without limitation,
|
||||
performance, broadcast, sound recording, and Sui Generis Database
|
||||
Rights, without regard to how the rights are labeled or
|
||||
categorized. For purposes of this Public License, the rights
|
||||
specified in Section 2(b)(1)-(2) are not Copyright and Similar
|
||||
Rights.
|
||||
|
||||
e. Effective Technological Measures means those measures that, in the
|
||||
absence of proper authority, may not be circumvented under laws
|
||||
fulfilling obligations under Article 11 of the WIPO Copyright
|
||||
Treaty adopted on December 20, 1996, and/or similar international
|
||||
agreements.
|
||||
|
||||
f. Exceptions and Limitations means fair use, fair dealing, and/or
|
||||
any other exception or limitation to Copyright and Similar Rights
|
||||
that applies to Your use of the Licensed Material.
|
||||
|
||||
g. License Elements means the license attributes listed in the name
|
||||
of a Creative Commons Public License. The License Elements of this
|
||||
Public License are Attribution and ShareAlike.
|
||||
|
||||
h. Licensed Material means the artistic or literary work, database,
|
||||
or other material to which the Licensor applied this Public
|
||||
License.
|
||||
|
||||
i. Licensed Rights means the rights granted to You subject to the
|
||||
terms and conditions of this Public License, which are limited to
|
||||
all Copyright and Similar Rights that apply to Your use of the
|
||||
Licensed Material and that the Licensor has authority to license.
|
||||
|
||||
j. Licensor means the individual(s) or entity(ies) granting rights
|
||||
under this Public License.
|
||||
|
||||
k. Share means to provide material to the public by any means or
|
||||
process that requires permission under the Licensed Rights, such
|
||||
as reproduction, public display, public performance, distribution,
|
||||
dissemination, communication, or importation, and to make material
|
||||
available to the public including in ways that members of the
|
||||
public may access the material from a place and at a time
|
||||
individually chosen by them.
|
||||
|
||||
l. Sui Generis Database Rights means rights other than copyright
|
||||
resulting from Directive 96/9/EC of the European Parliament and of
|
||||
the Council of 11 March 1996 on the legal protection of databases,
|
||||
as amended and/or succeeded, as well as other essentially
|
||||
equivalent rights anywhere in the world.
|
||||
|
||||
m. You means the individual or entity exercising the Licensed Rights
|
||||
under this Public License. Your has a corresponding meaning.
|
||||
|
||||
|
||||
Section 2 -- Scope.
|
||||
|
||||
a. License grant.
|
||||
|
||||
1. Subject to the terms and conditions of this Public License,
|
||||
the Licensor hereby grants You a worldwide, royalty-free,
|
||||
non-sublicensable, non-exclusive, irrevocable license to
|
||||
exercise the Licensed Rights in the Licensed Material to:
|
||||
|
||||
a. reproduce and Share the Licensed Material, in whole or
|
||||
in part; and
|
||||
|
||||
b. produce, reproduce, and Share Adapted Material.
|
||||
|
||||
2. Exceptions and Limitations. For the avoidance of doubt, where
|
||||
Exceptions and Limitations apply to Your use, this Public
|
||||
License does not apply, and You do not need to comply with
|
||||
its terms and conditions.
|
||||
|
||||
3. Term. The term of this Public License is specified in Section
|
||||
6(a).
|
||||
|
||||
4. Media and formats; technical modifications allowed. The
|
||||
Licensor authorizes You to exercise the Licensed Rights in
|
||||
all media and formats whether now known or hereafter created,
|
||||
and to make technical modifications necessary to do so. The
|
||||
Licensor waives and/or agrees not to assert any right or
|
||||
authority to forbid You from making technical modifications
|
||||
necessary to exercise the Licensed Rights, including
|
||||
technical modifications necessary to circumvent Effective
|
||||
Technological Measures. For purposes of this Public License,
|
||||
simply making modifications authorized by this Section 2(a)
|
||||
(4) never produces Adapted Material.
|
||||
|
||||
5. Downstream recipients.
|
||||
|
||||
a. Offer from the Licensor -- Licensed Material. Every
|
||||
recipient of the Licensed Material automatically
|
||||
receives an offer from the Licensor to exercise the
|
||||
Licensed Rights under the terms and conditions of this
|
||||
Public License.
|
||||
|
||||
b. Additional offer from the Licensor -- Adapted Material.
|
||||
Every recipient of Adapted Material from You
|
||||
automatically receives an offer from the Licensor to
|
||||
exercise the Licensed Rights in the Adapted Material
|
||||
under the conditions of the Adapter's License You apply.
|
||||
|
||||
c. No downstream restrictions. You may not offer or impose
|
||||
any additional or different terms or conditions on, or
|
||||
apply any Effective Technological Measures to, the
|
||||
Licensed Material if doing so restricts exercise of the
|
||||
Licensed Rights by any recipient of the Licensed
|
||||
Material.
|
||||
|
||||
6. No endorsement. Nothing in this Public License constitutes or
|
||||
may be construed as permission to assert or imply that You
|
||||
are, or that Your use of the Licensed Material is, connected
|
||||
with, or sponsored, endorsed, or granted official status by,
|
||||
the Licensor or others designated to receive attribution as
|
||||
provided in Section 3(a)(1)(A)(i).
|
||||
|
||||
b. Other rights.
|
||||
|
||||
1. Moral rights, such as the right of integrity, are not
|
||||
licensed under this Public License, nor are publicity,
|
||||
privacy, and/or other similar personality rights; however, to
|
||||
the extent possible, the Licensor waives and/or agrees not to
|
||||
assert any such rights held by the Licensor to the limited
|
||||
extent necessary to allow You to exercise the Licensed
|
||||
Rights, but not otherwise.
|
||||
|
||||
2. Patent and trademark rights are not licensed under this
|
||||
Public License.
|
||||
|
||||
3. To the extent possible, the Licensor waives any right to
|
||||
collect royalties from You for the exercise of the Licensed
|
||||
Rights, whether directly or through a collecting society
|
||||
under any voluntary or waivable statutory or compulsory
|
||||
licensing scheme. In all other cases the Licensor expressly
|
||||
reserves any right to collect such royalties.
|
||||
|
||||
|
||||
Section 3 -- License Conditions.
|
||||
|
||||
Your exercise of the Licensed Rights is expressly made subject to the
|
||||
following conditions.
|
||||
|
||||
a. Attribution.
|
||||
|
||||
1. If You Share the Licensed Material (including in modified
|
||||
form), You must:
|
||||
|
||||
a. retain the following if it is supplied by the Licensor
|
||||
with the Licensed Material:
|
||||
|
||||
i. identification of the creator(s) of the Licensed
|
||||
Material and any others designated to receive
|
||||
attribution, in any reasonable manner requested by
|
||||
the Licensor (including by pseudonym if
|
||||
designated);
|
||||
|
||||
ii. a copyright notice;
|
||||
|
||||
iii. a notice that refers to this Public License;
|
||||
|
||||
iv. a notice that refers to the disclaimer of
|
||||
warranties;
|
||||
|
||||
v. a URI or hyperlink to the Licensed Material to the
|
||||
extent reasonably practicable;
|
||||
|
||||
b. indicate if You modified the Licensed Material and
|
||||
retain an indication of any previous modifications; and
|
||||
|
||||
c. indicate the Licensed Material is licensed under this
|
||||
Public License, and include the text of, or the URI or
|
||||
hyperlink to, this Public License.
|
||||
|
||||
2. You may satisfy the conditions in Section 3(a)(1) in any
|
||||
reasonable manner based on the medium, means, and context in
|
||||
which You Share the Licensed Material. For example, it may be
|
||||
reasonable to satisfy the conditions by providing a URI or
|
||||
hyperlink to a resource that includes the required
|
||||
information.
|
||||
|
||||
3. If requested by the Licensor, You must remove any of the
|
||||
information required by Section 3(a)(1)(A) to the extent
|
||||
reasonably practicable.
|
||||
|
||||
b. ShareAlike.
|
||||
|
||||
In addition to the conditions in Section 3(a), if You Share
|
||||
Adapted Material You produce, the following conditions also apply.
|
||||
|
||||
1. The Adapter's License You apply must be a Creative Commons
|
||||
license with the same License Elements, this version or
|
||||
later, or a BY-SA Compatible License.
|
||||
|
||||
2. You must include the text of, or the URI or hyperlink to, the
|
||||
Adapter's License You apply. You may satisfy this condition
|
||||
in any reasonable manner based on the medium, means, and
|
||||
context in which You Share Adapted Material.
|
||||
|
||||
3. You may not offer or impose any additional or different terms
|
||||
or conditions on, or apply any Effective Technological
|
||||
Measures to, Adapted Material that restrict exercise of the
|
||||
rights granted under the Adapter's License You apply.
|
||||
|
||||
|
||||
Section 4 -- Sui Generis Database Rights.
|
||||
|
||||
Where the Licensed Rights include Sui Generis Database Rights that
|
||||
apply to Your use of the Licensed Material:
|
||||
|
||||
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
|
||||
to extract, reuse, reproduce, and Share all or a substantial
|
||||
portion of the contents of the database;
|
||||
|
||||
b. if You include all or a substantial portion of the database
|
||||
contents in a database in which You have Sui Generis Database
|
||||
Rights, then the database in which You have Sui Generis Database
|
||||
Rights (but not its individual contents) is Adapted Material,
|
||||
|
||||
including for purposes of Section 3(b); and
|
||||
c. You must comply with the conditions in Section 3(a) if You Share
|
||||
all or a substantial portion of the contents of the database.
|
||||
|
||||
For the avoidance of doubt, this Section 4 supplements and does not
|
||||
replace Your obligations under this Public License where the Licensed
|
||||
Rights include other Copyright and Similar Rights.
|
||||
|
||||
|
||||
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
|
||||
|
||||
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
|
||||
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
|
||||
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
|
||||
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
|
||||
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
|
||||
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
||||
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
|
||||
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
|
||||
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
|
||||
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
|
||||
|
||||
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
|
||||
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
|
||||
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
|
||||
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
|
||||
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
|
||||
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
|
||||
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
|
||||
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
|
||||
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
|
||||
|
||||
c. The disclaimer of warranties and limitation of liability provided
|
||||
above shall be interpreted in a manner that, to the extent
|
||||
possible, most closely approximates an absolute disclaimer and
|
||||
waiver of all liability.
|
||||
|
||||
|
||||
Section 6 -- Term and Termination.
|
||||
|
||||
a. This Public License applies for the term of the Copyright and
|
||||
Similar Rights licensed here. However, if You fail to comply with
|
||||
this Public License, then Your rights under this Public License
|
||||
terminate automatically.
|
||||
|
||||
b. Where Your right to use the Licensed Material has terminated under
|
||||
Section 6(a), it reinstates:
|
||||
|
||||
1. automatically as of the date the violation is cured, provided
|
||||
it is cured within 30 days of Your discovery of the
|
||||
violation; or
|
||||
|
||||
2. upon express reinstatement by the Licensor.
|
||||
|
||||
For the avoidance of doubt, this Section 6(b) does not affect any
|
||||
right the Licensor may have to seek remedies for Your violations
|
||||
of this Public License.
|
||||
|
||||
c. For the avoidance of doubt, the Licensor may also offer the
|
||||
Licensed Material under separate terms or conditions or stop
|
||||
distributing the Licensed Material at any time; however, doing so
|
||||
will not terminate this Public License.
|
||||
|
||||
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
|
||||
License.
|
||||
|
||||
|
||||
Section 7 -- Other Terms and Conditions.
|
||||
|
||||
a. The Licensor shall not be bound by any additional or different
|
||||
terms or conditions communicated by You unless expressly agreed.
|
||||
|
||||
b. Any arrangements, understandings, or agreements regarding the
|
||||
Licensed Material not stated herein are separate from and
|
||||
independent of the terms and conditions of this Public License.
|
||||
|
||||
|
||||
Section 8 -- Interpretation.
|
||||
|
||||
a. For the avoidance of doubt, this Public License does not, and
|
||||
shall not be interpreted to, reduce, limit, restrict, or impose
|
||||
conditions on any use of the Licensed Material that could lawfully
|
||||
be made without permission under this Public License.
|
||||
|
||||
b. To the extent possible, if any provision of this Public License is
|
||||
deemed unenforceable, it shall be automatically reformed to the
|
||||
minimum extent necessary to make it enforceable. If the provision
|
||||
cannot be reformed, it shall be severed from this Public License
|
||||
without affecting the enforceability of the remaining terms and
|
||||
conditions.
|
||||
|
||||
c. No term or condition of this Public License will be waived and no
|
||||
failure to comply consented to unless expressly agreed to by the
|
||||
Licensor.
|
||||
|
||||
d. Nothing in this Public License constitutes or may be interpreted
|
||||
as a limitation upon, or waiver of, any privileges and immunities
|
||||
that apply to the Licensor or You, including from the legal
|
||||
processes of any jurisdiction or authority.
|
||||
|
||||
|
||||
=======================================================================
|
||||
|
||||
Creative Commons is not a party to its public
|
||||
licenses. Notwithstanding, Creative Commons may elect to apply one of
|
||||
its public licenses to material it publishes and in those instances
|
||||
will be considered the “Licensor.” The text of the Creative Commons
|
||||
public licenses is dedicated to the public domain under the CC0 Public
|
||||
Domain Dedication. Except for the limited purpose of indicating that
|
||||
material is shared under a Creative Commons public license or as
|
||||
otherwise permitted by the Creative Commons policies published at
|
||||
creativecommons.org/policies, Creative Commons does not authorize the
|
||||
use of the trademark "Creative Commons" or any other trademark or logo
|
||||
of Creative Commons without its prior written consent including,
|
||||
without limitation, in connection with any unauthorized modifications
|
||||
to any of its public licenses or any other arrangements,
|
||||
understandings, or agreements concerning use of licensed material. For
|
||||
the avoidance of doubt, this paragraph does not form part of the
|
||||
public licenses.
|
||||
|
||||
Creative Commons may be contacted at creativecommons.org.
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 99 KiB After Width: | Height: | Size: 102 KiB |
|
@ -233,6 +233,7 @@ solution("xenia")
|
|||
include("third_party/glslang-spirv.lua")
|
||||
include("third_party/imgui.lua")
|
||||
include("third_party/libav.lua")
|
||||
include("third_party/mspack.lua")
|
||||
include("third_party/snappy.lua")
|
||||
include("third_party/spirv-tools.lua")
|
||||
include("third_party/volk.lua")
|
||||
|
|
|
@ -16,6 +16,7 @@ project("xenia-app")
|
|||
"imgui",
|
||||
"libavcodec",
|
||||
"libavutil",
|
||||
"mspack",
|
||||
"snappy",
|
||||
"spirv-tools",
|
||||
"volk",
|
||||
|
|
|
@ -42,6 +42,15 @@ class X64ThunkEmitter : public X64Emitter {
|
|||
HostToGuestThunk EmitHostToGuestThunk();
|
||||
GuestToHostThunk EmitGuestToHostThunk();
|
||||
ResolveFunctionThunk EmitResolveFunctionThunk();
|
||||
|
||||
private:
|
||||
// The following four functions provide save/load functionality for registers.
|
||||
// They assume at least StackLayout::THUNK_STACK_SIZE bytes have been
|
||||
// allocated on the stack.
|
||||
void EmitSaveVolatileRegs();
|
||||
void EmitLoadVolatileRegs();
|
||||
void EmitSaveNonvolatileRegs();
|
||||
void EmitLoadNonvolatileRegs();
|
||||
};
|
||||
|
||||
X64Backend::X64Backend() : Backend(), code_cache_(nullptr) {
|
||||
|
@ -73,8 +82,6 @@ bool X64Backend::Initialize(Processor* processor) {
|
|||
return false;
|
||||
}
|
||||
|
||||
RegisterSequences();
|
||||
|
||||
// Need movbe to do advanced LOAD/STORE tricks.
|
||||
if (FLAGS_enable_haswell_instructions) {
|
||||
machine_info_.supports_extended_load_store =
|
||||
|
@ -406,6 +413,117 @@ HostToGuestThunk X64ThunkEmitter::EmitHostToGuestThunk() {
|
|||
mov(qword[rsp + 8 * 1], rcx);
|
||||
sub(rsp, stack_size);
|
||||
|
||||
// Save nonvolatile registers.
|
||||
EmitSaveNonvolatileRegs();
|
||||
|
||||
mov(rax, rcx);
|
||||
mov(rsi, rdx); // context
|
||||
mov(rcx, r8); // return address
|
||||
call(rax);
|
||||
|
||||
EmitLoadNonvolatileRegs();
|
||||
|
||||
add(rsp, stack_size);
|
||||
mov(rcx, qword[rsp + 8 * 1]);
|
||||
mov(rdx, qword[rsp + 8 * 2]);
|
||||
mov(r8, qword[rsp + 8 * 3]);
|
||||
ret();
|
||||
|
||||
void* fn = Emplace(stack_size);
|
||||
return (HostToGuestThunk)fn;
|
||||
}
|
||||
|
||||
GuestToHostThunk X64ThunkEmitter::EmitGuestToHostThunk() {
|
||||
// rcx = target function
|
||||
// rdx = arg0
|
||||
// r8 = arg1
|
||||
// r9 = arg2
|
||||
|
||||
const size_t stack_size = StackLayout::THUNK_STACK_SIZE;
|
||||
// rsp + 0 = return address
|
||||
sub(rsp, stack_size);
|
||||
|
||||
// Save off volatile registers.
|
||||
EmitSaveVolatileRegs();
|
||||
|
||||
mov(rax, rcx); // function
|
||||
mov(rcx, GetContextReg()); // context
|
||||
call(rax);
|
||||
|
||||
EmitLoadVolatileRegs();
|
||||
|
||||
add(rsp, stack_size);
|
||||
ret();
|
||||
|
||||
void* fn = Emplace(stack_size);
|
||||
return (GuestToHostThunk)fn;
|
||||
}
|
||||
|
||||
// X64Emitter handles actually resolving functions.
|
||||
extern "C" uint64_t ResolveFunction(void* raw_context, uint32_t target_address);
|
||||
|
||||
ResolveFunctionThunk X64ThunkEmitter::EmitResolveFunctionThunk() {
|
||||
// ebx = target PPC address
|
||||
// rcx = context
|
||||
const size_t stack_size = StackLayout::THUNK_STACK_SIZE;
|
||||
|
||||
// rsp + 0 = return address
|
||||
sub(rsp, stack_size);
|
||||
|
||||
// Save volatile registers
|
||||
EmitSaveVolatileRegs();
|
||||
|
||||
mov(rcx, rsi); // context
|
||||
mov(rdx, rbx);
|
||||
mov(rax, uint64_t(&ResolveFunction));
|
||||
call(rax);
|
||||
|
||||
EmitLoadVolatileRegs();
|
||||
|
||||
add(rsp, stack_size);
|
||||
jmp(rax);
|
||||
|
||||
void* fn = Emplace(stack_size);
|
||||
return (ResolveFunctionThunk)fn;
|
||||
}
|
||||
|
||||
void X64ThunkEmitter::EmitSaveVolatileRegs() {
|
||||
// Save off volatile registers.
|
||||
// mov(qword[rsp + offsetof(StackLayout::Thunk, r[0])], rax);
|
||||
mov(qword[rsp + offsetof(StackLayout::Thunk, r[1])], rcx);
|
||||
mov(qword[rsp + offsetof(StackLayout::Thunk, r[2])], rdx);
|
||||
mov(qword[rsp + offsetof(StackLayout::Thunk, r[3])], r8);
|
||||
mov(qword[rsp + offsetof(StackLayout::Thunk, r[4])], r9);
|
||||
mov(qword[rsp + offsetof(StackLayout::Thunk, r[5])], r10);
|
||||
mov(qword[rsp + offsetof(StackLayout::Thunk, r[6])], r11);
|
||||
|
||||
// movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[0])], xmm0);
|
||||
movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[1])], xmm1);
|
||||
movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[2])], xmm2);
|
||||
movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[3])], xmm3);
|
||||
movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[4])], xmm4);
|
||||
movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[5])], xmm5);
|
||||
}
|
||||
|
||||
void X64ThunkEmitter::EmitLoadVolatileRegs() {
|
||||
// Load volatile registers from our stack frame.
|
||||
// movaps(xmm0, qword[rsp + offsetof(StackLayout::Thunk, xmm[0])]);
|
||||
movaps(xmm1, qword[rsp + offsetof(StackLayout::Thunk, xmm[1])]);
|
||||
movaps(xmm2, qword[rsp + offsetof(StackLayout::Thunk, xmm[2])]);
|
||||
movaps(xmm3, qword[rsp + offsetof(StackLayout::Thunk, xmm[3])]);
|
||||
movaps(xmm4, qword[rsp + offsetof(StackLayout::Thunk, xmm[4])]);
|
||||
movaps(xmm5, qword[rsp + offsetof(StackLayout::Thunk, xmm[5])]);
|
||||
|
||||
// mov(rax, qword[rsp + offsetof(StackLayout::Thunk, r[0])]);
|
||||
mov(rcx, qword[rsp + offsetof(StackLayout::Thunk, r[1])]);
|
||||
mov(rdx, qword[rsp + offsetof(StackLayout::Thunk, r[2])]);
|
||||
mov(r8, qword[rsp + offsetof(StackLayout::Thunk, r[3])]);
|
||||
mov(r9, qword[rsp + offsetof(StackLayout::Thunk, r[4])]);
|
||||
mov(r10, qword[rsp + offsetof(StackLayout::Thunk, r[5])]);
|
||||
mov(r11, qword[rsp + offsetof(StackLayout::Thunk, r[6])]);
|
||||
}
|
||||
|
||||
void X64ThunkEmitter::EmitSaveNonvolatileRegs() {
|
||||
// Preserve nonvolatile registers.
|
||||
mov(qword[rsp + offsetof(StackLayout::Thunk, r[0])], rbx);
|
||||
mov(qword[rsp + offsetof(StackLayout::Thunk, r[1])], rcx);
|
||||
|
@ -427,12 +545,9 @@ HostToGuestThunk X64ThunkEmitter::EmitHostToGuestThunk() {
|
|||
movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[7])], xmm13);
|
||||
movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[8])], xmm14);
|
||||
movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[9])], xmm15);
|
||||
}
|
||||
|
||||
mov(rax, rcx);
|
||||
mov(rsi, rdx); // context
|
||||
mov(rcx, r8); // return address
|
||||
call(rax);
|
||||
|
||||
void X64ThunkEmitter::EmitLoadNonvolatileRegs() {
|
||||
movaps(xmm6, qword[rsp + offsetof(StackLayout::Thunk, xmm[0])]);
|
||||
movaps(xmm7, qword[rsp + offsetof(StackLayout::Thunk, xmm[1])]);
|
||||
movaps(xmm8, qword[rsp + offsetof(StackLayout::Thunk, xmm[2])]);
|
||||
|
@ -453,100 +568,6 @@ HostToGuestThunk X64ThunkEmitter::EmitHostToGuestThunk() {
|
|||
mov(r13, qword[rsp + offsetof(StackLayout::Thunk, r[6])]);
|
||||
mov(r14, qword[rsp + offsetof(StackLayout::Thunk, r[7])]);
|
||||
mov(r15, qword[rsp + offsetof(StackLayout::Thunk, r[8])]);
|
||||
|
||||
add(rsp, stack_size);
|
||||
mov(rcx, qword[rsp + 8 * 1]);
|
||||
mov(rdx, qword[rsp + 8 * 2]);
|
||||
mov(r8, qword[rsp + 8 * 3]);
|
||||
ret();
|
||||
|
||||
void* fn = Emplace(stack_size);
|
||||
return (HostToGuestThunk)fn;
|
||||
}
|
||||
|
||||
GuestToHostThunk X64ThunkEmitter::EmitGuestToHostThunk() {
|
||||
// rcx = context
|
||||
// rdx = target function
|
||||
// r8 = arg0
|
||||
// r9 = arg1
|
||||
// r10 = arg2
|
||||
|
||||
const size_t stack_size = StackLayout::THUNK_STACK_SIZE;
|
||||
// rsp + 0 = return address
|
||||
mov(qword[rsp + 8 * 2], rdx);
|
||||
mov(qword[rsp + 8 * 1], rcx);
|
||||
sub(rsp, stack_size);
|
||||
|
||||
// Save off volatile registers.
|
||||
// TODO(DrChat): Enable this when we actually need this.
|
||||
// mov(qword[rsp + offsetof(StackLayout::Thunk, r[0])], rcx);
|
||||
// mov(qword[rsp + offsetof(StackLayout::Thunk, r[1])], rdx);
|
||||
// mov(qword[rsp + offsetof(StackLayout::Thunk, r[2])], r8);
|
||||
// mov(qword[rsp + offsetof(StackLayout::Thunk, r[3])], r9);
|
||||
// mov(qword[rsp + offsetof(StackLayout::Thunk, r[4])], r10);
|
||||
// mov(qword[rsp + offsetof(StackLayout::Thunk, r[5])], r11);
|
||||
|
||||
// movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[1])], xmm1);
|
||||
// movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[2])], xmm2);
|
||||
// movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[3])], xmm3);
|
||||
// movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[4])], xmm4);
|
||||
// movaps(qword[rsp + offsetof(StackLayout::Thunk, xmm[5])], xmm5);
|
||||
|
||||
mov(rax, rdx);
|
||||
mov(rcx, rsi); // context
|
||||
mov(rdx, r8);
|
||||
mov(r8, r9);
|
||||
mov(r9, r10);
|
||||
call(rax);
|
||||
|
||||
// movaps(xmm1, qword[rsp + offsetof(StackLayout::Thunk, xmm[1])]);
|
||||
// movaps(xmm2, qword[rsp + offsetof(StackLayout::Thunk, xmm[2])]);
|
||||
// movaps(xmm3, qword[rsp + offsetof(StackLayout::Thunk, xmm[3])]);
|
||||
// movaps(xmm4, qword[rsp + offsetof(StackLayout::Thunk, xmm[4])]);
|
||||
// movaps(xmm5, qword[rsp + offsetof(StackLayout::Thunk, xmm[5])]);
|
||||
|
||||
// mov(rcx, qword[rsp + offsetof(StackLayout::Thunk, r[0])]);
|
||||
// mov(rdx, qword[rsp + offsetof(StackLayout::Thunk, r[1])]);
|
||||
// mov(r8, qword[rsp + offsetof(StackLayout::Thunk, r[2])]);
|
||||
// mov(r9, qword[rsp + offsetof(StackLayout::Thunk, r[3])]);
|
||||
// mov(r10, qword[rsp + offsetof(StackLayout::Thunk, r[4])]);
|
||||
// mov(r11, qword[rsp + offsetof(StackLayout::Thunk, r[5])]);
|
||||
|
||||
add(rsp, stack_size);
|
||||
mov(rcx, qword[rsp + 8 * 1]);
|
||||
mov(rdx, qword[rsp + 8 * 2]);
|
||||
ret();
|
||||
|
||||
void* fn = Emplace(stack_size);
|
||||
return (GuestToHostThunk)fn;
|
||||
}
|
||||
|
||||
// X64Emitter handles actually resolving functions.
|
||||
extern "C" uint64_t ResolveFunction(void* raw_context, uint32_t target_address);
|
||||
|
||||
ResolveFunctionThunk X64ThunkEmitter::EmitResolveFunctionThunk() {
|
||||
// ebx = target PPC address
|
||||
// rcx = context
|
||||
|
||||
uint32_t stack_size = 0x18;
|
||||
|
||||
// rsp + 0 = return address
|
||||
mov(qword[rsp + 8 * 2], rdx);
|
||||
mov(qword[rsp + 8 * 1], rcx);
|
||||
sub(rsp, stack_size);
|
||||
|
||||
mov(rcx, rsi); // context
|
||||
mov(rdx, rbx);
|
||||
mov(rax, uint64_t(&ResolveFunction));
|
||||
call(rax);
|
||||
|
||||
add(rsp, stack_size);
|
||||
mov(rcx, qword[rsp + 8 * 1]);
|
||||
mov(rdx, qword[rsp + 8 * 2]);
|
||||
jmp(rax);
|
||||
|
||||
void* fn = Emplace(stack_size);
|
||||
return (ResolveFunctionThunk)fn;
|
||||
}
|
||||
|
||||
} // namespace x64
|
||||
|
|
|
@ -174,15 +174,17 @@ void* X64CodeCache::PlaceGuestCode(uint32_t guest_address, void* machine_code,
|
|||
// If we are going above the high water mark of committed memory, commit
|
||||
// some more. It's ok if multiple threads do this, as redundant commits
|
||||
// aren't harmful.
|
||||
size_t old_commit_mark = generated_code_commit_mark_;
|
||||
if (high_mark > old_commit_mark) {
|
||||
size_t new_commit_mark = old_commit_mark + 16 * 1024 * 1024;
|
||||
size_t old_commit_mark, new_commit_mark;
|
||||
do {
|
||||
old_commit_mark = generated_code_commit_mark_;
|
||||
if (high_mark <= old_commit_mark) break;
|
||||
|
||||
new_commit_mark = old_commit_mark + 16 * 1024 * 1024;
|
||||
xe::memory::AllocFixed(generated_code_base_, new_commit_mark,
|
||||
xe::memory::AllocationType::kCommit,
|
||||
xe::memory::PageAccess::kExecuteReadWrite);
|
||||
generated_code_commit_mark_.compare_exchange_strong(old_commit_mark,
|
||||
new_commit_mark);
|
||||
}
|
||||
} while (generated_code_commit_mark_.compare_exchange_weak(
|
||||
old_commit_mark, new_commit_mark));
|
||||
|
||||
// Copy code.
|
||||
std::memcpy(code_address, machine_code, code_size);
|
||||
|
@ -248,15 +250,17 @@ uint32_t X64CodeCache::PlaceData(const void* data, size_t length) {
|
|||
// If we are going above the high water mark of committed memory, commit some
|
||||
// more. It's ok if multiple threads do this, as redundant commits aren't
|
||||
// harmful.
|
||||
size_t old_commit_mark = generated_code_commit_mark_;
|
||||
if (high_mark > old_commit_mark) {
|
||||
size_t new_commit_mark = old_commit_mark + 16 * 1024 * 1024;
|
||||
size_t old_commit_mark, new_commit_mark;
|
||||
do {
|
||||
old_commit_mark = generated_code_commit_mark_;
|
||||
if (high_mark <= old_commit_mark) break;
|
||||
|
||||
new_commit_mark = old_commit_mark + 16 * 1024 * 1024;
|
||||
xe::memory::AllocFixed(generated_code_base_, new_commit_mark,
|
||||
xe::memory::AllocationType::kCommit,
|
||||
xe::memory::PageAccess::kExecuteReadWrite);
|
||||
generated_code_commit_mark_.compare_exchange_strong(old_commit_mark,
|
||||
new_commit_mark);
|
||||
}
|
||||
} while (generated_code_commit_mark_.compare_exchange_weak(old_commit_mark,
|
||||
new_commit_mark));
|
||||
|
||||
// Copy code.
|
||||
std::memcpy(data_address, data, length);
|
||||
|
|
|
@ -56,12 +56,13 @@ static const size_t kStashOffset = 32;
|
|||
// static const size_t kStashOffsetHigh = 32 + 32;
|
||||
|
||||
const uint32_t X64Emitter::gpr_reg_map_[X64Emitter::GPR_COUNT] = {
|
||||
Xbyak::Operand::RBX, Xbyak::Operand::R12, Xbyak::Operand::R13,
|
||||
Xbyak::Operand::R14, Xbyak::Operand::R15,
|
||||
Xbyak::Operand::RBX, Xbyak::Operand::R10, Xbyak::Operand::R11,
|
||||
Xbyak::Operand::R12, Xbyak::Operand::R13, Xbyak::Operand::R14,
|
||||
Xbyak::Operand::R15,
|
||||
};
|
||||
|
||||
const uint32_t X64Emitter::xmm_reg_map_[X64Emitter::XMM_COUNT] = {
|
||||
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
||||
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
||||
};
|
||||
|
||||
X64Emitter::X64Emitter(X64Backend* backend, XbyakAllocator* allocator)
|
||||
|
@ -148,11 +149,13 @@ bool X64Emitter::Emit(HIRBuilder* builder, size_t* out_stack_size) {
|
|||
for (auto it = locals.begin(); it != locals.end(); ++it) {
|
||||
auto slot = *it;
|
||||
size_t type_size = GetTypeSize(slot->type);
|
||||
|
||||
// Align to natural size.
|
||||
stack_offset = xe::align(stack_offset, type_size);
|
||||
slot->set_constant((uint32_t)stack_offset);
|
||||
stack_offset += type_size;
|
||||
}
|
||||
|
||||
// Ensure 16b alignment.
|
||||
stack_offset -= StackLayout::GUEST_STACK_SIZE;
|
||||
stack_offset = xe::align(stack_offset, static_cast<size_t>(16));
|
||||
|
@ -160,7 +163,7 @@ bool X64Emitter::Emit(HIRBuilder* builder, size_t* out_stack_size) {
|
|||
// Function prolog.
|
||||
// Must be 16b aligned.
|
||||
// Windows is very strict about the form of this and the epilog:
|
||||
// https://msdn.microsoft.com/en-us/library/tawsa7cb.aspx
|
||||
// https://docs.microsoft.com/en-us/cpp/build/prolog-and-epilog?view=vs-2017
|
||||
// IMPORTANT: any changes to the prolog must be kept in sync with
|
||||
// X64CodeCache, which dynamically generates exception information.
|
||||
// Adding or changing anything here must be matched!
|
||||
|
@ -168,6 +171,7 @@ bool X64Emitter::Emit(HIRBuilder* builder, size_t* out_stack_size) {
|
|||
assert_true((stack_size + 8) % 16 == 0);
|
||||
*out_stack_size = stack_size;
|
||||
stack_size_ = stack_size;
|
||||
|
||||
sub(rsp, (uint32_t)stack_size);
|
||||
mov(qword[rsp + StackLayout::GUEST_CTX_HOME], GetContextReg());
|
||||
mov(qword[rsp + StackLayout::GUEST_RET_ADDR], rcx);
|
||||
|
@ -221,6 +225,8 @@ bool X64Emitter::Emit(HIRBuilder* builder, size_t* out_stack_size) {
|
|||
const Instr* new_tail = instr;
|
||||
if (!SelectSequence(this, instr, &new_tail)) {
|
||||
// No sequence found!
|
||||
// NOTE: If you encounter this after adding a new instruction, do a full
|
||||
// rebuild!
|
||||
assert_always();
|
||||
XELOGE("Unable to process HIR opcode %s", instr->opcode->name);
|
||||
break;
|
||||
|
@ -340,13 +346,14 @@ void X64Emitter::UnimplementedInstr(const hir::Instr* i) {
|
|||
|
||||
// This is used by the X64ThunkEmitter's ResolveFunctionThunk.
|
||||
extern "C" uint64_t ResolveFunction(void* raw_context,
|
||||
uint32_t target_address) {
|
||||
uint64_t target_address) {
|
||||
auto thread_state = *reinterpret_cast<ThreadState**>(raw_context);
|
||||
|
||||
// TODO(benvanik): required?
|
||||
assert_not_zero(target_address);
|
||||
|
||||
auto fn = thread_state->processor()->ResolveFunction(target_address);
|
||||
auto fn =
|
||||
thread_state->processor()->ResolveFunction((uint32_t)target_address);
|
||||
assert_not_null(fn);
|
||||
auto x64_fn = static_cast<X64Function*>(fn);
|
||||
uint64_t addr = reinterpret_cast<uint64_t>(x64_fn->machine_code());
|
||||
|
@ -373,10 +380,7 @@ void X64Emitter::Call(const hir::Instr* instr, GuestFunction* function) {
|
|||
// Old-style resolve.
|
||||
// Not too important because indirection table is almost always available.
|
||||
// TODO: Overwrite the call-site with a straight call.
|
||||
mov(rax, reinterpret_cast<uint64_t>(ResolveFunction));
|
||||
mov(rcx, GetContextReg());
|
||||
mov(rdx, function->address());
|
||||
call(rax);
|
||||
CallNative(&ResolveFunction, function->address());
|
||||
}
|
||||
|
||||
// Actually jump/call to rax.
|
||||
|
@ -457,16 +461,15 @@ void X64Emitter::CallExtern(const hir::Instr* instr, const Function* function) {
|
|||
auto builtin_function = static_cast<const BuiltinFunction*>(function);
|
||||
if (builtin_function->handler()) {
|
||||
undefined = false;
|
||||
// rcx = context
|
||||
// rdx = target host function
|
||||
// r8 = arg0
|
||||
// r9 = arg1
|
||||
mov(rcx, GetContextReg());
|
||||
mov(rdx, reinterpret_cast<uint64_t>(builtin_function->handler()));
|
||||
mov(r8, reinterpret_cast<uint64_t>(builtin_function->arg0()));
|
||||
mov(r9, reinterpret_cast<uint64_t>(builtin_function->arg1()));
|
||||
// rcx = target function
|
||||
// rdx = arg0
|
||||
// r8 = arg1
|
||||
// r9 = arg2
|
||||
auto thunk = backend()->guest_to_host_thunk();
|
||||
mov(rax, reinterpret_cast<uint64_t>(thunk));
|
||||
mov(rcx, reinterpret_cast<uint64_t>(builtin_function->handler()));
|
||||
mov(rdx, reinterpret_cast<uint64_t>(builtin_function->arg0()));
|
||||
mov(r8, reinterpret_cast<uint64_t>(builtin_function->arg1()));
|
||||
call(rax);
|
||||
// rax = host return
|
||||
}
|
||||
|
@ -474,13 +477,15 @@ void X64Emitter::CallExtern(const hir::Instr* instr, const Function* function) {
|
|||
auto extern_function = static_cast<const GuestFunction*>(function);
|
||||
if (extern_function->extern_handler()) {
|
||||
undefined = false;
|
||||
// rcx = context
|
||||
// rdx = target host function
|
||||
mov(rcx, GetContextReg());
|
||||
mov(rdx, reinterpret_cast<uint64_t>(extern_function->extern_handler()));
|
||||
mov(r8, qword[GetContextReg() + offsetof(ppc::PPCContext, kernel_state)]);
|
||||
// rcx = target function
|
||||
// rdx = arg0
|
||||
// r8 = arg1
|
||||
// r9 = arg2
|
||||
auto thunk = backend()->guest_to_host_thunk();
|
||||
mov(rax, reinterpret_cast<uint64_t>(thunk));
|
||||
mov(rcx, reinterpret_cast<uint64_t>(extern_function->extern_handler()));
|
||||
mov(rdx,
|
||||
qword[GetContextReg() + offsetof(ppc::PPCContext, kernel_state)]);
|
||||
call(rax);
|
||||
// rax = host return
|
||||
}
|
||||
|
@ -490,42 +495,30 @@ void X64Emitter::CallExtern(const hir::Instr* instr, const Function* function) {
|
|||
}
|
||||
}
|
||||
|
||||
void X64Emitter::CallNative(void* fn) {
|
||||
mov(rax, reinterpret_cast<uint64_t>(fn));
|
||||
mov(rcx, GetContextReg());
|
||||
call(rax);
|
||||
}
|
||||
void X64Emitter::CallNative(void* fn) { CallNativeSafe(fn); }
|
||||
|
||||
void X64Emitter::CallNative(uint64_t (*fn)(void* raw_context)) {
|
||||
mov(rax, reinterpret_cast<uint64_t>(fn));
|
||||
mov(rcx, GetContextReg());
|
||||
call(rax);
|
||||
CallNativeSafe(reinterpret_cast<void*>(fn));
|
||||
}
|
||||
|
||||
void X64Emitter::CallNative(uint64_t (*fn)(void* raw_context, uint64_t arg0)) {
|
||||
mov(rax, reinterpret_cast<uint64_t>(fn));
|
||||
mov(rcx, GetContextReg());
|
||||
call(rax);
|
||||
CallNativeSafe(reinterpret_cast<void*>(fn));
|
||||
}
|
||||
|
||||
void X64Emitter::CallNative(uint64_t (*fn)(void* raw_context, uint64_t arg0),
|
||||
uint64_t arg0) {
|
||||
mov(rax, reinterpret_cast<uint64_t>(fn));
|
||||
mov(rcx, GetContextReg());
|
||||
mov(rdx, arg0);
|
||||
call(rax);
|
||||
mov(GetNativeParam(0), arg0);
|
||||
CallNativeSafe(reinterpret_cast<void*>(fn));
|
||||
}
|
||||
|
||||
void X64Emitter::CallNativeSafe(void* fn) {
|
||||
// rcx = context
|
||||
// rdx = target function
|
||||
// r8 = arg0
|
||||
// r9 = arg1
|
||||
// r10 = arg2
|
||||
// rcx = target function
|
||||
// rdx = arg0
|
||||
// r8 = arg1
|
||||
// r9 = arg2
|
||||
auto thunk = backend()->guest_to_host_thunk();
|
||||
mov(rax, reinterpret_cast<uint64_t>(thunk));
|
||||
mov(rcx, GetContextReg());
|
||||
mov(rdx, reinterpret_cast<uint64_t>(fn));
|
||||
mov(rcx, reinterpret_cast<uint64_t>(fn));
|
||||
call(rax);
|
||||
// rax = host return
|
||||
}
|
||||
|
@ -535,6 +528,18 @@ void X64Emitter::SetReturnAddress(uint64_t value) {
|
|||
mov(qword[rsp + StackLayout::GUEST_CALL_RET_ADDR], rax);
|
||||
}
|
||||
|
||||
Xbyak::Reg64 X64Emitter::GetNativeParam(uint32_t param) {
|
||||
if (param == 0)
|
||||
return rdx;
|
||||
else if (param == 1)
|
||||
return r8;
|
||||
else if (param == 2)
|
||||
return r9;
|
||||
|
||||
assert_always();
|
||||
return r9;
|
||||
}
|
||||
|
||||
// Important: If you change these, you must update the thunks in x64_backend.cc!
|
||||
Xbyak::Reg64 X64Emitter::GetContextReg() { return rsi; }
|
||||
Xbyak::Reg64 X64Emitter::GetMembaseReg() { return rdi; }
|
||||
|
|
|
@ -139,13 +139,13 @@ class X64Emitter : public Xbyak::CodeGenerator {
|
|||
std::vector<SourceMapEntry>* out_source_map);
|
||||
|
||||
public:
|
||||
// Reserved: rsp
|
||||
// Reserved: rsp, rsi, rdi
|
||||
// Scratch: rax/rcx/rdx
|
||||
// xmm0-2
|
||||
// Available: rbx, r12-r15 (save to get r8-r11, rbp, rsi, rdi?)
|
||||
// xmm6-xmm15 (save to get xmm3-xmm5)
|
||||
static const int GPR_COUNT = 5;
|
||||
static const int XMM_COUNT = 10;
|
||||
// Available: rbx, r10-r15
|
||||
// xmm4-xmm15 (save to get xmm3)
|
||||
static const int GPR_COUNT = 7;
|
||||
static const int XMM_COUNT = 12;
|
||||
|
||||
static void SetupReg(const hir::Value* v, Xbyak::Reg8& r) {
|
||||
auto idx = gpr_reg_map_[v->reg.index];
|
||||
|
@ -187,6 +187,8 @@ class X64Emitter : public Xbyak::CodeGenerator {
|
|||
void CallNativeSafe(void* fn);
|
||||
void SetReturnAddress(uint64_t value);
|
||||
|
||||
Xbyak::Reg64 GetNativeParam(uint32_t param);
|
||||
|
||||
Xbyak::Reg64 GetContextReg();
|
||||
Xbyak::Reg64 GetMembaseReg();
|
||||
void ReloadContext();
|
||||
|
|
|
@ -0,0 +1,629 @@
|
|||
/**
|
||||
******************************************************************************
|
||||
* Xenia : Xbox 360 Emulator Research Project *
|
||||
******************************************************************************
|
||||
* Copyright 2018 Xenia Developers. All rights reserved. *
|
||||
* Released under the BSD license - see LICENSE in the root for more details. *
|
||||
******************************************************************************
|
||||
*/
|
||||
#ifndef XENIA_CPU_BACKEND_X64_X64_OP_H_
|
||||
#define XENIA_CPU_BACKEND_X64_X64_OP_H_
|
||||
|
||||
#include "xenia/cpu/backend/x64/x64_emitter.h"
|
||||
|
||||
#include "xenia/cpu/hir/instr.h"
|
||||
|
||||
namespace xe {
|
||||
namespace cpu {
|
||||
namespace backend {
|
||||
namespace x64 {
|
||||
|
||||
// TODO(benvanik): direct usings.
|
||||
using namespace xe::cpu;
|
||||
using namespace xe::cpu::hir;
|
||||
using namespace Xbyak;
|
||||
|
||||
// Selects the right byte/word/etc from a vector. We need to flip logical
|
||||
// indices (0,1,2,3,4,5,6,7,...) = (3,2,1,0,7,6,5,4,...)
|
||||
#define VEC128_B(n) ((n) ^ 0x3)
|
||||
#define VEC128_W(n) ((n) ^ 0x1)
|
||||
#define VEC128_D(n) (n)
|
||||
#define VEC128_F(n) (n)
|
||||
|
||||
enum KeyType {
|
||||
KEY_TYPE_X = OPCODE_SIG_TYPE_X,
|
||||
KEY_TYPE_L = OPCODE_SIG_TYPE_L,
|
||||
KEY_TYPE_O = OPCODE_SIG_TYPE_O,
|
||||
KEY_TYPE_S = OPCODE_SIG_TYPE_S,
|
||||
KEY_TYPE_V_I8 = OPCODE_SIG_TYPE_V + INT8_TYPE,
|
||||
KEY_TYPE_V_I16 = OPCODE_SIG_TYPE_V + INT16_TYPE,
|
||||
KEY_TYPE_V_I32 = OPCODE_SIG_TYPE_V + INT32_TYPE,
|
||||
KEY_TYPE_V_I64 = OPCODE_SIG_TYPE_V + INT64_TYPE,
|
||||
KEY_TYPE_V_F32 = OPCODE_SIG_TYPE_V + FLOAT32_TYPE,
|
||||
KEY_TYPE_V_F64 = OPCODE_SIG_TYPE_V + FLOAT64_TYPE,
|
||||
KEY_TYPE_V_V128 = OPCODE_SIG_TYPE_V + VEC128_TYPE,
|
||||
};
|
||||
|
||||
#pragma pack(push, 1)
|
||||
union InstrKey {
|
||||
struct {
|
||||
uint32_t opcode : 8;
|
||||
uint32_t dest : 5;
|
||||
uint32_t src1 : 5;
|
||||
uint32_t src2 : 5;
|
||||
uint32_t src3 : 5;
|
||||
uint32_t reserved : 4;
|
||||
};
|
||||
uint32_t value;
|
||||
|
||||
operator uint32_t() const { return value; }
|
||||
|
||||
InstrKey() : value(0) {}
|
||||
InstrKey(uint32_t v) : value(v) {}
|
||||
InstrKey(const Instr* i) : value(0) {
|
||||
opcode = i->opcode->num;
|
||||
uint32_t sig = i->opcode->signature;
|
||||
dest =
|
||||
GET_OPCODE_SIG_TYPE_DEST(sig) ? OPCODE_SIG_TYPE_V + i->dest->type : 0;
|
||||
src1 = GET_OPCODE_SIG_TYPE_SRC1(sig);
|
||||
if (src1 == OPCODE_SIG_TYPE_V) {
|
||||
src1 += i->src1.value->type;
|
||||
}
|
||||
src2 = GET_OPCODE_SIG_TYPE_SRC2(sig);
|
||||
if (src2 == OPCODE_SIG_TYPE_V) {
|
||||
src2 += i->src2.value->type;
|
||||
}
|
||||
src3 = GET_OPCODE_SIG_TYPE_SRC3(sig);
|
||||
if (src3 == OPCODE_SIG_TYPE_V) {
|
||||
src3 += i->src3.value->type;
|
||||
}
|
||||
}
|
||||
|
||||
template <Opcode OPCODE, KeyType DEST = KEY_TYPE_X, KeyType SRC1 = KEY_TYPE_X,
|
||||
KeyType SRC2 = KEY_TYPE_X, KeyType SRC3 = KEY_TYPE_X>
|
||||
struct Construct {
|
||||
static const uint32_t value =
|
||||
(OPCODE) | (DEST << 8) | (SRC1 << 13) | (SRC2 << 18) | (SRC3 << 23);
|
||||
};
|
||||
};
|
||||
#pragma pack(pop)
|
||||
static_assert(sizeof(InstrKey) <= 4, "Key must be 4 bytes");
|
||||
|
||||
template <typename... Ts>
|
||||
struct CombinedStruct;
|
||||
template <>
|
||||
struct CombinedStruct<> {};
|
||||
template <typename T, typename... Ts>
|
||||
struct CombinedStruct<T, Ts...> : T, CombinedStruct<Ts...> {};
|
||||
|
||||
struct OpBase {};
|
||||
|
||||
template <typename T, KeyType KEY_TYPE>
|
||||
struct Op : OpBase {
|
||||
static const KeyType key_type = KEY_TYPE;
|
||||
};
|
||||
|
||||
struct VoidOp : Op<VoidOp, KEY_TYPE_X> {
|
||||
protected:
|
||||
template <typename T, KeyType KEY_TYPE>
|
||||
friend struct Op;
|
||||
template <hir::Opcode OPCODE, typename... Ts>
|
||||
friend struct I;
|
||||
void Load(const Instr::Op& op) {}
|
||||
};
|
||||
|
||||
struct OffsetOp : Op<OffsetOp, KEY_TYPE_O> {
|
||||
uint64_t value;
|
||||
|
||||
protected:
|
||||
template <typename T, KeyType KEY_TYPE>
|
||||
friend struct Op;
|
||||
template <hir::Opcode OPCODE, typename... Ts>
|
||||
friend struct I;
|
||||
void Load(const Instr::Op& op) { this->value = op.offset; }
|
||||
};
|
||||
|
||||
struct SymbolOp : Op<SymbolOp, KEY_TYPE_S> {
|
||||
Function* value;
|
||||
|
||||
protected:
|
||||
template <typename T, KeyType KEY_TYPE>
|
||||
friend struct Op;
|
||||
template <hir::Opcode OPCODE, typename... Ts>
|
||||
friend struct I;
|
||||
bool Load(const Instr::Op& op) {
|
||||
this->value = op.symbol;
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
struct LabelOp : Op<LabelOp, KEY_TYPE_L> {
|
||||
hir::Label* value;
|
||||
|
||||
protected:
|
||||
template <typename T, KeyType KEY_TYPE>
|
||||
friend struct Op;
|
||||
template <hir::Opcode OPCODE, typename... Ts>
|
||||
friend struct I;
|
||||
void Load(const Instr::Op& op) { this->value = op.label; }
|
||||
};
|
||||
|
||||
template <typename T, KeyType KEY_TYPE, typename REG_TYPE, typename CONST_TYPE>
|
||||
struct ValueOp : Op<ValueOp<T, KEY_TYPE, REG_TYPE, CONST_TYPE>, KEY_TYPE> {
|
||||
typedef REG_TYPE reg_type;
|
||||
const Value* value;
|
||||
bool is_constant;
|
||||
virtual bool ConstantFitsIn32Reg() const { return true; }
|
||||
const REG_TYPE& reg() const {
|
||||
assert_true(!is_constant);
|
||||
return reg_;
|
||||
}
|
||||
operator const REG_TYPE&() const { return reg(); }
|
||||
bool IsEqual(const T& b) const {
|
||||
if (is_constant && b.is_constant) {
|
||||
return reinterpret_cast<const T*>(this)->constant() == b.constant();
|
||||
} else if (!is_constant && !b.is_constant) {
|
||||
return reg_.getIdx() == b.reg_.getIdx();
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
bool IsEqual(const Xbyak::Reg& b) const {
|
||||
if (is_constant) {
|
||||
return false;
|
||||
} else if (!is_constant) {
|
||||
return reg_.getIdx() == b.getIdx();
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
bool operator==(const T& b) const { return IsEqual(b); }
|
||||
bool operator!=(const T& b) const { return !IsEqual(b); }
|
||||
bool operator==(const Xbyak::Reg& b) const { return IsEqual(b); }
|
||||
bool operator!=(const Xbyak::Reg& b) const { return !IsEqual(b); }
|
||||
void Load(const Instr::Op& op) {
|
||||
value = op.value;
|
||||
is_constant = value->IsConstant();
|
||||
if (!is_constant) {
|
||||
X64Emitter::SetupReg(value, reg_);
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
REG_TYPE reg_;
|
||||
};
|
||||
|
||||
struct I8Op : ValueOp<I8Op, KEY_TYPE_V_I8, Reg8, int8_t> {
|
||||
typedef ValueOp<I8Op, KEY_TYPE_V_I8, Reg8, int8_t> BASE;
|
||||
const int8_t constant() const {
|
||||
assert_true(BASE::is_constant);
|
||||
return BASE::value->constant.i8;
|
||||
}
|
||||
};
|
||||
struct I16Op : ValueOp<I16Op, KEY_TYPE_V_I16, Reg16, int16_t> {
|
||||
typedef ValueOp<I16Op, KEY_TYPE_V_I16, Reg16, int16_t> BASE;
|
||||
const int16_t constant() const {
|
||||
assert_true(BASE::is_constant);
|
||||
return BASE::value->constant.i16;
|
||||
}
|
||||
};
|
||||
struct I32Op : ValueOp<I32Op, KEY_TYPE_V_I32, Reg32, int32_t> {
|
||||
typedef ValueOp<I32Op, KEY_TYPE_V_I32, Reg32, int32_t> BASE;
|
||||
const int32_t constant() const {
|
||||
assert_true(BASE::is_constant);
|
||||
return BASE::value->constant.i32;
|
||||
}
|
||||
};
|
||||
struct I64Op : ValueOp<I64Op, KEY_TYPE_V_I64, Reg64, int64_t> {
|
||||
typedef ValueOp<I64Op, KEY_TYPE_V_I64, Reg64, int64_t> BASE;
|
||||
const int64_t constant() const {
|
||||
assert_true(BASE::is_constant);
|
||||
return BASE::value->constant.i64;
|
||||
}
|
||||
bool ConstantFitsIn32Reg() const override {
|
||||
int64_t v = BASE::value->constant.i64;
|
||||
if ((v & ~0x7FFFFFFF) == 0) {
|
||||
// Fits under 31 bits, so just load using normal mov.
|
||||
return true;
|
||||
} else if ((v & ~0x7FFFFFFF) == ~0x7FFFFFFF) {
|
||||
// Negative number that fits in 32bits.
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
};
|
||||
struct F32Op : ValueOp<F32Op, KEY_TYPE_V_F32, Xmm, float> {
|
||||
typedef ValueOp<F32Op, KEY_TYPE_V_F32, Xmm, float> BASE;
|
||||
const float constant() const {
|
||||
assert_true(BASE::is_constant);
|
||||
return BASE::value->constant.f32;
|
||||
}
|
||||
};
|
||||
struct F64Op : ValueOp<F64Op, KEY_TYPE_V_F64, Xmm, double> {
|
||||
typedef ValueOp<F64Op, KEY_TYPE_V_F64, Xmm, double> BASE;
|
||||
const double constant() const {
|
||||
assert_true(BASE::is_constant);
|
||||
return BASE::value->constant.f64;
|
||||
}
|
||||
};
|
||||
struct V128Op : ValueOp<V128Op, KEY_TYPE_V_V128, Xmm, vec128_t> {
|
||||
typedef ValueOp<V128Op, KEY_TYPE_V_V128, Xmm, vec128_t> BASE;
|
||||
const vec128_t& constant() const {
|
||||
assert_true(BASE::is_constant);
|
||||
return BASE::value->constant.v128;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DEST, typename... Tf>
|
||||
struct DestField;
|
||||
template <typename DEST>
|
||||
struct DestField<DEST> {
|
||||
DEST dest;
|
||||
|
||||
protected:
|
||||
bool LoadDest(const Instr* i) {
|
||||
Instr::Op op;
|
||||
op.value = i->dest;
|
||||
dest.Load(op);
|
||||
return true;
|
||||
}
|
||||
};
|
||||
template <>
|
||||
struct DestField<VoidOp> {
|
||||
protected:
|
||||
bool LoadDest(const Instr* i) { return true; }
|
||||
};
|
||||
|
||||
template <hir::Opcode OPCODE, typename... Ts>
|
||||
struct I;
|
||||
template <hir::Opcode OPCODE, typename DEST>
|
||||
struct I<OPCODE, DEST> : DestField<DEST> {
|
||||
typedef DestField<DEST> BASE;
|
||||
static const hir::Opcode opcode = OPCODE;
|
||||
static const uint32_t key =
|
||||
InstrKey::Construct<OPCODE, DEST::key_type>::value;
|
||||
static const KeyType dest_type = DEST::key_type;
|
||||
const Instr* instr;
|
||||
|
||||
protected:
|
||||
template <typename SEQ, typename T>
|
||||
friend struct Sequence;
|
||||
bool Load(const Instr* i) {
|
||||
if (InstrKey(i).value == key && BASE::LoadDest(i)) {
|
||||
instr = i;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
};
|
||||
template <hir::Opcode OPCODE, typename DEST, typename SRC1>
|
||||
struct I<OPCODE, DEST, SRC1> : DestField<DEST> {
|
||||
typedef DestField<DEST> BASE;
|
||||
static const hir::Opcode opcode = OPCODE;
|
||||
static const uint32_t key =
|
||||
InstrKey::Construct<OPCODE, DEST::key_type, SRC1::key_type>::value;
|
||||
static const KeyType dest_type = DEST::key_type;
|
||||
static const KeyType src1_type = SRC1::key_type;
|
||||
const Instr* instr;
|
||||
SRC1 src1;
|
||||
|
||||
protected:
|
||||
template <typename SEQ, typename T>
|
||||
friend struct Sequence;
|
||||
bool Load(const Instr* i) {
|
||||
if (InstrKey(i).value == key && BASE::LoadDest(i)) {
|
||||
instr = i;
|
||||
src1.Load(i->src1);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
};
|
||||
template <hir::Opcode OPCODE, typename DEST, typename SRC1, typename SRC2>
|
||||
struct I<OPCODE, DEST, SRC1, SRC2> : DestField<DEST> {
|
||||
typedef DestField<DEST> BASE;
|
||||
static const hir::Opcode opcode = OPCODE;
|
||||
static const uint32_t key =
|
||||
InstrKey::Construct<OPCODE, DEST::key_type, SRC1::key_type,
|
||||
SRC2::key_type>::value;
|
||||
static const KeyType dest_type = DEST::key_type;
|
||||
static const KeyType src1_type = SRC1::key_type;
|
||||
static const KeyType src2_type = SRC2::key_type;
|
||||
const Instr* instr;
|
||||
SRC1 src1;
|
||||
SRC2 src2;
|
||||
|
||||
protected:
|
||||
template <typename SEQ, typename T>
|
||||
friend struct Sequence;
|
||||
bool Load(const Instr* i) {
|
||||
if (InstrKey(i).value == key && BASE::LoadDest(i)) {
|
||||
instr = i;
|
||||
src1.Load(i->src1);
|
||||
src2.Load(i->src2);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
};
|
||||
template <hir::Opcode OPCODE, typename DEST, typename SRC1, typename SRC2,
|
||||
typename SRC3>
|
||||
struct I<OPCODE, DEST, SRC1, SRC2, SRC3> : DestField<DEST> {
|
||||
typedef DestField<DEST> BASE;
|
||||
static const hir::Opcode opcode = OPCODE;
|
||||
static const uint32_t key =
|
||||
InstrKey::Construct<OPCODE, DEST::key_type, SRC1::key_type,
|
||||
SRC2::key_type, SRC3::key_type>::value;
|
||||
static const KeyType dest_type = DEST::key_type;
|
||||
static const KeyType src1_type = SRC1::key_type;
|
||||
static const KeyType src2_type = SRC2::key_type;
|
||||
static const KeyType src3_type = SRC3::key_type;
|
||||
const Instr* instr;
|
||||
SRC1 src1;
|
||||
SRC2 src2;
|
||||
SRC3 src3;
|
||||
|
||||
protected:
|
||||
template <typename SEQ, typename T>
|
||||
friend struct Sequence;
|
||||
bool Load(const Instr* i) {
|
||||
if (InstrKey(i).value == key && BASE::LoadDest(i)) {
|
||||
instr = i;
|
||||
src1.Load(i->src1);
|
||||
src2.Load(i->src2);
|
||||
src3.Load(i->src3);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
static const T GetTempReg(X64Emitter& e);
|
||||
template <>
|
||||
const Reg8 GetTempReg<Reg8>(X64Emitter& e) {
|
||||
return e.al;
|
||||
}
|
||||
template <>
|
||||
const Reg16 GetTempReg<Reg16>(X64Emitter& e) {
|
||||
return e.ax;
|
||||
}
|
||||
template <>
|
||||
const Reg32 GetTempReg<Reg32>(X64Emitter& e) {
|
||||
return e.eax;
|
||||
}
|
||||
template <>
|
||||
const Reg64 GetTempReg<Reg64>(X64Emitter& e) {
|
||||
return e.rax;
|
||||
}
|
||||
|
||||
template <typename SEQ, typename T>
|
||||
struct Sequence {
|
||||
typedef T EmitArgType;
|
||||
|
||||
static constexpr uint32_t head_key() { return T::key; }
|
||||
|
||||
static bool Select(X64Emitter& e, const Instr* i) {
|
||||
T args;
|
||||
if (!args.Load(i)) {
|
||||
return false;
|
||||
}
|
||||
SEQ::Emit(e, args);
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename REG_FN>
|
||||
static void EmitUnaryOp(X64Emitter& e, const EmitArgType& i,
|
||||
const REG_FN& reg_fn) {
|
||||
if (i.src1.is_constant) {
|
||||
e.mov(i.dest, i.src1.constant());
|
||||
reg_fn(e, i.dest);
|
||||
} else {
|
||||
if (i.dest != i.src1) {
|
||||
e.mov(i.dest, i.src1);
|
||||
}
|
||||
reg_fn(e, i.dest);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename REG_REG_FN, typename REG_CONST_FN>
|
||||
static void EmitCommutativeBinaryOp(X64Emitter& e, const EmitArgType& i,
|
||||
const REG_REG_FN& reg_reg_fn,
|
||||
const REG_CONST_FN& reg_const_fn) {
|
||||
if (i.src1.is_constant) {
|
||||
if (i.src2.is_constant) {
|
||||
// Both constants.
|
||||
if (i.src1.ConstantFitsIn32Reg()) {
|
||||
e.mov(i.dest, i.src2.constant());
|
||||
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src1.constant()));
|
||||
} else if (i.src2.ConstantFitsIn32Reg()) {
|
||||
e.mov(i.dest, i.src1.constant());
|
||||
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src2.constant()));
|
||||
} else {
|
||||
e.mov(i.dest, i.src1.constant());
|
||||
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
|
||||
e.mov(temp, i.src2.constant());
|
||||
reg_reg_fn(e, i.dest, temp);
|
||||
}
|
||||
} else {
|
||||
// src1 constant.
|
||||
if (i.dest == i.src2) {
|
||||
if (i.src1.ConstantFitsIn32Reg()) {
|
||||
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src1.constant()));
|
||||
} else {
|
||||
auto temp = GetTempReg<typename decltype(i.src1)::reg_type>(e);
|
||||
e.mov(temp, i.src1.constant());
|
||||
reg_reg_fn(e, i.dest, temp);
|
||||
}
|
||||
} else {
|
||||
e.mov(i.dest, i.src1.constant());
|
||||
reg_reg_fn(e, i.dest, i.src2);
|
||||
}
|
||||
}
|
||||
} else if (i.src2.is_constant) {
|
||||
if (i.dest == i.src1) {
|
||||
if (i.src2.ConstantFitsIn32Reg()) {
|
||||
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src2.constant()));
|
||||
} else {
|
||||
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
|
||||
e.mov(temp, i.src2.constant());
|
||||
reg_reg_fn(e, i.dest, temp);
|
||||
}
|
||||
} else {
|
||||
e.mov(i.dest, i.src2.constant());
|
||||
reg_reg_fn(e, i.dest, i.src1);
|
||||
}
|
||||
} else {
|
||||
if (i.dest == i.src1) {
|
||||
reg_reg_fn(e, i.dest, i.src2);
|
||||
} else if (i.dest == i.src2) {
|
||||
reg_reg_fn(e, i.dest, i.src1);
|
||||
} else {
|
||||
e.mov(i.dest, i.src1);
|
||||
reg_reg_fn(e, i.dest, i.src2);
|
||||
}
|
||||
}
|
||||
}
|
||||
template <typename REG_REG_FN, typename REG_CONST_FN>
|
||||
static void EmitAssociativeBinaryOp(X64Emitter& e, const EmitArgType& i,
|
||||
const REG_REG_FN& reg_reg_fn,
|
||||
const REG_CONST_FN& reg_const_fn) {
|
||||
if (i.src1.is_constant) {
|
||||
assert_true(!i.src2.is_constant);
|
||||
if (i.dest == i.src2) {
|
||||
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
|
||||
e.mov(temp, i.src2);
|
||||
e.mov(i.dest, i.src1.constant());
|
||||
reg_reg_fn(e, i.dest, temp);
|
||||
} else {
|
||||
e.mov(i.dest, i.src1.constant());
|
||||
reg_reg_fn(e, i.dest, i.src2);
|
||||
}
|
||||
} else if (i.src2.is_constant) {
|
||||
if (i.dest == i.src1) {
|
||||
if (i.src2.ConstantFitsIn32Reg()) {
|
||||
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src2.constant()));
|
||||
} else {
|
||||
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
|
||||
e.mov(temp, i.src2.constant());
|
||||
reg_reg_fn(e, i.dest, temp);
|
||||
}
|
||||
} else {
|
||||
e.mov(i.dest, i.src1);
|
||||
if (i.src2.ConstantFitsIn32Reg()) {
|
||||
reg_const_fn(e, i.dest, static_cast<int32_t>(i.src2.constant()));
|
||||
} else {
|
||||
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
|
||||
e.mov(temp, i.src2.constant());
|
||||
reg_reg_fn(e, i.dest, temp);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (i.dest == i.src1) {
|
||||
reg_reg_fn(e, i.dest, i.src2);
|
||||
} else if (i.dest == i.src2) {
|
||||
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
|
||||
e.mov(temp, i.src2);
|
||||
e.mov(i.dest, i.src1);
|
||||
reg_reg_fn(e, i.dest, temp);
|
||||
} else {
|
||||
e.mov(i.dest, i.src1);
|
||||
reg_reg_fn(e, i.dest, i.src2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename FN>
|
||||
static void EmitCommutativeBinaryXmmOp(X64Emitter& e, const EmitArgType& i,
|
||||
const FN& fn) {
|
||||
if (i.src1.is_constant) {
|
||||
assert_true(!i.src2.is_constant);
|
||||
e.LoadConstantXmm(e.xmm0, i.src1.constant());
|
||||
fn(e, i.dest, e.xmm0, i.src2);
|
||||
} else if (i.src2.is_constant) {
|
||||
assert_true(!i.src1.is_constant);
|
||||
e.LoadConstantXmm(e.xmm0, i.src2.constant());
|
||||
fn(e, i.dest, i.src1, e.xmm0);
|
||||
} else {
|
||||
fn(e, i.dest, i.src1, i.src2);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename FN>
|
||||
static void EmitAssociativeBinaryXmmOp(X64Emitter& e, const EmitArgType& i,
|
||||
const FN& fn) {
|
||||
if (i.src1.is_constant) {
|
||||
assert_true(!i.src2.is_constant);
|
||||
e.LoadConstantXmm(e.xmm0, i.src1.constant());
|
||||
fn(e, i.dest, e.xmm0, i.src2);
|
||||
} else if (i.src2.is_constant) {
|
||||
assert_true(!i.src1.is_constant);
|
||||
e.LoadConstantXmm(e.xmm0, i.src2.constant());
|
||||
fn(e, i.dest, i.src1, e.xmm0);
|
||||
} else {
|
||||
fn(e, i.dest, i.src1, i.src2);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename REG_REG_FN, typename REG_CONST_FN>
|
||||
static void EmitCommutativeCompareOp(X64Emitter& e, const EmitArgType& i,
|
||||
const REG_REG_FN& reg_reg_fn,
|
||||
const REG_CONST_FN& reg_const_fn) {
|
||||
if (i.src1.is_constant) {
|
||||
assert_true(!i.src2.is_constant);
|
||||
if (i.src1.ConstantFitsIn32Reg()) {
|
||||
reg_const_fn(e, i.src2, static_cast<int32_t>(i.src1.constant()));
|
||||
} else {
|
||||
auto temp = GetTempReg<typename decltype(i.src1)::reg_type>(e);
|
||||
e.mov(temp, i.src1.constant());
|
||||
reg_reg_fn(e, i.src2, temp);
|
||||
}
|
||||
} else if (i.src2.is_constant) {
|
||||
assert_true(!i.src1.is_constant);
|
||||
if (i.src2.ConstantFitsIn32Reg()) {
|
||||
reg_const_fn(e, i.src1, static_cast<int32_t>(i.src2.constant()));
|
||||
} else {
|
||||
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
|
||||
e.mov(temp, i.src2.constant());
|
||||
reg_reg_fn(e, i.src1, temp);
|
||||
}
|
||||
} else {
|
||||
reg_reg_fn(e, i.src1, i.src2);
|
||||
}
|
||||
}
|
||||
template <typename REG_REG_FN, typename REG_CONST_FN>
|
||||
static void EmitAssociativeCompareOp(X64Emitter& e, const EmitArgType& i,
|
||||
const REG_REG_FN& reg_reg_fn,
|
||||
const REG_CONST_FN& reg_const_fn) {
|
||||
if (i.src1.is_constant) {
|
||||
assert_true(!i.src2.is_constant);
|
||||
if (i.src1.ConstantFitsIn32Reg()) {
|
||||
reg_const_fn(e, i.dest, i.src2, static_cast<int32_t>(i.src1.constant()),
|
||||
true);
|
||||
} else {
|
||||
auto temp = GetTempReg<typename decltype(i.src1)::reg_type>(e);
|
||||
e.mov(temp, i.src1.constant());
|
||||
reg_reg_fn(e, i.dest, i.src2, temp, true);
|
||||
}
|
||||
} else if (i.src2.is_constant) {
|
||||
assert_true(!i.src1.is_constant);
|
||||
if (i.src2.ConstantFitsIn32Reg()) {
|
||||
reg_const_fn(e, i.dest, i.src1, static_cast<int32_t>(i.src2.constant()),
|
||||
false);
|
||||
} else {
|
||||
auto temp = GetTempReg<typename decltype(i.src2)::reg_type>(e);
|
||||
e.mov(temp, i.src2.constant());
|
||||
reg_reg_fn(e, i.dest, i.src1, temp, false);
|
||||
}
|
||||
} else {
|
||||
reg_reg_fn(e, i.dest, i.src1, i.src2, false);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace x64
|
||||
} // namespace backend
|
||||
} // namespace cpu
|
||||
} // namespace xe
|
||||
|
||||
#endif // XENIA_CPU_BACKEND_X64_X64_OP_H_
|
|
@ -0,0 +1,553 @@
|
|||
/**
|
||||
******************************************************************************
|
||||
* Xenia : Xbox 360 Emulator Research Project *
|
||||
******************************************************************************
|
||||
* Copyright 2018 Xenia Developers. All rights reserved. *
|
||||
* Released under the BSD license - see LICENSE in the root for more details. *
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
#include "xenia/cpu/backend/x64/x64_sequences.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
|
||||
#include "xenia/cpu/backend/x64/x64_op.h"
|
||||
|
||||
namespace xe {
|
||||
namespace cpu {
|
||||
namespace backend {
|
||||
namespace x64 {
|
||||
|
||||
volatile int anchor_control = 0;
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_DEBUG_BREAK
|
||||
// ============================================================================
|
||||
struct DEBUG_BREAK : Sequence<DEBUG_BREAK, I<OPCODE_DEBUG_BREAK, VoidOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) { e.DebugBreak(); }
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_DEBUG_BREAK, DEBUG_BREAK);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_DEBUG_BREAK_TRUE
|
||||
// ============================================================================
|
||||
struct DEBUG_BREAK_TRUE_I8
|
||||
: Sequence<DEBUG_BREAK_TRUE_I8, I<OPCODE_DEBUG_BREAK_TRUE, VoidOp, I8Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.DebugBreak();
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct DEBUG_BREAK_TRUE_I16
|
||||
: Sequence<DEBUG_BREAK_TRUE_I16,
|
||||
I<OPCODE_DEBUG_BREAK_TRUE, VoidOp, I16Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.DebugBreak();
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct DEBUG_BREAK_TRUE_I32
|
||||
: Sequence<DEBUG_BREAK_TRUE_I32,
|
||||
I<OPCODE_DEBUG_BREAK_TRUE, VoidOp, I32Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.DebugBreak();
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct DEBUG_BREAK_TRUE_I64
|
||||
: Sequence<DEBUG_BREAK_TRUE_I64,
|
||||
I<OPCODE_DEBUG_BREAK_TRUE, VoidOp, I64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.DebugBreak();
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct DEBUG_BREAK_TRUE_F32
|
||||
: Sequence<DEBUG_BREAK_TRUE_F32,
|
||||
I<OPCODE_DEBUG_BREAK_TRUE, VoidOp, F32Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.vptest(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.DebugBreak();
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct DEBUG_BREAK_TRUE_F64
|
||||
: Sequence<DEBUG_BREAK_TRUE_F64,
|
||||
I<OPCODE_DEBUG_BREAK_TRUE, VoidOp, F64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.vptest(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.DebugBreak();
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_DEBUG_BREAK_TRUE, DEBUG_BREAK_TRUE_I8,
|
||||
DEBUG_BREAK_TRUE_I16, DEBUG_BREAK_TRUE_I32,
|
||||
DEBUG_BREAK_TRUE_I64, DEBUG_BREAK_TRUE_F32,
|
||||
DEBUG_BREAK_TRUE_F64);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_TRAP
|
||||
// ============================================================================
|
||||
struct TRAP : Sequence<TRAP, I<OPCODE_TRAP, VoidOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.Trap(i.instr->flags);
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_TRAP, TRAP);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_TRAP_TRUE
|
||||
// ============================================================================
|
||||
struct TRAP_TRUE_I8
|
||||
: Sequence<TRAP_TRUE_I8, I<OPCODE_TRAP_TRUE, VoidOp, I8Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.Trap(i.instr->flags);
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct TRAP_TRUE_I16
|
||||
: Sequence<TRAP_TRUE_I16, I<OPCODE_TRAP_TRUE, VoidOp, I16Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.Trap(i.instr->flags);
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct TRAP_TRUE_I32
|
||||
: Sequence<TRAP_TRUE_I32, I<OPCODE_TRAP_TRUE, VoidOp, I32Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.Trap(i.instr->flags);
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct TRAP_TRUE_I64
|
||||
: Sequence<TRAP_TRUE_I64, I<OPCODE_TRAP_TRUE, VoidOp, I64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.Trap(i.instr->flags);
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct TRAP_TRUE_F32
|
||||
: Sequence<TRAP_TRUE_F32, I<OPCODE_TRAP_TRUE, VoidOp, F32Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.vptest(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.Trap(i.instr->flags);
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct TRAP_TRUE_F64
|
||||
: Sequence<TRAP_TRUE_F64, I<OPCODE_TRAP_TRUE, VoidOp, F64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.vptest(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.Trap(i.instr->flags);
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_TRAP_TRUE, TRAP_TRUE_I8, TRAP_TRUE_I16,
|
||||
TRAP_TRUE_I32, TRAP_TRUE_I64, TRAP_TRUE_F32,
|
||||
TRAP_TRUE_F64);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_CALL
|
||||
// ============================================================================
|
||||
struct CALL : Sequence<CALL, I<OPCODE_CALL, VoidOp, SymbolOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
assert_true(i.src1.value->is_guest());
|
||||
e.Call(i.instr, static_cast<GuestFunction*>(i.src1.value));
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_CALL, CALL);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_CALL_TRUE
|
||||
// ============================================================================
|
||||
struct CALL_TRUE_I8
|
||||
: Sequence<CALL_TRUE_I8, I<OPCODE_CALL_TRUE, VoidOp, I8Op, SymbolOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
assert_true(i.src2.value->is_guest());
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.Call(i.instr, static_cast<GuestFunction*>(i.src2.value));
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct CALL_TRUE_I16
|
||||
: Sequence<CALL_TRUE_I16, I<OPCODE_CALL_TRUE, VoidOp, I16Op, SymbolOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
assert_true(i.src2.value->is_guest());
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.Call(i.instr, static_cast<GuestFunction*>(i.src2.value));
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct CALL_TRUE_I32
|
||||
: Sequence<CALL_TRUE_I32, I<OPCODE_CALL_TRUE, VoidOp, I32Op, SymbolOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
assert_true(i.src2.value->is_guest());
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.Call(i.instr, static_cast<GuestFunction*>(i.src2.value));
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct CALL_TRUE_I64
|
||||
: Sequence<CALL_TRUE_I64, I<OPCODE_CALL_TRUE, VoidOp, I64Op, SymbolOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
assert_true(i.src2.value->is_guest());
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.Call(i.instr, static_cast<GuestFunction*>(i.src2.value));
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct CALL_TRUE_F32
|
||||
: Sequence<CALL_TRUE_F32, I<OPCODE_CALL_TRUE, VoidOp, F32Op, SymbolOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
assert_true(i.src2.value->is_guest());
|
||||
e.vptest(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.Call(i.instr, static_cast<GuestFunction*>(i.src2.value));
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct CALL_TRUE_F64
|
||||
: Sequence<CALL_TRUE_F64, I<OPCODE_CALL_TRUE, VoidOp, F64Op, SymbolOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
assert_true(i.src2.value->is_guest());
|
||||
e.vptest(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip);
|
||||
e.Call(i.instr, static_cast<GuestFunction*>(i.src2.value));
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_CALL_TRUE, CALL_TRUE_I8, CALL_TRUE_I16,
|
||||
CALL_TRUE_I32, CALL_TRUE_I64, CALL_TRUE_F32,
|
||||
CALL_TRUE_F64);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_CALL_INDIRECT
|
||||
// ============================================================================
|
||||
struct CALL_INDIRECT
|
||||
: Sequence<CALL_INDIRECT, I<OPCODE_CALL_INDIRECT, VoidOp, I64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.CallIndirect(i.instr, i.src1);
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_CALL_INDIRECT, CALL_INDIRECT);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_CALL_INDIRECT_TRUE
|
||||
// ============================================================================
|
||||
struct CALL_INDIRECT_TRUE_I8
|
||||
: Sequence<CALL_INDIRECT_TRUE_I8,
|
||||
I<OPCODE_CALL_INDIRECT_TRUE, VoidOp, I8Op, I64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip, CodeGenerator::T_NEAR);
|
||||
e.CallIndirect(i.instr, i.src2);
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct CALL_INDIRECT_TRUE_I16
|
||||
: Sequence<CALL_INDIRECT_TRUE_I16,
|
||||
I<OPCODE_CALL_INDIRECT_TRUE, VoidOp, I16Op, I64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip, CodeGenerator::T_NEAR);
|
||||
e.CallIndirect(i.instr, i.src2);
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct CALL_INDIRECT_TRUE_I32
|
||||
: Sequence<CALL_INDIRECT_TRUE_I32,
|
||||
I<OPCODE_CALL_INDIRECT_TRUE, VoidOp, I32Op, I64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip, CodeGenerator::T_NEAR);
|
||||
e.CallIndirect(i.instr, i.src2);
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct CALL_INDIRECT_TRUE_I64
|
||||
: Sequence<CALL_INDIRECT_TRUE_I64,
|
||||
I<OPCODE_CALL_INDIRECT_TRUE, VoidOp, I64Op, I64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip, CodeGenerator::T_NEAR);
|
||||
e.CallIndirect(i.instr, i.src2);
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct CALL_INDIRECT_TRUE_F32
|
||||
: Sequence<CALL_INDIRECT_TRUE_F32,
|
||||
I<OPCODE_CALL_INDIRECT_TRUE, VoidOp, F32Op, I64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.vptest(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip, CodeGenerator::T_NEAR);
|
||||
e.CallIndirect(i.instr, i.src2);
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
struct CALL_INDIRECT_TRUE_F64
|
||||
: Sequence<CALL_INDIRECT_TRUE_F64,
|
||||
I<OPCODE_CALL_INDIRECT_TRUE, VoidOp, F64Op, I64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.vptest(i.src1, i.src1);
|
||||
Xbyak::Label skip;
|
||||
e.jz(skip, CodeGenerator::T_NEAR);
|
||||
e.CallIndirect(i.instr, i.src2);
|
||||
e.L(skip);
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_CALL_INDIRECT_TRUE, CALL_INDIRECT_TRUE_I8,
|
||||
CALL_INDIRECT_TRUE_I16, CALL_INDIRECT_TRUE_I32,
|
||||
CALL_INDIRECT_TRUE_I64, CALL_INDIRECT_TRUE_F32,
|
||||
CALL_INDIRECT_TRUE_F64);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_CALL_EXTERN
|
||||
// ============================================================================
|
||||
struct CALL_EXTERN
|
||||
: Sequence<CALL_EXTERN, I<OPCODE_CALL_EXTERN, VoidOp, SymbolOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.CallExtern(i.instr, i.src1.value);
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_CALL_EXTERN, CALL_EXTERN);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_RETURN
|
||||
// ============================================================================
|
||||
struct RETURN : Sequence<RETURN, I<OPCODE_RETURN, VoidOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
// If this is the last instruction in the last block, just let us
|
||||
// fall through.
|
||||
if (i.instr->next || i.instr->block->next) {
|
||||
e.jmp(e.epilog_label(), CodeGenerator::T_NEAR);
|
||||
}
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_RETURN, RETURN);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_RETURN_TRUE
|
||||
// ============================================================================
|
||||
struct RETURN_TRUE_I8
|
||||
: Sequence<RETURN_TRUE_I8, I<OPCODE_RETURN_TRUE, VoidOp, I8Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
e.jnz(e.epilog_label(), CodeGenerator::T_NEAR);
|
||||
}
|
||||
};
|
||||
struct RETURN_TRUE_I16
|
||||
: Sequence<RETURN_TRUE_I16, I<OPCODE_RETURN_TRUE, VoidOp, I16Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
e.jnz(e.epilog_label(), CodeGenerator::T_NEAR);
|
||||
}
|
||||
};
|
||||
struct RETURN_TRUE_I32
|
||||
: Sequence<RETURN_TRUE_I32, I<OPCODE_RETURN_TRUE, VoidOp, I32Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
e.jnz(e.epilog_label(), CodeGenerator::T_NEAR);
|
||||
}
|
||||
};
|
||||
struct RETURN_TRUE_I64
|
||||
: Sequence<RETURN_TRUE_I64, I<OPCODE_RETURN_TRUE, VoidOp, I64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
e.jnz(e.epilog_label(), CodeGenerator::T_NEAR);
|
||||
}
|
||||
};
|
||||
struct RETURN_TRUE_F32
|
||||
: Sequence<RETURN_TRUE_F32, I<OPCODE_RETURN_TRUE, VoidOp, F32Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.vptest(i.src1, i.src1);
|
||||
e.jnz(e.epilog_label(), CodeGenerator::T_NEAR);
|
||||
}
|
||||
};
|
||||
struct RETURN_TRUE_F64
|
||||
: Sequence<RETURN_TRUE_F64, I<OPCODE_RETURN_TRUE, VoidOp, F64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.vptest(i.src1, i.src1);
|
||||
e.jnz(e.epilog_label(), CodeGenerator::T_NEAR);
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_RETURN_TRUE, RETURN_TRUE_I8, RETURN_TRUE_I16,
|
||||
RETURN_TRUE_I32, RETURN_TRUE_I64, RETURN_TRUE_F32,
|
||||
RETURN_TRUE_F64);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_SET_RETURN_ADDRESS
|
||||
// ============================================================================
|
||||
struct SET_RETURN_ADDRESS
|
||||
: Sequence<SET_RETURN_ADDRESS,
|
||||
I<OPCODE_SET_RETURN_ADDRESS, VoidOp, I64Op>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.SetReturnAddress(i.src1.constant());
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_SET_RETURN_ADDRESS, SET_RETURN_ADDRESS);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_BRANCH
|
||||
// ============================================================================
|
||||
struct BRANCH : Sequence<BRANCH, I<OPCODE_BRANCH, VoidOp, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.jmp(i.src1.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_BRANCH, BRANCH);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_BRANCH_TRUE
|
||||
// ============================================================================
|
||||
struct BRANCH_TRUE_I8
|
||||
: Sequence<BRANCH_TRUE_I8, I<OPCODE_BRANCH_TRUE, VoidOp, I8Op, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
e.jnz(i.src2.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
struct BRANCH_TRUE_I16
|
||||
: Sequence<BRANCH_TRUE_I16, I<OPCODE_BRANCH_TRUE, VoidOp, I16Op, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
e.jnz(i.src2.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
struct BRANCH_TRUE_I32
|
||||
: Sequence<BRANCH_TRUE_I32, I<OPCODE_BRANCH_TRUE, VoidOp, I32Op, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
e.jnz(i.src2.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
struct BRANCH_TRUE_I64
|
||||
: Sequence<BRANCH_TRUE_I64, I<OPCODE_BRANCH_TRUE, VoidOp, I64Op, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
e.jnz(i.src2.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
struct BRANCH_TRUE_F32
|
||||
: Sequence<BRANCH_TRUE_F32, I<OPCODE_BRANCH_TRUE, VoidOp, F32Op, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.vptest(i.src1, i.src1);
|
||||
e.jnz(i.src2.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
struct BRANCH_TRUE_F64
|
||||
: Sequence<BRANCH_TRUE_F64, I<OPCODE_BRANCH_TRUE, VoidOp, F64Op, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.vptest(i.src1, i.src1);
|
||||
e.jnz(i.src2.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_BRANCH_TRUE, BRANCH_TRUE_I8, BRANCH_TRUE_I16,
|
||||
BRANCH_TRUE_I32, BRANCH_TRUE_I64, BRANCH_TRUE_F32,
|
||||
BRANCH_TRUE_F64);
|
||||
|
||||
// ============================================================================
|
||||
// OPCODE_BRANCH_FALSE
|
||||
// ============================================================================
|
||||
struct BRANCH_FALSE_I8
|
||||
: Sequence<BRANCH_FALSE_I8, I<OPCODE_BRANCH_FALSE, VoidOp, I8Op, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
e.jz(i.src2.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
struct BRANCH_FALSE_I16
|
||||
: Sequence<BRANCH_FALSE_I16,
|
||||
I<OPCODE_BRANCH_FALSE, VoidOp, I16Op, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
e.jz(i.src2.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
struct BRANCH_FALSE_I32
|
||||
: Sequence<BRANCH_FALSE_I32,
|
||||
I<OPCODE_BRANCH_FALSE, VoidOp, I32Op, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
e.jz(i.src2.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
struct BRANCH_FALSE_I64
|
||||
: Sequence<BRANCH_FALSE_I64,
|
||||
I<OPCODE_BRANCH_FALSE, VoidOp, I64Op, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.test(i.src1, i.src1);
|
||||
e.jz(i.src2.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
struct BRANCH_FALSE_F32
|
||||
: Sequence<BRANCH_FALSE_F32,
|
||||
I<OPCODE_BRANCH_FALSE, VoidOp, F32Op, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.vptest(i.src1, i.src1);
|
||||
e.jz(i.src2.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
struct BRANCH_FALSE_F64
|
||||
: Sequence<BRANCH_FALSE_F64,
|
||||
I<OPCODE_BRANCH_FALSE, VoidOp, F64Op, LabelOp>> {
|
||||
static void Emit(X64Emitter& e, const EmitArgType& i) {
|
||||
e.vptest(i.src1, i.src1);
|
||||
e.jz(i.src2.value->name, e.T_NEAR);
|
||||
}
|
||||
};
|
||||
EMITTER_OPCODE_TABLE(OPCODE_BRANCH_FALSE, BRANCH_FALSE_I8, BRANCH_FALSE_I16,
|
||||
BRANCH_FALSE_I32, BRANCH_FALSE_I64, BRANCH_FALSE_F32,
|
||||
BRANCH_FALSE_F64);
|
||||
|
||||
} // namespace x64
|
||||
} // namespace backend
|
||||
} // namespace cpu
|
||||
} // namespace xe
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -12,6 +12,8 @@
|
|||
|
||||
#include "xenia/cpu/hir/instr.h"
|
||||
|
||||
#include <unordered_map>
|
||||
|
||||
namespace xe {
|
||||
namespace cpu {
|
||||
namespace backend {
|
||||
|
@ -19,7 +21,25 @@ namespace x64 {
|
|||
|
||||
class X64Emitter;
|
||||
|
||||
void RegisterSequences();
|
||||
typedef bool (*SequenceSelectFn)(X64Emitter&, const hir::Instr*);
|
||||
extern std::unordered_map<uint32_t, SequenceSelectFn> sequence_table;
|
||||
|
||||
template <typename T>
|
||||
bool Register() {
|
||||
sequence_table.insert({T::head_key(), T::Select});
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename Tn, typename... Ts>
|
||||
static bool Register() {
|
||||
bool b = true;
|
||||
b = b && Register<T>(); // Call the above function
|
||||
b = b && Register<Tn, Ts...>(); // Call ourself again (recursively)
|
||||
return b;
|
||||
}
|
||||
#define EMITTER_OPCODE_TABLE(name, ...) \
|
||||
const auto X64_INSTR_##name = Register<__VA_ARGS__>();
|
||||
|
||||
bool SelectSequence(X64Emitter* e, const hir::Instr* i,
|
||||
const hir::Instr** new_tail);
|
||||
|
||||
|
|
|
@ -10,6 +10,8 @@
|
|||
#ifndef XENIA_CPU_COMPILER_COMPILER_PASSES_H_
|
||||
#define XENIA_CPU_COMPILER_COMPILER_PASSES_H_
|
||||
|
||||
#include "xenia/cpu/compiler/passes/conditional_group_pass.h"
|
||||
#include "xenia/cpu/compiler/passes/conditional_group_subpass.h"
|
||||
#include "xenia/cpu/compiler/passes/constant_propagation_pass.h"
|
||||
#include "xenia/cpu/compiler/passes/context_promotion_pass.h"
|
||||
#include "xenia/cpu/compiler/passes/control_flow_analysis_pass.h"
|
||||
|
|
|
@ -0,0 +1,85 @@
|
|||
/**
|
||||
******************************************************************************
|
||||
* Xenia : Xbox 360 Emulator Research Project *
|
||||
******************************************************************************
|
||||
* Copyright 2013 Ben Vanik. All rights reserved. *
|
||||
* Released under the BSD license - see LICENSE in the root for more details. *
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
#include "xenia/cpu/compiler/passes/conditional_group_pass.h"
|
||||
|
||||
#include <gflags/gflags.h>
|
||||
|
||||
#include "xenia/base/profiling.h"
|
||||
#include "xenia/cpu/compiler/compiler.h"
|
||||
#include "xenia/cpu/ppc/ppc_context.h"
|
||||
#include "xenia/cpu/processor.h"
|
||||
|
||||
namespace xe {
|
||||
namespace cpu {
|
||||
namespace compiler {
|
||||
namespace passes {
|
||||
|
||||
// TODO(benvanik): remove when enums redefined.
|
||||
using namespace xe::cpu::hir;
|
||||
|
||||
using xe::cpu::hir::Block;
|
||||
using xe::cpu::hir::HIRBuilder;
|
||||
using xe::cpu::hir::Instr;
|
||||
using xe::cpu::hir::Value;
|
||||
|
||||
ConditionalGroupPass::ConditionalGroupPass() : CompilerPass() {}
|
||||
|
||||
ConditionalGroupPass::~ConditionalGroupPass() {}
|
||||
|
||||
bool ConditionalGroupPass::Initialize(Compiler* compiler) {
|
||||
if (!CompilerPass::Initialize(compiler)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < passes_.size(); ++i) {
|
||||
auto& pass = passes_[i];
|
||||
if (!pass->Initialize(compiler)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ConditionalGroupPass::Run(HIRBuilder* builder) {
|
||||
bool dirty;
|
||||
int loops = 0;
|
||||
do {
|
||||
assert_true(loops < 20); // arbitrary number
|
||||
dirty = false;
|
||||
for (size_t i = 0; i < passes_.size(); ++i) {
|
||||
scratch_arena()->Reset();
|
||||
auto& pass = passes_[i];
|
||||
auto subpass = dynamic_cast<ConditionalGroupSubpass*>(pass.get());
|
||||
if (!subpass) {
|
||||
if (!pass->Run(builder)) {
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
bool result = false;
|
||||
if (!subpass->Run(builder, result)) {
|
||||
return false;
|
||||
}
|
||||
dirty |= result;
|
||||
}
|
||||
}
|
||||
loops++;
|
||||
} while (dirty);
|
||||
return true;
|
||||
}
|
||||
|
||||
void ConditionalGroupPass::AddPass(std::unique_ptr<CompilerPass> pass) {
|
||||
passes_.push_back(std::move(pass));
|
||||
}
|
||||
|
||||
} // namespace passes
|
||||
} // namespace compiler
|
||||
} // namespace cpu
|
||||
} // namespace xe
|
|
@ -0,0 +1,45 @@
|
|||
/**
|
||||
******************************************************************************
|
||||
* Xenia : Xbox 360 Emulator Research Project *
|
||||
******************************************************************************
|
||||
* Copyright 2013 Ben Vanik. All rights reserved. *
|
||||
* Released under the BSD license - see LICENSE in the root for more details. *
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
#ifndef XENIA_CPU_COMPILER_PASSES_CONDITIONAL_GROUP_PASS_H_
|
||||
#define XENIA_CPU_COMPILER_PASSES_CONDITIONAL_GROUP_PASS_H_
|
||||
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
|
||||
#include "xenia/base/platform.h"
|
||||
#include "xenia/cpu/compiler/compiler_pass.h"
|
||||
#include "xenia/cpu/compiler/passes/conditional_group_subpass.h"
|
||||
|
||||
namespace xe {
|
||||
namespace cpu {
|
||||
namespace compiler {
|
||||
namespace passes {
|
||||
|
||||
class ConditionalGroupPass : public CompilerPass {
|
||||
public:
|
||||
ConditionalGroupPass();
|
||||
virtual ~ConditionalGroupPass() override;
|
||||
|
||||
bool Initialize(Compiler* compiler) override;
|
||||
|
||||
bool Run(hir::HIRBuilder* builder) override;
|
||||
|
||||
void AddPass(std::unique_ptr<CompilerPass> pass);
|
||||
|
||||
private:
|
||||
std::vector<std::unique_ptr<CompilerPass>> passes_;
|
||||
};
|
||||
|
||||
} // namespace passes
|
||||
} // namespace compiler
|
||||
} // namespace cpu
|
||||
} // namespace xe
|
||||
|
||||
#endif // XENIA_CPU_COMPILER_PASSES_CONDITIONAL_GROUP_PASS_H_
|
|
@ -0,0 +1,26 @@
|
|||
/**
|
||||
******************************************************************************
|
||||
* Xenia : Xbox 360 Emulator Research Project *
|
||||
******************************************************************************
|
||||
* Copyright 2013 Ben Vanik. All rights reserved. *
|
||||
* Released under the BSD license - see LICENSE in the root for more details. *
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
#include "xenia/cpu/compiler/passes/conditional_group_subpass.h"
|
||||
|
||||
#include "xenia/cpu/compiler/compiler.h"
|
||||
|
||||
namespace xe {
|
||||
namespace cpu {
|
||||
namespace compiler {
|
||||
namespace passes {
|
||||
|
||||
ConditionalGroupSubpass::ConditionalGroupSubpass() : CompilerPass() {}
|
||||
|
||||
ConditionalGroupSubpass::~ConditionalGroupSubpass() = default;
|
||||
|
||||
} // namespace passes
|
||||
} // namespace compiler
|
||||
} // namespace cpu
|
||||
} // namespace xe
|
|
@ -0,0 +1,47 @@
|
|||
/**
|
||||
******************************************************************************
|
||||
* Xenia : Xbox 360 Emulator Research Project *
|
||||
******************************************************************************
|
||||
* Copyright 2013 Ben Vanik. All rights reserved. *
|
||||
* Released under the BSD license - see LICENSE in the root for more details. *
|
||||
******************************************************************************
|
||||
*/
|
||||
|
||||
#ifndef XENIA_CPU_COMPILER_PASSES_CONDITIONAL_GROUP_SUBPASS_H_
|
||||
#define XENIA_CPU_COMPILER_PASSES_CONDITIONAL_GROUP_SUBPASS_H_
|
||||
|
||||
#include "xenia/base/arena.h"
|
||||
#include "xenia/cpu/compiler/compiler_pass.h"
|
||||
#include "xenia/cpu/hir/hir_builder.h"
|
||||
|
||||
namespace xe {
|
||||
namespace cpu {
|
||||
class Processor;
|
||||
} // namespace cpu
|
||||
} // namespace xe
|
||||
|
||||
namespace xe {
|
||||
namespace cpu {
|
||||
namespace compiler {
|
||||
class Compiler;
|
||||
namespace passes {
|
||||
|
||||
class ConditionalGroupSubpass : public CompilerPass {
|
||||
public:
|
||||
ConditionalGroupSubpass();
|
||||
virtual ~ConditionalGroupSubpass();
|
||||
|
||||
bool Run(hir::HIRBuilder* builder) override {
|
||||
bool dummy;
|
||||
return Run(builder, dummy);
|
||||
}
|
||||
|
||||
virtual bool Run(hir::HIRBuilder* builder, bool& result) = 0;
|
||||
};
|
||||
|
||||
} // namespace passes
|
||||
} // namespace compiler
|
||||
} // namespace cpu
|
||||
} // namespace xe
|
||||
|
||||
#endif // XENIA_CPU_COMPILER_PASSES_CONDITIONAL_GROUP_SUBPASS_H_
|
|
@ -31,11 +31,12 @@ using xe::cpu::hir::HIRBuilder;
|
|||
using xe::cpu::hir::TypeName;
|
||||
using xe::cpu::hir::Value;
|
||||
|
||||
ConstantPropagationPass::ConstantPropagationPass() : CompilerPass() {}
|
||||
ConstantPropagationPass::ConstantPropagationPass()
|
||||
: ConditionalGroupSubpass() {}
|
||||
|
||||
ConstantPropagationPass::~ConstantPropagationPass() {}
|
||||
|
||||
bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
||||
bool ConstantPropagationPass::Run(HIRBuilder* builder, bool& result) {
|
||||
// Once ContextPromotion has run there will likely be a whole slew of
|
||||
// constants that can be pushed through the function.
|
||||
// Example:
|
||||
|
@ -63,6 +64,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
// v1 = 19
|
||||
// v2 = 0
|
||||
|
||||
result = false;
|
||||
auto block = builder->first_block();
|
||||
while (block) {
|
||||
auto i = block->instr_head;
|
||||
|
@ -76,6 +78,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
} else {
|
||||
i->Remove();
|
||||
}
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -86,6 +89,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
} else {
|
||||
i->Remove();
|
||||
}
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -98,6 +102,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
} else {
|
||||
i->Remove();
|
||||
}
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_CALL_INDIRECT:
|
||||
|
@ -109,6 +114,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
}
|
||||
i->Replace(&OPCODE_CALL_info, i->flags);
|
||||
i->src1.symbol = function;
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_CALL_INDIRECT_TRUE:
|
||||
|
@ -120,6 +126,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
} else {
|
||||
i->Remove();
|
||||
}
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -132,6 +139,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
} else {
|
||||
i->Remove();
|
||||
}
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_BRANCH_FALSE:
|
||||
|
@ -143,6 +151,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
} else {
|
||||
i->Remove();
|
||||
}
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -152,6 +161,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Cast(target_type);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_CONVERT:
|
||||
|
@ -160,6 +170,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Convert(target_type, RoundMode(i->flags));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_ROUND:
|
||||
|
@ -167,6 +178,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Round(RoundMode(i->flags));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_ZERO_EXTEND:
|
||||
|
@ -175,6 +187,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->ZeroExtend(target_type);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_SIGN_EXTEND:
|
||||
|
@ -183,6 +196,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->SignExtend(target_type);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_TRUNCATE:
|
||||
|
@ -191,6 +205,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Truncate(target_type);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -210,6 +225,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
i->Replace(&OPCODE_LOAD_MMIO_info, 0);
|
||||
i->src1.offset = reinterpret_cast<uint64_t>(mmio_range);
|
||||
i->src2.offset = address;
|
||||
result = true;
|
||||
} else {
|
||||
auto heap = memory->LookupHeap(address);
|
||||
uint32_t protect;
|
||||
|
@ -222,18 +238,22 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
case INT8_TYPE:
|
||||
v->set_constant(xe::load<uint8_t>(host_addr));
|
||||
i->Remove();
|
||||
result = true;
|
||||
break;
|
||||
case INT16_TYPE:
|
||||
v->set_constant(xe::load<uint16_t>(host_addr));
|
||||
i->Remove();
|
||||
result = true;
|
||||
break;
|
||||
case INT32_TYPE:
|
||||
v->set_constant(xe::load<uint32_t>(host_addr));
|
||||
i->Remove();
|
||||
result = true;
|
||||
break;
|
||||
case INT64_TYPE:
|
||||
v->set_constant(xe::load<uint64_t>(host_addr));
|
||||
i->Remove();
|
||||
result = true;
|
||||
break;
|
||||
case VEC128_TYPE:
|
||||
vec128_t val;
|
||||
|
@ -241,6 +261,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
val.high = xe::load<uint64_t>(host_addr + 8);
|
||||
v->set_constant(val);
|
||||
i->Remove();
|
||||
result = true;
|
||||
break;
|
||||
default:
|
||||
assert_unhandled_case(v->type);
|
||||
|
@ -270,6 +291,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
i->src1.offset = reinterpret_cast<uint64_t>(mmio_range);
|
||||
i->src2.offset = address;
|
||||
i->set_src3(value);
|
||||
result = true;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
@ -281,10 +303,12 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
auto src2 = i->src2.value;
|
||||
i->Replace(&OPCODE_ASSIGN_info, 0);
|
||||
i->set_src1(src2);
|
||||
result = true;
|
||||
} else if (i->src1.value->IsConstantFalse()) {
|
||||
auto src3 = i->src3.value;
|
||||
i->Replace(&OPCODE_ASSIGN_info, 0);
|
||||
i->set_src1(src3);
|
||||
result = true;
|
||||
} else if (i->src2.value->IsConstant() &&
|
||||
i->src3.value->IsConstant()) {
|
||||
// TODO: Select
|
||||
|
@ -305,6 +329,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_constant(uint8_t(0));
|
||||
}
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_IS_FALSE:
|
||||
|
@ -315,6 +340,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_constant(uint8_t(0));
|
||||
}
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_IS_NAN:
|
||||
|
@ -329,6 +355,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_constant(uint8_t(0));
|
||||
}
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -338,6 +365,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
bool value = i->src1.value->IsConstantEQ(i->src2.value);
|
||||
i->dest->set_constant(uint8_t(value));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_COMPARE_NE:
|
||||
|
@ -345,6 +373,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
bool value = i->src1.value->IsConstantNE(i->src2.value);
|
||||
i->dest->set_constant(uint8_t(value));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_COMPARE_SLT:
|
||||
|
@ -352,6 +381,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
bool value = i->src1.value->IsConstantSLT(i->src2.value);
|
||||
i->dest->set_constant(uint8_t(value));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_COMPARE_SLE:
|
||||
|
@ -359,6 +389,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
bool value = i->src1.value->IsConstantSLE(i->src2.value);
|
||||
i->dest->set_constant(uint8_t(value));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_COMPARE_SGT:
|
||||
|
@ -366,6 +397,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
bool value = i->src1.value->IsConstantSGT(i->src2.value);
|
||||
i->dest->set_constant(uint8_t(value));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_COMPARE_SGE:
|
||||
|
@ -373,6 +405,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
bool value = i->src1.value->IsConstantSGE(i->src2.value);
|
||||
i->dest->set_constant(uint8_t(value));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_COMPARE_ULT:
|
||||
|
@ -380,6 +413,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
bool value = i->src1.value->IsConstantULT(i->src2.value);
|
||||
i->dest->set_constant(uint8_t(value));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_COMPARE_ULE:
|
||||
|
@ -387,6 +421,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
bool value = i->src1.value->IsConstantULE(i->src2.value);
|
||||
i->dest->set_constant(uint8_t(value));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_COMPARE_UGT:
|
||||
|
@ -394,6 +429,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
bool value = i->src1.value->IsConstantUGT(i->src2.value);
|
||||
i->dest->set_constant(uint8_t(value));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_COMPARE_UGE:
|
||||
|
@ -401,6 +437,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
bool value = i->src1.value->IsConstantUGE(i->src2.value);
|
||||
i->dest->set_constant(uint8_t(value));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -413,6 +450,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Add(i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_ADD_CARRY:
|
||||
|
@ -433,6 +471,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
i->set_src1(ca);
|
||||
}
|
||||
}
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_SUB:
|
||||
|
@ -440,6 +479,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Sub(i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_MUL:
|
||||
|
@ -447,6 +487,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Mul(i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
} else if (i->src1.value->IsConstant() ||
|
||||
i->src2.value->IsConstant()) {
|
||||
// Reorder the sources to make things simpler.
|
||||
|
@ -460,12 +501,14 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
if (s2->type != VEC128_TYPE && s2->IsConstantOne()) {
|
||||
i->Replace(&OPCODE_ASSIGN_info, 0);
|
||||
i->set_src1(s1);
|
||||
result = true;
|
||||
} else if (s2->type == VEC128_TYPE) {
|
||||
auto& c = s2->constant;
|
||||
if (c.v128.f32[0] == 1.f && c.v128.f32[1] == 1.f &&
|
||||
c.v128.f32[2] == 1.f && c.v128.f32[3] == 1.f) {
|
||||
i->Replace(&OPCODE_ASSIGN_info, 0);
|
||||
i->set_src1(s1);
|
||||
result = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -475,6 +518,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->MulHi(i->src2.value, (i->flags & ARITHMETIC_UNSIGNED) != 0);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_DIV:
|
||||
|
@ -482,6 +526,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Div(i->src2.value, (i->flags & ARITHMETIC_UNSIGNED) != 0);
|
||||
i->Remove();
|
||||
result = true;
|
||||
} else if (i->src2.value->IsConstant()) {
|
||||
// Division by one = no-op.
|
||||
Value* src1 = i->src1.value;
|
||||
|
@ -489,12 +534,14 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
i->src2.value->IsConstantOne()) {
|
||||
i->Replace(&OPCODE_ASSIGN_info, 0);
|
||||
i->set_src1(src1);
|
||||
result = true;
|
||||
} else if (i->src2.value->type == VEC128_TYPE) {
|
||||
auto& c = i->src2.value->constant;
|
||||
if (c.v128.f32[0] == 1.f && c.v128.f32[1] == 1.f &&
|
||||
c.v128.f32[2] == 1.f && c.v128.f32[3] == 1.f) {
|
||||
i->Replace(&OPCODE_ASSIGN_info, 0);
|
||||
i->set_src1(src1);
|
||||
result = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -505,6 +552,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
Value::MulAdd(v, i->src1.value, i->src2.value, i->src3.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
} else {
|
||||
// Multiply part is constant.
|
||||
Value* mul = builder->AllocValue();
|
||||
|
@ -515,6 +563,8 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
i->Replace(&OPCODE_ADD_info, 0);
|
||||
i->set_src1(mul);
|
||||
i->set_src2(add);
|
||||
|
||||
result = true;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
@ -525,6 +575,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
Value::MulSub(v, i->src1.value, i->src2.value, i->src3.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
} else {
|
||||
// Multiply part is constant.
|
||||
Value* mul = builder->AllocValue();
|
||||
|
@ -535,6 +586,8 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
i->Replace(&OPCODE_SUB_info, 0);
|
||||
i->set_src1(mul);
|
||||
i->set_src2(add);
|
||||
|
||||
result = true;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
@ -543,6 +596,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Max(i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_NEG:
|
||||
|
@ -550,6 +604,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Neg();
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_ABS:
|
||||
|
@ -557,6 +612,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Abs();
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_SQRT:
|
||||
|
@ -564,6 +620,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Sqrt();
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_RSQRT:
|
||||
|
@ -571,6 +628,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->RSqrt();
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_RECIP:
|
||||
|
@ -578,6 +636,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Recip();
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_AND:
|
||||
|
@ -585,6 +644,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->And(i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_OR:
|
||||
|
@ -592,6 +652,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Or(i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_XOR:
|
||||
|
@ -599,11 +660,13 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Xor(i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
} else if (!i->src1.value->IsConstant() &&
|
||||
!i->src2.value->IsConstant() &&
|
||||
i->src1.value == i->src2.value) {
|
||||
v->set_zero(v->type);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_NOT:
|
||||
|
@ -611,6 +674,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Not();
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_SHL:
|
||||
|
@ -618,10 +682,12 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Shl(i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
} else if (i->src2.value->IsConstantZero()) {
|
||||
auto src1 = i->src1.value;
|
||||
i->Replace(&OPCODE_ASSIGN_info, 0);
|
||||
i->set_src1(src1);
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_SHR:
|
||||
|
@ -629,10 +695,12 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Shr(i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
} else if (i->src2.value->IsConstantZero()) {
|
||||
auto src1 = i->src1.value;
|
||||
i->Replace(&OPCODE_ASSIGN_info, 0);
|
||||
i->set_src1(src1);
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_SHA:
|
||||
|
@ -640,6 +708,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->Sha(i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
// TODO(benvanik): ROTATE_LEFT
|
||||
|
@ -648,6 +717,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->ByteSwap();
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_CNTLZ:
|
||||
|
@ -655,6 +725,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_zero(v->type);
|
||||
v->CountLeadingZeros(i->src1.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
// TODO(benvanik): INSERT/EXTRACT
|
||||
|
@ -664,6 +735,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_zero(v->type);
|
||||
v->Extract(i->src1.value, i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_SPLAT:
|
||||
|
@ -671,6 +743,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_zero(v->type);
|
||||
v->Splat(i->src1.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_VECTOR_COMPARE_EQ:
|
||||
|
@ -678,6 +751,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->VectorCompareEQ(i->src2.value, hir::TypeName(i->flags));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_VECTOR_COMPARE_SGT:
|
||||
|
@ -685,6 +759,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->VectorCompareSGT(i->src2.value, hir::TypeName(i->flags));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_VECTOR_COMPARE_SGE:
|
||||
|
@ -692,6 +767,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->VectorCompareSGE(i->src2.value, hir::TypeName(i->flags));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_VECTOR_COMPARE_UGT:
|
||||
|
@ -699,6 +775,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->VectorCompareUGT(i->src2.value, hir::TypeName(i->flags));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_VECTOR_COMPARE_UGE:
|
||||
|
@ -706,6 +783,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->VectorCompareUGE(i->src2.value, hir::TypeName(i->flags));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_VECTOR_CONVERT_F2I:
|
||||
|
@ -714,6 +792,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->VectorConvertF2I(i->src1.value,
|
||||
!!(i->flags & ARITHMETIC_UNSIGNED));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_VECTOR_CONVERT_I2F:
|
||||
|
@ -722,6 +801,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->VectorConvertI2F(i->src1.value,
|
||||
!!(i->flags & ARITHMETIC_UNSIGNED));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_VECTOR_SHL:
|
||||
|
@ -729,6 +809,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->VectorShl(i->src2.value, hir::TypeName(i->flags));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_VECTOR_SHR:
|
||||
|
@ -736,6 +817,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->VectorShr(i->src2.value, hir::TypeName(i->flags));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_VECTOR_ROTATE_LEFT:
|
||||
|
@ -743,6 +825,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->VectorRol(i->src2.value, hir::TypeName(i->flags));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_VECTOR_ADD:
|
||||
|
@ -753,6 +836,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
!!(arith_flags & ARITHMETIC_UNSIGNED),
|
||||
!!(arith_flags & ARITHMETIC_SATURATE));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
case OPCODE_VECTOR_SUB:
|
||||
|
@ -763,6 +847,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
!!(arith_flags & ARITHMETIC_UNSIGNED),
|
||||
!!(arith_flags & ARITHMETIC_SATURATE));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -771,6 +856,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->DotProduct3(i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -779,6 +865,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
v->set_from(i->src1.value);
|
||||
v->DotProduct4(i->src2.value);
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -790,6 +877,7 @@ bool ConstantPropagationPass::Run(HIRBuilder* builder) {
|
|||
!!(arith_flags & ARITHMETIC_UNSIGNED),
|
||||
!!(arith_flags & ARITHMETIC_SATURATE));
|
||||
i->Remove();
|
||||
result = true;
|
||||
}
|
||||
break;
|
||||
|
||||
|
|
|
@ -10,19 +10,19 @@
|
|||
#ifndef XENIA_CPU_COMPILER_PASSES_CONSTANT_PROPAGATION_PASS_H_
|
||||
#define XENIA_CPU_COMPILER_PASSES_CONSTANT_PROPAGATION_PASS_H_
|
||||
|
||||
#include "xenia/cpu/compiler/compiler_pass.h"
|
||||
#include "xenia/cpu/compiler/passes/conditional_group_subpass.h"
|
||||
|
||||
namespace xe {
|
||||
namespace cpu {
|
||||
namespace compiler {
|
||||
namespace passes {
|
||||
|
||||
class ConstantPropagationPass : public CompilerPass {
|
||||
class ConstantPropagationPass : public ConditionalGroupSubpass {
|
||||
public:
|
||||
ConstantPropagationPass();
|
||||
~ConstantPropagationPass() override;
|
||||
|
||||
bool Run(hir::HIRBuilder* builder) override;
|
||||
bool Run(hir::HIRBuilder* builder, bool& result) override;
|
||||
|
||||
private:
|
||||
};
|
||||
|
|
|
@ -23,17 +23,18 @@ using xe::cpu::hir::HIRBuilder;
|
|||
using xe::cpu::hir::Instr;
|
||||
using xe::cpu::hir::Value;
|
||||
|
||||
SimplificationPass::SimplificationPass() : CompilerPass() {}
|
||||
SimplificationPass::SimplificationPass() : ConditionalGroupSubpass() {}
|
||||
|
||||
SimplificationPass::~SimplificationPass() {}
|
||||
|
||||
bool SimplificationPass::Run(HIRBuilder* builder) {
|
||||
EliminateConversions(builder);
|
||||
SimplifyAssignments(builder);
|
||||
bool SimplificationPass::Run(HIRBuilder* builder, bool& result) {
|
||||
result = false;
|
||||
result |= EliminateConversions(builder);
|
||||
result |= SimplifyAssignments(builder);
|
||||
return true;
|
||||
}
|
||||
|
||||
void SimplificationPass::EliminateConversions(HIRBuilder* builder) {
|
||||
bool SimplificationPass::EliminateConversions(HIRBuilder* builder) {
|
||||
// First, we check for truncates/extensions that can be skipped.
|
||||
// This generates some assignments which then the second step will clean up.
|
||||
// Both zero/sign extends can be skipped:
|
||||
|
@ -43,6 +44,7 @@ void SimplificationPass::EliminateConversions(HIRBuilder* builder) {
|
|||
// v1.i64 = zero/sign_extend v0.i32 (may be dead code removed later)
|
||||
// v2.i32 = v0.i32
|
||||
|
||||
bool result = false;
|
||||
auto block = builder->first_block();
|
||||
while (block) {
|
||||
auto i = block->instr_head;
|
||||
|
@ -51,20 +53,21 @@ void SimplificationPass::EliminateConversions(HIRBuilder* builder) {
|
|||
// back to definition).
|
||||
if (i->opcode == &OPCODE_TRUNCATE_info) {
|
||||
// Matches zero/sign_extend + truncate.
|
||||
CheckTruncate(i);
|
||||
result |= CheckTruncate(i);
|
||||
} else if (i->opcode == &OPCODE_BYTE_SWAP_info) {
|
||||
// Matches byte swap + byte swap.
|
||||
// This is pretty rare within the same basic block, but is in the
|
||||
// memcpy hot path and (probably) worth it. Maybe.
|
||||
CheckByteSwap(i);
|
||||
result |= CheckByteSwap(i);
|
||||
}
|
||||
i = i->next;
|
||||
}
|
||||
block = block->next;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void SimplificationPass::CheckTruncate(Instr* i) {
|
||||
bool SimplificationPass::CheckTruncate(Instr* i) {
|
||||
// Walk backward up src's chain looking for an extend. We may have
|
||||
// assigns, so skip those.
|
||||
auto src = i->src1.value;
|
||||
|
@ -80,6 +83,7 @@ void SimplificationPass::CheckTruncate(Instr* i) {
|
|||
// Types match, use original by turning this into an assign.
|
||||
i->Replace(&OPCODE_ASSIGN_info, 0);
|
||||
i->set_src1(def->src1.value);
|
||||
return true;
|
||||
}
|
||||
} else if (def->opcode == &OPCODE_ZERO_EXTEND_info) {
|
||||
// Value comes from a zero extend.
|
||||
|
@ -87,12 +91,14 @@ void SimplificationPass::CheckTruncate(Instr* i) {
|
|||
// Types match, use original by turning this into an assign.
|
||||
i->Replace(&OPCODE_ASSIGN_info, 0);
|
||||
i->set_src1(def->src1.value);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void SimplificationPass::CheckByteSwap(Instr* i) {
|
||||
bool SimplificationPass::CheckByteSwap(Instr* i) {
|
||||
// Walk backward up src's chain looking for a byte swap. We may have
|
||||
// assigns, so skip those.
|
||||
auto src = i->src1.value;
|
||||
|
@ -107,11 +113,13 @@ void SimplificationPass::CheckByteSwap(Instr* i) {
|
|||
// Types match, use original by turning this into an assign.
|
||||
i->Replace(&OPCODE_ASSIGN_info, 0);
|
||||
i->set_src1(def->src1.value);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void SimplificationPass::SimplifyAssignments(HIRBuilder* builder) {
|
||||
bool SimplificationPass::SimplifyAssignments(HIRBuilder* builder) {
|
||||
// Run over the instructions and rename assigned variables:
|
||||
// v1 = v0
|
||||
// v2 = v1
|
||||
|
@ -129,27 +137,35 @@ void SimplificationPass::SimplifyAssignments(HIRBuilder* builder) {
|
|||
// of that instr. Because we may have chains, we do this recursively until
|
||||
// we find a non-assign def.
|
||||
|
||||
bool result = false;
|
||||
auto block = builder->first_block();
|
||||
while (block) {
|
||||
auto i = block->instr_head;
|
||||
while (i) {
|
||||
uint32_t signature = i->opcode->signature;
|
||||
if (GET_OPCODE_SIG_TYPE_SRC1(signature) == OPCODE_SIG_TYPE_V) {
|
||||
i->set_src1(CheckValue(i->src1.value));
|
||||
bool modified = false;
|
||||
i->set_src1(CheckValue(i->src1.value, modified));
|
||||
result |= modified;
|
||||
}
|
||||
if (GET_OPCODE_SIG_TYPE_SRC2(signature) == OPCODE_SIG_TYPE_V) {
|
||||
i->set_src2(CheckValue(i->src2.value));
|
||||
bool modified = false;
|
||||
i->set_src2(CheckValue(i->src2.value, modified));
|
||||
result |= modified;
|
||||
}
|
||||
if (GET_OPCODE_SIG_TYPE_SRC3(signature) == OPCODE_SIG_TYPE_V) {
|
||||
i->set_src3(CheckValue(i->src3.value));
|
||||
bool modified = false;
|
||||
i->set_src3(CheckValue(i->src3.value, modified));
|
||||
result |= modified;
|
||||
}
|
||||
i = i->next;
|
||||
}
|
||||
block = block->next;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
Value* SimplificationPass::CheckValue(Value* value) {
|
||||
Value* SimplificationPass::CheckValue(Value* value, bool& result) {
|
||||
auto def = value->def;
|
||||
if (def && def->opcode == &OPCODE_ASSIGN_info) {
|
||||
// Value comes from an assignment - recursively find if it comes from
|
||||
|
@ -162,8 +178,10 @@ Value* SimplificationPass::CheckValue(Value* value) {
|
|||
}
|
||||
replacement = def->src1.value;
|
||||
}
|
||||
result = true;
|
||||
return replacement;
|
||||
}
|
||||
result = false;
|
||||
return value;
|
||||
}
|
||||
|
||||
|
|
|
@ -10,27 +10,27 @@
|
|||
#ifndef XENIA_CPU_COMPILER_PASSES_SIMPLIFICATION_PASS_H_
|
||||
#define XENIA_CPU_COMPILER_PASSES_SIMPLIFICATION_PASS_H_
|
||||
|
||||
#include "xenia/cpu/compiler/compiler_pass.h"
|
||||
#include "xenia/cpu/compiler/passes/conditional_group_subpass.h"
|
||||
|
||||
namespace xe {
|
||||
namespace cpu {
|
||||
namespace compiler {
|
||||
namespace passes {
|
||||
|
||||
class SimplificationPass : public CompilerPass {
|
||||
class SimplificationPass : public ConditionalGroupSubpass {
|
||||
public:
|
||||
SimplificationPass();
|
||||
~SimplificationPass() override;
|
||||
|
||||
bool Run(hir::HIRBuilder* builder) override;
|
||||
bool Run(hir::HIRBuilder* builder, bool& result) override;
|
||||
|
||||
private:
|
||||
void EliminateConversions(hir::HIRBuilder* builder);
|
||||
void CheckTruncate(hir::Instr* i);
|
||||
void CheckByteSwap(hir::Instr* i);
|
||||
bool EliminateConversions(hir::HIRBuilder* builder);
|
||||
bool CheckTruncate(hir::Instr* i);
|
||||
bool CheckByteSwap(hir::Instr* i);
|
||||
|
||||
void SimplifyAssignments(hir::HIRBuilder* builder);
|
||||
hir::Value* CheckValue(hir::Value* value);
|
||||
bool SimplifyAssignments(hir::HIRBuilder* builder);
|
||||
hir::Value* CheckValue(hir::Value* value, bool& result);
|
||||
};
|
||||
|
||||
} // namespace passes
|
||||
|
|
|
@ -170,6 +170,7 @@ class Value {
|
|||
constant.v128 = value;
|
||||
}
|
||||
void set_from(const Value* other) {
|
||||
assert_true(other->IsConstant());
|
||||
type = other->type;
|
||||
flags = other->flags;
|
||||
constant.v128 = other->constant.v128;
|
||||
|
|
|
@ -53,15 +53,16 @@ PPCTranslator::PPCTranslator(PPCFrontend* frontend) : frontend_(frontend) {
|
|||
if (validate) compiler_->AddPass(std::make_unique<passes::ValidationPass>());
|
||||
compiler_->AddPass(std::make_unique<passes::ContextPromotionPass>());
|
||||
if (validate) compiler_->AddPass(std::make_unique<passes::ValidationPass>());
|
||||
// TODO(gibbed): loop until these passes stop making changes?
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
compiler_->AddPass(std::make_unique<passes::SimplificationPass>());
|
||||
if (validate)
|
||||
compiler_->AddPass(std::make_unique<passes::ValidationPass>());
|
||||
compiler_->AddPass(std::make_unique<passes::ConstantPropagationPass>());
|
||||
if (validate)
|
||||
compiler_->AddPass(std::make_unique<passes::ValidationPass>());
|
||||
}
|
||||
|
||||
// Grouped simplification + constant propagation.
|
||||
// Loops until no changes are made.
|
||||
auto sap = std::make_unique<passes::ConditionalGroupPass>();
|
||||
sap->AddPass(std::make_unique<passes::SimplificationPass>());
|
||||
if (validate) sap->AddPass(std::make_unique<passes::ValidationPass>());
|
||||
sap->AddPass(std::make_unique<passes::ConstantPropagationPass>());
|
||||
if (validate) sap->AddPass(std::make_unique<passes::ValidationPass>());
|
||||
compiler_->AddPass(std::move(sap));
|
||||
|
||||
if (backend->machine_info()->supports_extended_load_store) {
|
||||
// Backend supports the advanced LOAD/STORE instructions.
|
||||
// These will save us a lot of HIR opcodes.
|
||||
|
|
|
@ -13,6 +13,7 @@ project("xenia-cpu-ppc-tests")
|
|||
"xenia-base",
|
||||
"gflags",
|
||||
"capstone", -- cpu-backend-x64
|
||||
"mspack",
|
||||
})
|
||||
files({
|
||||
"ppc_testing_main.cc",
|
||||
|
|
|
@ -8,6 +8,7 @@ project("xenia-cpu")
|
|||
language("C++")
|
||||
links({
|
||||
"xenia-base",
|
||||
"mspack",
|
||||
})
|
||||
includedirs({
|
||||
project_root.."/third_party/llvm/include",
|
||||
|
|
|
@ -25,7 +25,6 @@
|
|||
#include "third_party/crypto/rijndael-alg-fst.c"
|
||||
#include "third_party/crypto/rijndael-alg-fst.h"
|
||||
#include "third_party/mspack/lzx.h"
|
||||
#include "third_party/mspack/lzxd.c"
|
||||
#include "third_party/mspack/mspack.h"
|
||||
#include "third_party/pe/pe_image.h"
|
||||
|
||||
|
@ -120,7 +119,7 @@ int lzx_decompress(const void* lzx_data, size_t lzx_len, void* dest,
|
|||
mspack_memory_file* lzxdst = mspack_memory_open(sys, dest, dest_len);
|
||||
lzxd_stream* lzxd =
|
||||
lzxd_init(sys, (struct mspack_file*)lzxsrc, (struct mspack_file*)lzxdst,
|
||||
window_bits, 0, 0x8000, (off_t)dest_len);
|
||||
window_bits, 0, 0x8000, (off_t)dest_len, 0);
|
||||
|
||||
if (lzxd) {
|
||||
if (window_data) {
|
||||
|
@ -1120,23 +1119,23 @@ bool XexModule::LoadContinue() {
|
|||
processor_->backend()->CommitExecutableRange(low_address_, high_address_);
|
||||
|
||||
// Add all imports (variables/functions).
|
||||
xex2_opt_import_libraries* opt_import_header = nullptr;
|
||||
GetOptHeader(XEX_HEADER_IMPORT_LIBRARIES, &opt_import_header);
|
||||
xex2_opt_import_libraries* opt_import_libraries = nullptr;
|
||||
GetOptHeader(XEX_HEADER_IMPORT_LIBRARIES, &opt_import_libraries);
|
||||
|
||||
if (opt_import_header) {
|
||||
if (opt_import_libraries) {
|
||||
// FIXME: Don't know if 32 is the actual limit, but haven't seen more than
|
||||
// 2.
|
||||
const char* string_table[32];
|
||||
std::memset(string_table, 0, sizeof(string_table));
|
||||
size_t max_string_table_index = 0;
|
||||
|
||||
// Parse the string table
|
||||
for (size_t i = 0; i < opt_import_header->string_table_size;
|
||||
++max_string_table_index) {
|
||||
assert_true(max_string_table_index < xe::countof(string_table));
|
||||
const char* str = opt_import_header->string_table + i;
|
||||
for (size_t i = 0, o = 0; i < opt_import_libraries->string_table.size &&
|
||||
o < opt_import_libraries->string_table.count;
|
||||
++o) {
|
||||
assert_true(o < xe::countof(string_table));
|
||||
const char* str = &opt_import_libraries->string_table.data[i];
|
||||
|
||||
string_table[max_string_table_index] = str;
|
||||
string_table[o] = str;
|
||||
i += std::strlen(str) + 1;
|
||||
|
||||
// Padding
|
||||
|
@ -1145,15 +1144,19 @@ bool XexModule::LoadContinue() {
|
|||
}
|
||||
}
|
||||
|
||||
auto libraries_ptr = reinterpret_cast<uint8_t*>(opt_import_header) +
|
||||
opt_import_header->string_table_size + 12;
|
||||
auto library_data = reinterpret_cast<uint8_t*>(opt_import_libraries) +
|
||||
opt_import_libraries->string_table.size + 12;
|
||||
uint32_t library_offset = 0;
|
||||
uint32_t library_count = opt_import_header->library_count;
|
||||
for (uint32_t i = 0; i < library_count; i++) {
|
||||
auto library = reinterpret_cast<xex2_import_library*>(libraries_ptr +
|
||||
library_offset);
|
||||
while (library_offset < opt_import_libraries->size) {
|
||||
auto library =
|
||||
reinterpret_cast<xex2_import_library*>(library_data + library_offset);
|
||||
if (!library->size) {
|
||||
break;
|
||||
}
|
||||
size_t library_name_index = library->name_index & 0xFF;
|
||||
assert_true(library_name_index < max_string_table_index);
|
||||
assert_true(library_name_index <
|
||||
opt_import_libraries->string_table.count);
|
||||
assert_not_null(string_table[library_name_index]);
|
||||
SetupLibraryImports(string_table[library_name_index], library);
|
||||
library_offset += library->size;
|
||||
}
|
||||
|
@ -1313,10 +1316,12 @@ bool XexModule::SetupLibraryImports(const char* name,
|
|||
var_info->set_status(Symbol::Status::kDefined);
|
||||
} else if (record_type == 1) {
|
||||
// Thunk.
|
||||
assert_true(library_info.imports.size() > 0);
|
||||
auto& prev_import = library_info.imports[library_info.imports.size() - 1];
|
||||
if (library_info.imports.size() > 0) {
|
||||
auto& prev_import =
|
||||
library_info.imports[library_info.imports.size() - 1];
|
||||
assert_true(prev_import.ordinal == ordinal);
|
||||
prev_import.thunk_address = record_addr;
|
||||
}
|
||||
|
||||
if (kernel_export) {
|
||||
import_name.AppendFormat("%s", kernel_export->name);
|
||||
|
|
|
@ -38,6 +38,7 @@ project("xenia-gpu-vulkan-trace-viewer")
|
|||
"imgui",
|
||||
"libavcodec",
|
||||
"libavutil",
|
||||
"mspack",
|
||||
"snappy",
|
||||
"spirv-tools",
|
||||
"volk",
|
||||
|
@ -110,6 +111,7 @@ project("xenia-gpu-vulkan-trace-dump")
|
|||
"imgui",
|
||||
"libavcodec",
|
||||
"libavutil",
|
||||
"mspack",
|
||||
"snappy",
|
||||
"spirv-tools",
|
||||
"volk",
|
||||
|
|
|
@ -486,29 +486,33 @@ void UserModule::Dump() {
|
|||
std::memset(string_table, 0, sizeof(string_table));
|
||||
|
||||
// Parse the string table
|
||||
for (size_t l = 0, j = 0; l < opt_import_libraries->string_table_size;
|
||||
j++) {
|
||||
assert_true(j < xe::countof(string_table));
|
||||
const char* str = opt_import_libraries->string_table + l;
|
||||
for (size_t j = 0, o = 0; j < opt_import_libraries->string_table.size &&
|
||||
o < opt_import_libraries->string_table.count;
|
||||
o++) {
|
||||
assert_true(o < xe::countof(string_table));
|
||||
const char* str = &opt_import_libraries->string_table.data[j];
|
||||
|
||||
string_table[j] = str;
|
||||
l += std::strlen(str) + 1;
|
||||
string_table[o] = str;
|
||||
j += std::strlen(str) + 1;
|
||||
|
||||
// Padding
|
||||
if ((l % 4) != 0) {
|
||||
l += 4 - (l % 4);
|
||||
if ((j % 4) != 0) {
|
||||
j += 4 - (j % 4);
|
||||
}
|
||||
}
|
||||
|
||||
auto libraries =
|
||||
auto library_data =
|
||||
reinterpret_cast<const uint8_t*>(opt_import_libraries) +
|
||||
opt_import_libraries->string_table_size + 12;
|
||||
opt_import_libraries->string_table.size + 12;
|
||||
uint32_t library_offset = 0;
|
||||
uint32_t library_count = opt_import_libraries->library_count;
|
||||
for (uint32_t l = 0; l < library_count; l++) {
|
||||
while (library_offset < opt_import_libraries->size) {
|
||||
auto library = reinterpret_cast<const xex2_import_library*>(
|
||||
libraries + library_offset);
|
||||
library_data + library_offset);
|
||||
if (!library->size) {
|
||||
break;
|
||||
}
|
||||
auto name = string_table[library->name_index & 0xFF];
|
||||
assert_not_null(name);
|
||||
sb.AppendFormat(" %s - %d imports\n", name,
|
||||
(uint16_t)library->count);
|
||||
|
||||
|
@ -786,11 +790,11 @@ void UserModule::Dump() {
|
|||
}
|
||||
if (kernel_export &&
|
||||
kernel_export->type == cpu::Export::Type::kVariable) {
|
||||
sb.AppendFormat(" V %.8X %.3X (%3d) %s %s\n",
|
||||
sb.AppendFormat(" V %.8X %.3X (%4d) %s %s\n",
|
||||
info->value_address, info->ordinal, info->ordinal,
|
||||
implemented ? " " : "!!", name);
|
||||
} else if (info->thunk_address) {
|
||||
sb.AppendFormat(" F %.8X %.8X %.3X (%3d) %s %s\n",
|
||||
sb.AppendFormat(" F %.8X %.8X %.3X (%4d) %s %s\n",
|
||||
info->value_address, info->thunk_address,
|
||||
info->ordinal, info->ordinal,
|
||||
implemented ? " " : "!!", name);
|
||||
|
|
|
@ -474,10 +474,12 @@ struct xex2_opt_execution_info {
|
|||
static_assert_size(xex2_opt_execution_info, 0x18);
|
||||
|
||||
struct xex2_opt_import_libraries {
|
||||
xe::be<uint32_t> section_size; // 0x0
|
||||
xe::be<uint32_t> string_table_size; // 0x4
|
||||
xe::be<uint32_t> library_count; // 0x8
|
||||
char string_table[1]; // 0xC string_table_size bytes
|
||||
xe::be<uint32_t> size; // 0x0
|
||||
struct {
|
||||
xe::be<uint32_t> size; // 0x4
|
||||
xe::be<uint32_t> count; // 0x8
|
||||
char data[1]; // 0xC string_table_size bytes
|
||||
} string_table;
|
||||
};
|
||||
|
||||
struct xex2_import_library {
|
||||
|
|
|
@ -23,7 +23,7 @@ struct DeviceInfo {
|
|||
uint32_t device_type;
|
||||
uint64_t total_bytes;
|
||||
uint64_t free_bytes;
|
||||
std::wstring name;
|
||||
wchar_t name[28];
|
||||
};
|
||||
static const DeviceInfo dummy_device_info_ = {
|
||||
0xF00D0000,
|
||||
|
@ -57,7 +57,7 @@ dword_result_t XamContentGetDeviceName(dword_t device_id,
|
|||
return X_ERROR_DEVICE_NOT_CONNECTED;
|
||||
}
|
||||
|
||||
if (name_capacity < dummy_device_info_.name.size() + 1) {
|
||||
if (name_capacity < wcslen(dummy_device_info_.name) + 1) {
|
||||
return X_ERROR_INSUFFICIENT_BUFFER;
|
||||
}
|
||||
|
||||
|
@ -174,6 +174,35 @@ dword_result_t XamContentCreateEnumerator(dword_t user_index, dword_t device_id,
|
|||
}
|
||||
DECLARE_XAM_EXPORT1(XamContentCreateEnumerator, kContent, kImplemented);
|
||||
|
||||
dword_result_t XamContentCreateDeviceEnumerator(dword_t content_type,
|
||||
dword_t content_flags,
|
||||
dword_t max_count,
|
||||
lpdword_t buffer_size_ptr,
|
||||
lpdword_t handle_out) {
|
||||
assert_not_null(handle_out);
|
||||
|
||||
if (buffer_size_ptr) {
|
||||
*buffer_size_ptr = sizeof(DeviceInfo) * max_count;
|
||||
}
|
||||
|
||||
auto e = new XStaticEnumerator(kernel_state(), max_count, sizeof(DeviceInfo));
|
||||
e->Initialize();
|
||||
|
||||
// Copy our dummy device into the enumerator
|
||||
DeviceInfo* dev = (DeviceInfo*)e->AppendItem();
|
||||
if (dev) {
|
||||
xe::store_and_swap(&dev->device_id, dummy_device_info_.device_id);
|
||||
xe::store_and_swap(&dev->device_type, dummy_device_info_.device_type);
|
||||
xe::store_and_swap(&dev->total_bytes, dummy_device_info_.total_bytes);
|
||||
xe::store_and_swap(&dev->free_bytes, dummy_device_info_.free_bytes);
|
||||
xe::copy_and_swap(dev->name, dummy_device_info_.name, 28);
|
||||
}
|
||||
|
||||
*handle_out = e->handle();
|
||||
return X_ERROR_SUCCESS;
|
||||
}
|
||||
DECLARE_XAM_EXPORT1(XamContentCreateDeviceEnumerator, kNone, kImplemented);
|
||||
|
||||
dword_result_t XamContentCreateEx(dword_t user_index, lpstring_t root_name,
|
||||
lpvoid_t content_data_ptr, dword_t flags,
|
||||
lpdword_t disposition_ptr,
|
||||
|
|
|
@ -17,6 +17,10 @@
|
|||
#include "xenia/kernel/xthread.h"
|
||||
#include "xenia/xbox.h"
|
||||
|
||||
#if XE_PLATFORM_WIN32
|
||||
#include "xenia/base/platform_win.h"
|
||||
#endif
|
||||
|
||||
namespace xe {
|
||||
namespace kernel {
|
||||
namespace xam {
|
||||
|
@ -24,6 +28,152 @@ namespace xam {
|
|||
constexpr uint32_t X_LANGUAGE_ENGLISH = 1;
|
||||
constexpr uint32_t X_LANGUAGE_JAPANESE = 2;
|
||||
|
||||
dword_result_t XamGetOnlineSchema() {
|
||||
static uint32_t schema_guest = 0;
|
||||
static uint32_t schema_ptr_guest = 0;
|
||||
|
||||
if (!schema_guest) {
|
||||
// create a dummy schema, 8 bytes of 0 seems to work fine
|
||||
// (with another 8 bytes for schema ptr/schema size)
|
||||
schema_guest = kernel_state()->memory()->SystemHeapAlloc(16);
|
||||
schema_ptr_guest = schema_guest + 8;
|
||||
|
||||
auto schema = kernel_state()->memory()->TranslateVirtual(schema_guest);
|
||||
memset(schema, 0, 16);
|
||||
|
||||
// store schema ptr + size
|
||||
xe::store_and_swap<uint32_t>(schema + 0x8, schema_guest);
|
||||
xe::store_and_swap<uint32_t>(schema + 0xC, 0x8);
|
||||
}
|
||||
|
||||
// return pointer to the schema ptr/schema size struct
|
||||
return schema_ptr_guest;
|
||||
}
|
||||
DECLARE_XAM_EXPORT2(XamGetOnlineSchema, kNone, kImplemented, kSketchy);
|
||||
|
||||
void XamFormatDateString(dword_t unk, qword_t filetime, lpvoid_t buffer,
|
||||
dword_t buffer_length) {
|
||||
std::memset(buffer, 0, buffer_length * 2);
|
||||
|
||||
// TODO: implement this for other platforms
|
||||
#if XE_PLATFORM_WIN32
|
||||
FILETIME t;
|
||||
t.dwHighDateTime = filetime >> 32;
|
||||
t.dwLowDateTime = (uint32_t)filetime;
|
||||
|
||||
SYSTEMTIME st;
|
||||
SYSTEMTIME stLocal;
|
||||
|
||||
FileTimeToSystemTime(&t, &st);
|
||||
SystemTimeToTzSpecificLocalTime(NULL, &st, &stLocal);
|
||||
|
||||
wchar_t buf[256];
|
||||
// TODO: format this depending on users locale?
|
||||
swprintf(buf, 256, L"%02d/%02d/%d", stLocal.wMonth, stLocal.wDay,
|
||||
stLocal.wYear);
|
||||
|
||||
xe::copy_and_swap((wchar_t*)buffer.host_address(), buf, buffer_length);
|
||||
#else
|
||||
assert_always();
|
||||
#endif
|
||||
}
|
||||
DECLARE_XAM_EXPORT1(XamFormatDateString, kNone, kImplemented);
|
||||
|
||||
void XamFormatTimeString(dword_t unk, qword_t filetime, lpvoid_t buffer,
|
||||
dword_t buffer_length) {
|
||||
std::memset(buffer, 0, buffer_length * 2);
|
||||
|
||||
// TODO: implement this for other platforms
|
||||
#if XE_PLATFORM_WIN32
|
||||
FILETIME t;
|
||||
t.dwHighDateTime = filetime >> 32;
|
||||
t.dwLowDateTime = (uint32_t)filetime;
|
||||
|
||||
SYSTEMTIME st;
|
||||
SYSTEMTIME stLocal;
|
||||
|
||||
FileTimeToSystemTime(&t, &st);
|
||||
SystemTimeToTzSpecificLocalTime(NULL, &st, &stLocal);
|
||||
|
||||
wchar_t buf[256];
|
||||
swprintf(buf, 256, L"%02d:%02d", stLocal.wHour, stLocal.wMinute);
|
||||
|
||||
xe::copy_and_swap((wchar_t*)buffer.host_address(), buf, buffer_length);
|
||||
#else
|
||||
assert_always();
|
||||
#endif
|
||||
}
|
||||
DECLARE_XAM_EXPORT1(XamFormatTimeString, kNone, kImplemented);
|
||||
|
||||
dword_result_t keXamBuildResourceLocator(uint64_t module,
|
||||
const wchar_t* container,
|
||||
const wchar_t* resource,
|
||||
lpvoid_t buffer,
|
||||
uint32_t buffer_length) {
|
||||
wchar_t buf[256];
|
||||
|
||||
if (!module) {
|
||||
swprintf(buf, 256, L"file://media:/%s.xzp#%s", container, resource);
|
||||
XELOGD(
|
||||
"XamBuildResourceLocator(%ws) returning locator to local file %ws.xzp",
|
||||
container, container);
|
||||
} else {
|
||||
swprintf(buf, 256, L"section://%X,%s#%s", (uint32_t)module, container,
|
||||
resource);
|
||||
}
|
||||
|
||||
xe::copy_and_swap((wchar_t*)buffer.host_address(), buf, buffer_length);
|
||||
return 0;
|
||||
}
|
||||
|
||||
dword_result_t XamBuildResourceLocator(qword_t module, lpwstring_t container,
|
||||
lpwstring_t resource, lpvoid_t buffer,
|
||||
dword_t buffer_length) {
|
||||
return keXamBuildResourceLocator(module, container.value().c_str(),
|
||||
resource.value().c_str(), buffer,
|
||||
buffer_length);
|
||||
}
|
||||
DECLARE_XAM_EXPORT1(XamBuildResourceLocator, kNone, kImplemented);
|
||||
|
||||
dword_result_t XamBuildGamercardResourceLocator(lpwstring_t filename,
|
||||
lpvoid_t buffer,
|
||||
dword_t buffer_length) {
|
||||
// On an actual xbox these funcs would return a locator to xam.xex resources,
|
||||
// but for Xenia we can return a locator to the resources as local files. (big
|
||||
// thanks to MS for letting XamBuildResourceLocator return local file
|
||||
// locators!)
|
||||
|
||||
// If you're running an app that'll need them, make sure to extract xam.xex
|
||||
// resources with xextool ("xextool -d . xam.xex") and add a .xzp extension.
|
||||
|
||||
return keXamBuildResourceLocator(0, L"gamercrd", filename.value().c_str(),
|
||||
buffer, buffer_length);
|
||||
}
|
||||
DECLARE_XAM_EXPORT1(XamBuildGamercardResourceLocator, kNone, kImplemented);
|
||||
|
||||
dword_result_t XamBuildSharedSystemResourceLocator(lpwstring_t filename,
|
||||
lpvoid_t buffer,
|
||||
dword_t buffer_length) {
|
||||
// see notes inside XamBuildGamercardResourceLocator above
|
||||
return keXamBuildResourceLocator(0, L"shrdres", filename.value().c_str(),
|
||||
buffer, buffer_length);
|
||||
}
|
||||
DECLARE_XAM_EXPORT1(XamBuildSharedSystemResourceLocator, kNone, kImplemented);
|
||||
|
||||
dword_result_t XamBuildLegacySystemResourceLocator(lpwstring_t filename,
|
||||
lpvoid_t buffer,
|
||||
dword_t buffer_length) {
|
||||
return XamBuildSharedSystemResourceLocator(filename, buffer, buffer_length);
|
||||
}
|
||||
DECLARE_XAM_EXPORT1(XamBuildLegacySystemResourceLocator, kNone, kImplemented);
|
||||
|
||||
dword_result_t XamBuildXamResourceLocator(lpwstring_t filename, lpvoid_t buffer,
|
||||
dword_t buffer_length) {
|
||||
return keXamBuildResourceLocator(0, L"xam", filename.value().c_str(), buffer,
|
||||
buffer_length);
|
||||
}
|
||||
DECLARE_XAM_EXPORT1(XamBuildXamResourceLocator, kNone, kImplemented);
|
||||
|
||||
dword_result_t XamGetSystemVersion() {
|
||||
// eh, just picking one. If we go too low we may break new games, but
|
||||
// this value seems to be used for conditionally loading symbols and if
|
||||
|
|
|
@ -18,7 +18,8 @@ namespace xe {
|
|||
namespace kernel {
|
||||
namespace xam {
|
||||
|
||||
dword_result_t XamNotifyCreateListener(qword_t mask, dword_t one) {
|
||||
dword_result_t XamNotifyCreateListenerInternal(qword_t mask, dword_t unk,
|
||||
dword_t one) {
|
||||
// r4=1 may indicate user process?
|
||||
|
||||
auto listener =
|
||||
|
@ -30,6 +31,12 @@ dword_result_t XamNotifyCreateListener(qword_t mask, dword_t one) {
|
|||
|
||||
return handle;
|
||||
}
|
||||
DECLARE_XAM_EXPORT2(XamNotifyCreateListenerInternal, kNone, kImplemented,
|
||||
kSketchy);
|
||||
|
||||
dword_result_t XamNotifyCreateListener(qword_t mask, dword_t one) {
|
||||
return XamNotifyCreateListenerInternal(mask, 0, one);
|
||||
}
|
||||
DECLARE_XAM_EXPORT1(XamNotifyCreateListener, kNone, kImplemented);
|
||||
|
||||
// https://github.com/CodeAsm/ffplay360/blob/master/Common/AtgSignIn.cpp
|
||||
|
|
|
@ -588,7 +588,7 @@ XE_EXPORT(xam, 0x00000318, XamVoiceGetMicArrayStatus,
|
|||
XE_EXPORT(xam, 0x00000319, XamVoiceSetAudioCaptureRoutine, kFunction),
|
||||
XE_EXPORT(xam, 0x0000031A, XamVoiceGetDirectionalData, kFunction),
|
||||
XE_EXPORT(xam, 0x0000031B, XamBuildResourceLocator, kFunction),
|
||||
XE_EXPORT(xam, 0x0000031C, XamBuildSharedSystemResourceLocator_, kFunction),
|
||||
XE_EXPORT(xam, 0x0000031C, XamBuildLegacySystemResourceLocator, kFunction),
|
||||
XE_EXPORT(xam, 0x0000031D, XamBuildGamercardResourceLocator, kFunction),
|
||||
XE_EXPORT(xam, 0x0000031E, XamBuildDynamicResourceLocator, kFunction),
|
||||
XE_EXPORT(xam, 0x0000031F, XamBuildXamResourceLocator, kFunction),
|
||||
|
|
|
@ -159,6 +159,14 @@ XboxkrnlModule::XboxkrnlModule(Emulator* emulator, KernelState* kernel_state)
|
|||
xe::store_and_swap<uint8_t>(lpXboxHardwareInfo + 4, 0x06); // cpu count
|
||||
// Remaining 11b are zeroes?
|
||||
|
||||
// ExConsoleGameRegion, probably same values as keyvault region uses?
|
||||
// Just return all 0xFF, should satisfy anything that checks it
|
||||
uint32_t pExConsoleGameRegion = memory_->SystemHeapAlloc(4);
|
||||
auto lpExConsoleGameRegion = memory_->TranslateVirtual(pExConsoleGameRegion);
|
||||
export_resolver_->SetVariableMapping(
|
||||
"xboxkrnl.exe", ordinals::ExConsoleGameRegion, pExConsoleGameRegion);
|
||||
xe::store<uint32_t>(lpExConsoleGameRegion, 0xFFFFFFFF);
|
||||
|
||||
// XexExecutableModuleHandle (?**)
|
||||
// Games try to dereference this to get a pointer to some module struct.
|
||||
// So far it seems like it's just in loader code, and only used to look up
|
||||
|
|
|
@ -1009,6 +1009,46 @@ SHIM_CALL _vsnprintf_shim(PPCContext* ppc_context, KernelState* kernel_state) {
|
|||
SHIM_SET_RETURN_32(count);
|
||||
}
|
||||
|
||||
// https://msdn.microsoft.com/en-us/library/1kt27hek.aspx
|
||||
SHIM_CALL _vsnwprintf_shim(PPCContext* ppc_context, KernelState* kernel_state) {
|
||||
uint32_t buffer_ptr = SHIM_GET_ARG_32(0);
|
||||
int32_t buffer_count = SHIM_GET_ARG_32(1);
|
||||
uint32_t format_ptr = SHIM_GET_ARG_32(2);
|
||||
uint32_t arg_ptr = SHIM_GET_ARG_32(3);
|
||||
|
||||
XELOGD("_vsnwprintf(%08X, %i, %08X, %08X)", buffer_ptr, buffer_count,
|
||||
format_ptr, arg_ptr);
|
||||
|
||||
if (buffer_ptr == 0 || buffer_count <= 0 || format_ptr == 0) {
|
||||
SHIM_SET_RETURN_32(-1);
|
||||
return;
|
||||
}
|
||||
|
||||
auto buffer = (uint16_t*)SHIM_MEM_ADDR(buffer_ptr);
|
||||
auto format = (const uint16_t*)SHIM_MEM_ADDR(format_ptr);
|
||||
|
||||
ArrayArgList args(ppc_context, arg_ptr);
|
||||
WideStringFormatData data(format);
|
||||
|
||||
int32_t count = format_core(ppc_context, data, args, true);
|
||||
if (count < 0) {
|
||||
// Error.
|
||||
if (buffer_count > 0) {
|
||||
buffer[0] = '\0'; // write a null, just to be safe
|
||||
}
|
||||
} else if (count <= buffer_count) {
|
||||
// Fit within the buffer.
|
||||
xe::copy_and_swap(buffer, (uint16_t*)data.wstr().c_str(), count);
|
||||
if (count < buffer_count) {
|
||||
buffer[count] = '\0';
|
||||
}
|
||||
} else {
|
||||
// Overflowed buffer. We still return the count we would have written.
|
||||
xe::copy_and_swap(buffer, (uint16_t*)data.wstr().c_str(), buffer_count);
|
||||
}
|
||||
SHIM_SET_RETURN_32(count);
|
||||
}
|
||||
|
||||
// https://msdn.microsoft.com/en-us/library/28d5ce15.aspx
|
||||
SHIM_CALL vsprintf_shim(PPCContext* ppc_context, KernelState* kernel_state) {
|
||||
uint32_t buffer_ptr = SHIM_GET_ARG_32(0);
|
||||
|
@ -1100,6 +1140,7 @@ void RegisterStringExports(xe::cpu::ExportResolver* export_resolver,
|
|||
SHIM_SET_MAPPING("xboxkrnl.exe", vsprintf, state);
|
||||
SHIM_SET_MAPPING("xboxkrnl.exe", _vscwprintf, state);
|
||||
SHIM_SET_MAPPING("xboxkrnl.exe", vswprintf, state);
|
||||
SHIM_SET_MAPPING("xboxkrnl.exe", _vsnwprintf, state);
|
||||
}
|
||||
|
||||
} // namespace xboxkrnl
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
group("third_party")
|
||||
project("mspack")
|
||||
uuid("0881692A-75A1-4E7B-87D8-BB9108CEDEA4")
|
||||
kind("StaticLib")
|
||||
language("C")
|
||||
|
||||
defines({
|
||||
"_LIB",
|
||||
"HAVE_CONFIG_H",
|
||||
})
|
||||
removedefines({
|
||||
"_UNICODE",
|
||||
"UNICODE",
|
||||
})
|
||||
includedirs({
|
||||
"mspack",
|
||||
})
|
||||
files({
|
||||
"mspack/lzx.h",
|
||||
"mspack/lzxd.c",
|
||||
"mspack/mspack.h",
|
||||
"mspack/readbits.h",
|
||||
"mspack/readhuff.h",
|
||||
"mspack/system.c",
|
||||
"mspack/system.h",
|
||||
})
|
||||
|
||||
filter("platforms:Windows")
|
||||
defines({
|
||||
})
|
||||
filter("platforms:Linux")
|
||||
defines({
|
||||
})
|
|
@ -0,0 +1,504 @@
|
|||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
Version 2.1, February 1999
|
||||
|
||||
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
|
||||
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
[This is the first released version of the Lesser GPL. It also counts
|
||||
as the successor of the GNU Library Public License, version 2, hence
|
||||
the version number 2.1.]
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
Licenses are intended to guarantee your freedom to share and change
|
||||
free software--to make sure the software is free for all its users.
|
||||
|
||||
This license, the Lesser General Public License, applies to some
|
||||
specially designated software packages--typically libraries--of the
|
||||
Free Software Foundation and other authors who decide to use it. You
|
||||
can use it too, but we suggest you first think carefully about whether
|
||||
this license or the ordinary General Public License is the better
|
||||
strategy to use in any particular case, based on the explanations below.
|
||||
|
||||
When we speak of free software, we are referring to freedom of use,
|
||||
not price. Our General Public Licenses are designed to make sure that
|
||||
you have the freedom to distribute copies of free software (and charge
|
||||
for this service if you wish); that you receive source code or can get
|
||||
it if you want it; that you can change the software and use pieces of
|
||||
it in new free programs; and that you are informed that you can do
|
||||
these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
distributors to deny you these rights or to ask you to surrender these
|
||||
rights. These restrictions translate to certain responsibilities for
|
||||
you if you distribute copies of the library or if you modify it.
|
||||
|
||||
For example, if you distribute copies of the library, whether gratis
|
||||
or for a fee, you must give the recipients all the rights that we gave
|
||||
you. You must make sure that they, too, receive or can get the source
|
||||
code. If you link other code with the library, you must provide
|
||||
complete object files to the recipients, so that they can relink them
|
||||
with the library after making changes to the library and recompiling
|
||||
it. And you must show them these terms so they know their rights.
|
||||
|
||||
We protect your rights with a two-step method: (1) we copyright the
|
||||
library, and (2) we offer you this license, which gives you legal
|
||||
permission to copy, distribute and/or modify the library.
|
||||
|
||||
To protect each distributor, we want to make it very clear that
|
||||
there is no warranty for the free library. Also, if the library is
|
||||
modified by someone else and passed on, the recipients should know
|
||||
that what they have is not the original version, so that the original
|
||||
author's reputation will not be affected by problems that might be
|
||||
introduced by others.
|
||||
|
||||
Finally, software patents pose a constant threat to the existence of
|
||||
any free program. We wish to make sure that a company cannot
|
||||
effectively restrict the users of a free program by obtaining a
|
||||
restrictive license from a patent holder. Therefore, we insist that
|
||||
any patent license obtained for a version of the library must be
|
||||
consistent with the full freedom of use specified in this license.
|
||||
|
||||
Most GNU software, including some libraries, is covered by the
|
||||
ordinary GNU General Public License. This license, the GNU Lesser
|
||||
General Public License, applies to certain designated libraries, and
|
||||
is quite different from the ordinary General Public License. We use
|
||||
this license for certain libraries in order to permit linking those
|
||||
libraries into non-free programs.
|
||||
|
||||
When a program is linked with a library, whether statically or using
|
||||
a shared library, the combination of the two is legally speaking a
|
||||
combined work, a derivative of the original library. The ordinary
|
||||
General Public License therefore permits such linking only if the
|
||||
entire combination fits its criteria of freedom. The Lesser General
|
||||
Public License permits more lax criteria for linking other code with
|
||||
the library.
|
||||
|
||||
We call this license the "Lesser" General Public License because it
|
||||
does Less to protect the user's freedom than the ordinary General
|
||||
Public License. It also provides other free software developers Less
|
||||
of an advantage over competing non-free programs. These disadvantages
|
||||
are the reason we use the ordinary General Public License for many
|
||||
libraries. However, the Lesser license provides advantages in certain
|
||||
special circumstances.
|
||||
|
||||
For example, on rare occasions, there may be a special need to
|
||||
encourage the widest possible use of a certain library, so that it becomes
|
||||
a de-facto standard. To achieve this, non-free programs must be
|
||||
allowed to use the library. A more frequent case is that a free
|
||||
library does the same job as widely used non-free libraries. In this
|
||||
case, there is little to gain by limiting the free library to free
|
||||
software only, so we use the Lesser General Public License.
|
||||
|
||||
In other cases, permission to use a particular library in non-free
|
||||
programs enables a greater number of people to use a large body of
|
||||
free software. For example, permission to use the GNU C Library in
|
||||
non-free programs enables many more people to use the whole GNU
|
||||
operating system, as well as its variant, the GNU/Linux operating
|
||||
system.
|
||||
|
||||
Although the Lesser General Public License is Less protective of the
|
||||
users' freedom, it does ensure that the user of a program that is
|
||||
linked with the Library has the freedom and the wherewithal to run
|
||||
that program using a modified version of the Library.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow. Pay close attention to the difference between a
|
||||
"work based on the library" and a "work that uses the library". The
|
||||
former contains code derived from the library, whereas the latter must
|
||||
be combined with the library in order to run.
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License Agreement applies to any software library or other
|
||||
program which contains a notice placed by the copyright holder or
|
||||
other authorized party saying it may be distributed under the terms of
|
||||
this Lesser General Public License (also called "this License").
|
||||
Each licensee is addressed as "you".
|
||||
|
||||
A "library" means a collection of software functions and/or data
|
||||
prepared so as to be conveniently linked with application programs
|
||||
(which use some of those functions and data) to form executables.
|
||||
|
||||
The "Library", below, refers to any such software library or work
|
||||
which has been distributed under these terms. A "work based on the
|
||||
Library" means either the Library or any derivative work under
|
||||
copyright law: that is to say, a work containing the Library or a
|
||||
portion of it, either verbatim or with modifications and/or translated
|
||||
straightforwardly into another language. (Hereinafter, translation is
|
||||
included without limitation in the term "modification".)
|
||||
|
||||
"Source code" for a work means the preferred form of the work for
|
||||
making modifications to it. For a library, complete source code means
|
||||
all the source code for all modules it contains, plus any associated
|
||||
interface definition files, plus the scripts used to control compilation
|
||||
and installation of the library.
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running a program using the Library is not restricted, and output from
|
||||
such a program is covered only if its contents constitute a work based
|
||||
on the Library (independent of the use of the Library in a tool for
|
||||
writing it). Whether that is true depends on what the Library does
|
||||
and what the program that uses the Library does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Library's
|
||||
complete source code as you receive it, in any medium, provided that
|
||||
you conspicuously and appropriately publish on each copy an
|
||||
appropriate copyright notice and disclaimer of warranty; keep intact
|
||||
all the notices that refer to this License and to the absence of any
|
||||
warranty; and distribute a copy of this License along with the
|
||||
Library.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy,
|
||||
and you may at your option offer warranty protection in exchange for a
|
||||
fee.
|
||||
|
||||
2. You may modify your copy or copies of the Library or any portion
|
||||
of it, thus forming a work based on the Library, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) The modified work must itself be a software library.
|
||||
|
||||
b) You must cause the files modified to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
c) You must cause the whole of the work to be licensed at no
|
||||
charge to all third parties under the terms of this License.
|
||||
|
||||
d) If a facility in the modified Library refers to a function or a
|
||||
table of data to be supplied by an application program that uses
|
||||
the facility, other than as an argument passed when the facility
|
||||
is invoked, then you must make a good faith effort to ensure that,
|
||||
in the event an application does not supply such function or
|
||||
table, the facility still operates, and performs whatever part of
|
||||
its purpose remains meaningful.
|
||||
|
||||
(For example, a function in a library to compute square roots has
|
||||
a purpose that is entirely well-defined independent of the
|
||||
application. Therefore, Subsection 2d requires that any
|
||||
application-supplied function or table used by this function must
|
||||
be optional: if the application does not supply it, the square
|
||||
root function must still compute square roots.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Library,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Library, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote
|
||||
it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Library.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Library
|
||||
with the Library (or with a work based on the Library) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may opt to apply the terms of the ordinary GNU General Public
|
||||
License instead of this License to a given copy of the Library. To do
|
||||
this, you must alter all the notices that refer to this License, so
|
||||
that they refer to the ordinary GNU General Public License, version 2,
|
||||
instead of to this License. (If a newer version than version 2 of the
|
||||
ordinary GNU General Public License has appeared, then you can specify
|
||||
that version instead if you wish.) Do not make any other change in
|
||||
these notices.
|
||||
|
||||
Once this change is made in a given copy, it is irreversible for
|
||||
that copy, so the ordinary GNU General Public License applies to all
|
||||
subsequent copies and derivative works made from that copy.
|
||||
|
||||
This option is useful when you wish to copy part of the code of
|
||||
the Library into a program that is not a library.
|
||||
|
||||
4. You may copy and distribute the Library (or a portion or
|
||||
derivative of it, under Section 2) in object code or executable form
|
||||
under the terms of Sections 1 and 2 above provided that you accompany
|
||||
it with the complete corresponding machine-readable source code, which
|
||||
must be distributed under the terms of Sections 1 and 2 above on a
|
||||
medium customarily used for software interchange.
|
||||
|
||||
If distribution of object code is made by offering access to copy
|
||||
from a designated place, then offering equivalent access to copy the
|
||||
source code from the same place satisfies the requirement to
|
||||
distribute the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
5. A program that contains no derivative of any portion of the
|
||||
Library, but is designed to work with the Library by being compiled or
|
||||
linked with it, is called a "work that uses the Library". Such a
|
||||
work, in isolation, is not a derivative work of the Library, and
|
||||
therefore falls outside the scope of this License.
|
||||
|
||||
However, linking a "work that uses the Library" with the Library
|
||||
creates an executable that is a derivative of the Library (because it
|
||||
contains portions of the Library), rather than a "work that uses the
|
||||
library". The executable is therefore covered by this License.
|
||||
Section 6 states terms for distribution of such executables.
|
||||
|
||||
When a "work that uses the Library" uses material from a header file
|
||||
that is part of the Library, the object code for the work may be a
|
||||
derivative work of the Library even though the source code is not.
|
||||
Whether this is true is especially significant if the work can be
|
||||
linked without the Library, or if the work is itself a library. The
|
||||
threshold for this to be true is not precisely defined by law.
|
||||
|
||||
If such an object file uses only numerical parameters, data
|
||||
structure layouts and accessors, and small macros and small inline
|
||||
functions (ten lines or less in length), then the use of the object
|
||||
file is unrestricted, regardless of whether it is legally a derivative
|
||||
work. (Executables containing this object code plus portions of the
|
||||
Library will still fall under Section 6.)
|
||||
|
||||
Otherwise, if the work is a derivative of the Library, you may
|
||||
distribute the object code for the work under the terms of Section 6.
|
||||
Any executables containing that work also fall under Section 6,
|
||||
whether or not they are linked directly with the Library itself.
|
||||
|
||||
6. As an exception to the Sections above, you may also combine or
|
||||
link a "work that uses the Library" with the Library to produce a
|
||||
work containing portions of the Library, and distribute that work
|
||||
under terms of your choice, provided that the terms permit
|
||||
modification of the work for the customer's own use and reverse
|
||||
engineering for debugging such modifications.
|
||||
|
||||
You must give prominent notice with each copy of the work that the
|
||||
Library is used in it and that the Library and its use are covered by
|
||||
this License. You must supply a copy of this License. If the work
|
||||
during execution displays copyright notices, you must include the
|
||||
copyright notice for the Library among them, as well as a reference
|
||||
directing the user to the copy of this License. Also, you must do one
|
||||
of these things:
|
||||
|
||||
a) Accompany the work with the complete corresponding
|
||||
machine-readable source code for the Library including whatever
|
||||
changes were used in the work (which must be distributed under
|
||||
Sections 1 and 2 above); and, if the work is an executable linked
|
||||
with the Library, with the complete machine-readable "work that
|
||||
uses the Library", as object code and/or source code, so that the
|
||||
user can modify the Library and then relink to produce a modified
|
||||
executable containing the modified Library. (It is understood
|
||||
that the user who changes the contents of definitions files in the
|
||||
Library will not necessarily be able to recompile the application
|
||||
to use the modified definitions.)
|
||||
|
||||
b) Use a suitable shared library mechanism for linking with the
|
||||
Library. A suitable mechanism is one that (1) uses at run time a
|
||||
copy of the library already present on the user's computer system,
|
||||
rather than copying library functions into the executable, and (2)
|
||||
will operate properly with a modified version of the library, if
|
||||
the user installs one, as long as the modified version is
|
||||
interface-compatible with the version that the work was made with.
|
||||
|
||||
c) Accompany the work with a written offer, valid for at
|
||||
least three years, to give the same user the materials
|
||||
specified in Subsection 6a, above, for a charge no more
|
||||
than the cost of performing this distribution.
|
||||
|
||||
d) If distribution of the work is made by offering access to copy
|
||||
from a designated place, offer equivalent access to copy the above
|
||||
specified materials from the same place.
|
||||
|
||||
e) Verify that the user has already received a copy of these
|
||||
materials or that you have already sent this user a copy.
|
||||
|
||||
For an executable, the required form of the "work that uses the
|
||||
Library" must include any data and utility programs needed for
|
||||
reproducing the executable from it. However, as a special exception,
|
||||
the materials to be distributed need not include anything that is
|
||||
normally distributed (in either source or binary form) with the major
|
||||
components (compiler, kernel, and so on) of the operating system on
|
||||
which the executable runs, unless that component itself accompanies
|
||||
the executable.
|
||||
|
||||
It may happen that this requirement contradicts the license
|
||||
restrictions of other proprietary libraries that do not normally
|
||||
accompany the operating system. Such a contradiction means you cannot
|
||||
use both them and the Library together in an executable that you
|
||||
distribute.
|
||||
|
||||
7. You may place library facilities that are a work based on the
|
||||
Library side-by-side in a single library together with other library
|
||||
facilities not covered by this License, and distribute such a combined
|
||||
library, provided that the separate distribution of the work based on
|
||||
the Library and of the other library facilities is otherwise
|
||||
permitted, and provided that you do these two things:
|
||||
|
||||
a) Accompany the combined library with a copy of the same work
|
||||
based on the Library, uncombined with any other library
|
||||
facilities. This must be distributed under the terms of the
|
||||
Sections above.
|
||||
|
||||
b) Give prominent notice with the combined library of the fact
|
||||
that part of it is a work based on the Library, and explaining
|
||||
where to find the accompanying uncombined form of the same work.
|
||||
|
||||
8. You may not copy, modify, sublicense, link with, or distribute
|
||||
the Library except as expressly provided under this License. Any
|
||||
attempt otherwise to copy, modify, sublicense, link with, or
|
||||
distribute the Library is void, and will automatically terminate your
|
||||
rights under this License. However, parties who have received copies,
|
||||
or rights, from you under this License will not have their licenses
|
||||
terminated so long as such parties remain in full compliance.
|
||||
|
||||
9. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Library or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Library (or any work based on the
|
||||
Library), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Library or works based on it.
|
||||
|
||||
10. Each time you redistribute the Library (or any work based on the
|
||||
Library), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute, link with or modify the Library
|
||||
subject to these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties with
|
||||
this License.
|
||||
|
||||
11. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Library at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Library by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Library.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under any
|
||||
particular circumstance, the balance of the section is intended to apply,
|
||||
and the section as a whole is intended to apply in other circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
12. If the distribution and/or use of the Library is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Library under this License may add
|
||||
an explicit geographical distribution limitation excluding those countries,
|
||||
so that distribution is permitted only in or among countries not thus
|
||||
excluded. In such case, this License incorporates the limitation as if
|
||||
written in the body of this License.
|
||||
|
||||
13. The Free Software Foundation may publish revised and/or new
|
||||
versions of the Lesser General Public License from time to time.
|
||||
Such new versions will be similar in spirit to the present version,
|
||||
but may differ in detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Library
|
||||
specifies a version number of this License which applies to it and
|
||||
"any later version", you have the option of following the terms and
|
||||
conditions either of that version or of any later version published by
|
||||
the Free Software Foundation. If the Library does not specify a
|
||||
license version number, you may choose any version ever published by
|
||||
the Free Software Foundation.
|
||||
|
||||
14. If you wish to incorporate parts of the Library into other free
|
||||
programs whose distribution conditions are incompatible with these,
|
||||
write to the author to ask for permission. For software which is
|
||||
copyrighted by the Free Software Foundation, write to the Free
|
||||
Software Foundation; we sometimes make exceptions for this. Our
|
||||
decision will be guided by the two goals of preserving the free status
|
||||
of all derivatives of our free software and of promoting the sharing
|
||||
and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
|
||||
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
|
||||
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
|
||||
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
|
||||
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
|
||||
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
|
||||
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
|
||||
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
|
||||
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
|
||||
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
|
||||
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
|
||||
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
|
||||
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
|
||||
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
|
||||
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
||||
DAMAGES.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Libraries
|
||||
|
||||
If you develop a new library, and you want it to be of the greatest
|
||||
possible use to the public, we recommend making it free software that
|
||||
everyone can redistribute and change. You can do so by permitting
|
||||
redistribution under these terms (or, alternatively, under the terms of the
|
||||
ordinary General Public License).
|
||||
|
||||
To apply these terms, attach the following notices to the library. It is
|
||||
safest to attach them to the start of each source file to most effectively
|
||||
convey the exclusion of warranty; and each file should have at least the
|
||||
"copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the library's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or your
|
||||
school, if any, to sign a "copyright disclaimer" for the library, if
|
||||
necessary. Here is a sample; alter the names:
|
||||
|
||||
Yoyodyne, Inc., hereby disclaims all copyright interest in the
|
||||
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
|
||||
|
||||
<signature of Ty Coon>, 1 April 1990
|
||||
Ty Coon, President of Vice
|
||||
|
||||
That's all there is to it!
|
||||
|
||||
|
|
@ -0,0 +1,114 @@
|
|||
/* config.h.in. Generated from configure.ac by autoheader. */
|
||||
|
||||
/* Turn debugging mode on? */
|
||||
#undef DEBUG
|
||||
|
||||
/* Define to 1 if you have the <dlfcn.h> header file. */
|
||||
#undef HAVE_DLFCN_H
|
||||
|
||||
/* Define to 1 if fseeko (and presumably ftello) exists and is declared. */
|
||||
#undef HAVE_FSEEKO
|
||||
|
||||
/* Define to 1 if you have the <inttypes.h> header file. */
|
||||
#define HAVE_INTTYPES_H 1
|
||||
|
||||
/* Define to 1 if you have the <memory.h> header file. */
|
||||
#undef HAVE_MEMORY_H
|
||||
|
||||
/* Define to 1 if you have the `mkdir' function. */
|
||||
#undef HAVE_MKDIR
|
||||
|
||||
/* Define to 1 if you have the <stdint.h> header file. */
|
||||
#define HAVE_STDINT_H 1
|
||||
|
||||
/* Define to 1 if you have the <stdlib.h> header file. */
|
||||
#define HAVE_STDLIB_H 1
|
||||
|
||||
/* Define to 1 if you have the <strings.h> header file. */
|
||||
#undef HAVE_STRINGS_H
|
||||
|
||||
/* Define to 1 if you have the <string.h> header file. */
|
||||
#define HAVE_STRING_H 1
|
||||
|
||||
/* Define to 1 if you have the <sys/stat.h> header file. */
|
||||
#undef HAVE_SYS_STAT_H
|
||||
|
||||
/* Define to 1 if you have the <sys/types.h> header file. */
|
||||
#undef HAVE_SYS_TYPES_H
|
||||
|
||||
/* Define to 1 if you have the `towlower' function. */
|
||||
#undef HAVE_TOWLOWER
|
||||
|
||||
/* Define to 1 if you have the <unistd.h> header file. */
|
||||
#undef HAVE_UNISTD_H
|
||||
|
||||
/* Define to 1 if you have the `_mkdir' function. */
|
||||
#undef HAVE__MKDIR
|
||||
|
||||
/* Define to the sub-directory where libtool stores uninstalled libraries. */
|
||||
#undef LT_OBJDIR
|
||||
|
||||
/* Define if mkdir takes only one argument. */
|
||||
#undef MKDIR_TAKES_ONE_ARG
|
||||
|
||||
/* Name of package */
|
||||
#undef PACKAGE
|
||||
|
||||
/* Define to the address where bug reports for this package should be sent. */
|
||||
#undef PACKAGE_BUGREPORT
|
||||
|
||||
/* Define to the full name of this package. */
|
||||
#undef PACKAGE_NAME
|
||||
|
||||
/* Define to the full name and version of this package. */
|
||||
#undef PACKAGE_STRING
|
||||
|
||||
/* Define to the one symbol short name of this package. */
|
||||
#undef PACKAGE_TARNAME
|
||||
|
||||
/* Define to the home page for this package. */
|
||||
#undef PACKAGE_URL
|
||||
|
||||
/* Define to the version of this package. */
|
||||
#undef PACKAGE_VERSION
|
||||
|
||||
/* The size of `off_t', as computed by sizeof. */
|
||||
#undef SIZEOF_OFF_T
|
||||
|
||||
/* Define to 1 if you have the ANSI C header files. */
|
||||
#undef STDC_HEADERS
|
||||
|
||||
/* Version number of package */
|
||||
#undef VERSION
|
||||
|
||||
/* Enable large inode numbers on Mac OS X 10.5. */
|
||||
#ifndef _DARWIN_USE_64_BIT_INODE
|
||||
# define _DARWIN_USE_64_BIT_INODE 1
|
||||
#endif
|
||||
|
||||
/* Number of bits in a file offset, on hosts where this is settable. */
|
||||
#undef _FILE_OFFSET_BITS
|
||||
|
||||
/* Define to 1 to make fseeko visible on some hosts (e.g. glibc 2.2). */
|
||||
#undef _LARGEFILE_SOURCE
|
||||
|
||||
/* Define for large files, on AIX-style hosts. */
|
||||
#undef _LARGE_FILES
|
||||
|
||||
/* Define to empty if `const' does not conform to ANSI C. */
|
||||
#undef const
|
||||
|
||||
/* Define to `__inline__' or `__inline' if that's what the C compiler
|
||||
calls it, or to nothing if 'inline' is not supported under any name. */
|
||||
#ifndef __cplusplus
|
||||
#undef inline
|
||||
#endif
|
||||
|
||||
/* Define to `int' if <sys/types.h> does not define. */
|
||||
#undef mode_t
|
||||
|
||||
/* Define to `long int' if <sys/types.h> does not define. */
|
||||
#undef off_t
|
||||
|
||||
/* Define to `unsigned int' if <sys/types.h> does not define. */
|
||||
#undef size_t
|
|
@ -1,5 +1,5 @@
|
|||
/* This file is part of libmspack.
|
||||
* (C) 2003-2004 Stuart Caie.
|
||||
* (C) 2003-2013 Stuart Caie.
|
||||
*
|
||||
* The LZX method was created by Jonathan Forbes and Tomi Poutanen, adapted
|
||||
* by Microsoft Corporation.
|
||||
|
@ -13,6 +13,10 @@
|
|||
#ifndef MSPACK_LZX_H
|
||||
#define MSPACK_LZX_H 1
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* LZX compression / decompression definitions */
|
||||
|
||||
/* some constants defined by the LZX specification */
|
||||
|
@ -31,7 +35,7 @@
|
|||
/* LZX huffman defines: tweak tablebits as desired */
|
||||
#define LZX_PRETREE_MAXSYMBOLS (LZX_PRETREE_NUM_ELEMENTS)
|
||||
#define LZX_PRETREE_TABLEBITS (6)
|
||||
#define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8)
|
||||
#define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 290*8)
|
||||
#define LZX_MAINTREE_TABLEBITS (12)
|
||||
#define LZX_LENGTH_MAXSYMBOLS (LZX_NUM_SECONDARY_LENGTHS+1)
|
||||
#define LZX_LENGTH_TABLEBITS (12)
|
||||
|
@ -51,6 +55,8 @@ struct lzxd_stream {
|
|||
|
||||
unsigned char *window; /* decoding window */
|
||||
unsigned int window_size; /* window size */
|
||||
unsigned int ref_data_size; /* LZX DELTA reference data size */
|
||||
unsigned int num_offsets; /* number of match_offset entries in table */
|
||||
unsigned int window_posn; /* decompression offset within window */
|
||||
unsigned int frame_posn; /* current frame offset within in window */
|
||||
unsigned int frame; /* the number of 32kb frames processed */
|
||||
|
@ -66,8 +72,8 @@ struct lzxd_stream {
|
|||
unsigned char intel_started; /* has intel E8 decoding started? */
|
||||
unsigned char block_type; /* type of the current block */
|
||||
unsigned char header_read; /* have we started decoding at all yet? */
|
||||
unsigned char posn_slots; /* how many posn slots in stream? */
|
||||
unsigned char input_end; /* have we reached the end of input? */
|
||||
unsigned char is_delta; /* does stream follow LZX DELTA spec? */
|
||||
|
||||
int error;
|
||||
|
||||
|
@ -90,35 +96,53 @@ struct lzxd_stream {
|
|||
(LZX_LENGTH_MAXSYMBOLS * 2)];
|
||||
unsigned short ALIGNED_table [(1 << LZX_ALIGNED_TABLEBITS) +
|
||||
(LZX_ALIGNED_MAXSYMBOLS * 2)];
|
||||
unsigned char LENGTH_empty;
|
||||
|
||||
/* this is used purely for doing the intel E8 transform */
|
||||
unsigned char e8_buf[LZX_FRAME_SIZE];
|
||||
};
|
||||
|
||||
/* allocates LZX decompression state for decoding the given stream.
|
||||
/**
|
||||
* Allocates and initialises LZX decompression state for decoding an LZX
|
||||
* stream.
|
||||
*
|
||||
* - returns NULL if window_bits is outwith the range 15 to 21 (inclusive).
|
||||
* This routine uses system->alloc() to allocate memory. If memory
|
||||
* allocation fails, or the parameters to this function are invalid,
|
||||
* NULL is returned.
|
||||
*
|
||||
* - uses system->alloc() to allocate memory
|
||||
*
|
||||
* - returns NULL if not enough memory
|
||||
*
|
||||
* - window_bits is the size of the LZX window, from 32Kb (15) to 2Mb (21).
|
||||
*
|
||||
* - reset_interval is how often the bitstream is reset, measured in
|
||||
* multiples of 32Kb bytes output. For CAB LZX streams, this is always 0
|
||||
* (does not occur).
|
||||
*
|
||||
* - input_buffer_size is how many bytes to use as an input bitstream buffer
|
||||
*
|
||||
* - output_length is the length in bytes of the entirely decompressed
|
||||
* output stream, if known in advance. It is used to correctly perform
|
||||
* the Intel E8 transformation, which must stop 6 bytes before the very
|
||||
* end of the decompressed stream. It is not otherwise used or adhered
|
||||
* to. If the full decompressed length is known in advance, set it here.
|
||||
* If it is NOT known, use the value 0, and call lzxd_set_output_length()
|
||||
* once it is known. If never set, 4 of the final 6 bytes of the output
|
||||
* stream may be incorrect.
|
||||
* @param system an mspack_system structure used to read from
|
||||
* the input stream and write to the output
|
||||
* stream, also to allocate and free memory.
|
||||
* @param input an input stream with the LZX data.
|
||||
* @param output an output stream to write the decoded data to.
|
||||
* @param window_bits the size of the decoding window, which must be
|
||||
* between 15 and 21 inclusive for regular LZX
|
||||
* data, or between 17 and 25 inclusive for
|
||||
* LZX DELTA data.
|
||||
* @param reset_interval the interval at which the LZX bitstream is
|
||||
* reset, in multiples of LZX frames (32678
|
||||
* bytes), e.g. a value of 2 indicates the input
|
||||
* stream resets after every 65536 output bytes.
|
||||
* A value of 0 indicates that the bitstream never
|
||||
* resets, such as in CAB LZX streams.
|
||||
* @param input_buffer_size the number of bytes to use as an input
|
||||
* bitstream buffer.
|
||||
* @param output_length the length in bytes of the entirely
|
||||
* decompressed output stream, if known in
|
||||
* advance. It is used to correctly perform the
|
||||
* Intel E8 transformation, which must stop 6
|
||||
* bytes before the very end of the
|
||||
* decompressed stream. It is not otherwise used
|
||||
* or adhered to. If the full decompressed
|
||||
* length is known in advance, set it here.
|
||||
* If it is NOT known, use the value 0, and call
|
||||
* lzxd_set_output_length() once it is
|
||||
* known. If never set, 4 of the final 6 bytes
|
||||
* of the output stream may be incorrect.
|
||||
* @param is_delta should be zero for all regular LZX data,
|
||||
* non-zero for LZX DELTA encoded data.
|
||||
* @return a pointer to an initialised lzxd_stream structure, or NULL if
|
||||
* there was not enough memory or parameters to the function were wrong.
|
||||
*/
|
||||
extern struct lzxd_stream *lzxd_init(struct mspack_system *system,
|
||||
struct mspack_file *input,
|
||||
|
@ -126,42 +150,72 @@ extern struct lzxd_stream *lzxd_init(struct mspack_system *system,
|
|||
int window_bits,
|
||||
int reset_interval,
|
||||
int input_buffer_size,
|
||||
off_t output_length);
|
||||
off_t output_length,
|
||||
char is_delta);
|
||||
|
||||
/* see description of output_length in lzxd_init() */
|
||||
extern void lzxd_set_output_length(struct lzxd_stream *lzx,
|
||||
off_t output_length);
|
||||
|
||||
/* decompresses, or decompresses more of, an LZX stream.
|
||||
/**
|
||||
* Reads LZX DELTA reference data into the window and allows
|
||||
* lzxd_decompress() to reference it.
|
||||
*
|
||||
* - out_bytes of data will be decompressed and the function will return
|
||||
* with an MSPACK_ERR_OK return code.
|
||||
* Call this before the first call to lzxd_decompress().
|
||||
|
||||
* @param lzx the LZX stream to apply this reference data to
|
||||
* @param system an mspack_system implementation to use with the
|
||||
* input param. Only read() will be called.
|
||||
* @param input an input file handle to read reference data using
|
||||
* system->read().
|
||||
* @param length the length of the reference data. Cannot be longer
|
||||
* than the LZX window size.
|
||||
* @return an error code, or MSPACK_ERR_OK if successful
|
||||
*/
|
||||
extern int lzxd_set_reference_data(struct lzxd_stream *lzx,
|
||||
struct mspack_system *system,
|
||||
struct mspack_file *input,
|
||||
unsigned int length);
|
||||
|
||||
/**
|
||||
* Decompresses entire or partial LZX streams.
|
||||
*
|
||||
* - decompressing will stop as soon as out_bytes is reached. if the true
|
||||
* amount of bytes decoded spills over that amount, they will be kept for
|
||||
* a later invocation of lzxd_decompress().
|
||||
* The number of bytes of data that should be decompressed is given as the
|
||||
* out_bytes parameter. If more bytes are decoded than are needed, they
|
||||
* will be kept over for a later invocation.
|
||||
*
|
||||
* - the output bytes will be passed to the system->write() function given in
|
||||
* lzxd_init(), using the output file handle given in lzxd_init(). More
|
||||
* than one call may be made to system->write().
|
||||
* The output bytes will be passed to the system->write() function given in
|
||||
* lzxd_init(), using the output file handle given in lzxd_init(). More than
|
||||
* one call may be made to system->write().
|
||||
|
||||
* Input bytes will be read in as necessary using the system->read()
|
||||
* function given in lzxd_init(), using the input file handle given in
|
||||
* lzxd_init(). This will continue until system->read() returns 0 bytes,
|
||||
* or an error. Errors will be passed out of the function as
|
||||
* MSPACK_ERR_READ errors. Input streams should convey an "end of input
|
||||
* stream" by refusing to supply all the bytes that LZX asks for when they
|
||||
* reach the end of the stream, rather than return an error code.
|
||||
*
|
||||
* - LZX will read input bytes as necessary using the system->read() function
|
||||
* given in lzxd_init(), using the input file handle given in lzxd_init().
|
||||
* This will continue until system->read() returns 0 bytes, or an error.
|
||||
* input streams should convey an "end of input stream" by refusing to
|
||||
* supply all the bytes that LZX asks for when they reach the end of the
|
||||
* stream, rather than return an error code.
|
||||
* If any error code other than MSPACK_ERR_OK is returned, the stream
|
||||
* should be considered unusable and lzxd_decompress() should not be
|
||||
* called again on this stream.
|
||||
*
|
||||
* - if an error code other than MSPACK_ERR_OK is returned, the stream should
|
||||
* be considered unusable and lzxd_decompress() should not be called again
|
||||
* on this stream.
|
||||
* @param lzx LZX decompression state, as allocated by lzxd_init().
|
||||
* @param out_bytes the number of bytes of data to decompress.
|
||||
* @return an error code, or MSPACK_ERR_OK if successful
|
||||
*/
|
||||
extern int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes);
|
||||
|
||||
/* frees all state associated with an LZX data stream
|
||||
/**
|
||||
* Frees all state associated with an LZX data stream. This will call
|
||||
* system->free() using the system pointer given in lzxd_init().
|
||||
*
|
||||
* - calls system->free() using the system pointer given in lzxd_init()
|
||||
* @param lzx LZX decompression state to free.
|
||||
*/
|
||||
void lzxd_free(struct lzxd_stream *lzx);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/* This file is part of libmspack.
|
||||
* (C) 2003-2004 Stuart Caie.
|
||||
* (C) 2003-2013 Stuart Caie.
|
||||
*
|
||||
* The LZX method was created by Jonathan Forbes and Tomi Poutanen, adapted
|
||||
* by Microsoft Corporation.
|
||||
|
@ -12,11 +12,11 @@
|
|||
|
||||
/* LZX decompression implementation */
|
||||
|
||||
#include "mspack.h"
|
||||
#include "lzx.h"
|
||||
#include <system.h>
|
||||
#include <lzx.h>
|
||||
|
||||
/* Microsoft's LZX document and their implementation of the
|
||||
* com.ms.util.cab Java package do not concur.
|
||||
/* Microsoft's LZX document (in cab-sdk.exe) and their implementation
|
||||
* of the com.ms.util.cab Java package do not concur.
|
||||
*
|
||||
* In the LZX document, there is a table showing the correlation between
|
||||
* window size and the number of position slots. It states that the 1MB
|
||||
|
@ -58,226 +58,71 @@
|
|||
* least one element. However, many CAB files contain blocks where the
|
||||
* length tree is completely empty (because there are no matches), and
|
||||
* this is expected to succeed.
|
||||
*
|
||||
* The errors in LZX documentation appear have been corrected in the
|
||||
* new documentation for the LZX DELTA format.
|
||||
*
|
||||
* http://msdn.microsoft.com/en-us/library/cc483133.aspx
|
||||
*
|
||||
* However, this is a different format, an extension of regular LZX.
|
||||
* I have noticed the following differences, there may be more:
|
||||
*
|
||||
* The maximum window size has increased from 2MB to 32MB. This also
|
||||
* increases the maximum number of position slots, etc.
|
||||
*
|
||||
* If the match length is 257 (the maximum possible), this signals
|
||||
* a further length decoding step, that allows for matches up to
|
||||
* 33024 bytes long.
|
||||
*
|
||||
* The format now allows for "reference data", supplied by the caller.
|
||||
* If match offsets go further back than the number of bytes
|
||||
* decompressed so far, that is them accessing the reference data.
|
||||
*/
|
||||
|
||||
|
||||
/* LZX decompressor input macros
|
||||
*
|
||||
* STORE_BITS stores bitstream state in lzxd_stream structure
|
||||
* RESTORE_BITS restores bitstream state from lzxd_stream structure
|
||||
* READ_BITS(var,n) takes N bits from the buffer and puts them in var
|
||||
* ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
|
||||
* PEEK_BITS(n) extracts without removing N bits from the bit buffer
|
||||
* REMOVE_BITS(n) removes N bits from the bit buffer
|
||||
*
|
||||
* These bit access routines work by using the area beyond the MSB and the
|
||||
* LSB as a free source of zeroes when shifting. This avoids having to
|
||||
* mask any bits. So we have to know the bit width of the bit buffer
|
||||
* variable.
|
||||
*
|
||||
* The bit buffer datatype should be at least 32 bits wide: it must be
|
||||
* possible to ENSURE_BITS(16), so it must be possible to add 16 new bits
|
||||
* to the bit buffer when the bit buffer already has 1 to 15 bits left.
|
||||
*/
|
||||
|
||||
#include <limits.h>
|
||||
#ifndef CHAR_BIT
|
||||
# define CHAR_BIT (8)
|
||||
#endif
|
||||
#define BITBUF_WIDTH (sizeof(bit_buffer) * CHAR_BIT)
|
||||
|
||||
#ifdef LZXDEBUG
|
||||
# include <stdio.h>
|
||||
# define D(x) do { printf("%s:%d (%s) ",__FILE__, __LINE__, __FUNCTION__); \
|
||||
printf x ; fputc('\n', stdout); fflush(stdout);} while (0);
|
||||
#else
|
||||
# define D(x)
|
||||
#endif
|
||||
|
||||
#define STORE_BITS do { \
|
||||
lzx->i_ptr = i_ptr; \
|
||||
lzx->i_end = i_end; \
|
||||
lzx->bit_buffer = bit_buffer; \
|
||||
lzx->bits_left = bits_left; \
|
||||
/* import bit-reading macros and code */
|
||||
#define BITS_TYPE struct lzxd_stream
|
||||
#define BITS_VAR lzx
|
||||
#define BITS_ORDER_MSB
|
||||
#define READ_BYTES do { \
|
||||
unsigned char b0, b1; \
|
||||
READ_IF_NEEDED; b0 = *i_ptr++; \
|
||||
READ_IF_NEEDED; b1 = *i_ptr++; \
|
||||
INJECT_BITS((b1 << 8) | b0, 16); \
|
||||
} while (0)
|
||||
#include <readbits.h>
|
||||
|
||||
#define RESTORE_BITS do { \
|
||||
i_ptr = lzx->i_ptr; \
|
||||
i_end = lzx->i_end; \
|
||||
bit_buffer = lzx->bit_buffer; \
|
||||
bits_left = lzx->bits_left; \
|
||||
} while (0)
|
||||
|
||||
#define ENSURE_BITS(nbits) \
|
||||
while (bits_left < (nbits)) { \
|
||||
if (i_ptr >= i_end) { \
|
||||
if (lzxd_read_input(lzx)) return lzx->error; \
|
||||
i_ptr = lzx->i_ptr; \
|
||||
i_end = lzx->i_end; \
|
||||
} \
|
||||
bit_buffer |= ((i_ptr[1] << 8) | i_ptr[0]) \
|
||||
<< (BITBUF_WIDTH - 16 - bits_left); \
|
||||
bits_left += 16; \
|
||||
i_ptr += 2; \
|
||||
}
|
||||
|
||||
#define PEEK_BITS(nbits) (bit_buffer >> (BITBUF_WIDTH - (nbits)))
|
||||
|
||||
#define REMOVE_BITS(nbits) ((bit_buffer <<= (nbits)), (bits_left -= (nbits)))
|
||||
|
||||
#define READ_BITS(val, nbits) do { \
|
||||
ENSURE_BITS(nbits); \
|
||||
(val) = PEEK_BITS(nbits); \
|
||||
REMOVE_BITS(nbits); \
|
||||
} while (0)
|
||||
|
||||
static int lzxd_read_input(struct lzxd_stream *lzx) {
|
||||
int read = lzx->sys->read(lzx->input, &lzx->inbuf[0], (int)lzx->inbuf_size);
|
||||
if (read < 0) return lzx->error = MSPACK_ERR_READ;
|
||||
|
||||
/* huff decode's ENSURE_BYTES(16) might overrun the input stream, even
|
||||
* if those bits aren't used, so fake 2 more bytes */
|
||||
if (read == 0) {
|
||||
if (lzx->input_end) {
|
||||
D(("out of input bytes"))
|
||||
return lzx->error = MSPACK_ERR_READ;
|
||||
}
|
||||
else {
|
||||
read = 2;
|
||||
lzx->inbuf[0] = lzx->inbuf[1] = 0;
|
||||
lzx->input_end = 1;
|
||||
}
|
||||
}
|
||||
|
||||
lzx->i_ptr = &lzx->inbuf[0];
|
||||
lzx->i_end = &lzx->inbuf[read];
|
||||
|
||||
return MSPACK_ERR_OK;
|
||||
}
|
||||
|
||||
/* Huffman decoding macros */
|
||||
|
||||
/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
|
||||
* bitstream using the stated table and puts it in var.
|
||||
*/
|
||||
#define READ_HUFFSYM(tbl, var) do { \
|
||||
/* huffman symbols can be up to 16 bits long */ \
|
||||
ENSURE_BITS(16); \
|
||||
/* immediate table lookup of [tablebits] bits of the code */ \
|
||||
sym = lzx->tbl##_table[PEEK_BITS(LZX_##tbl##_TABLEBITS)]; \
|
||||
/* is the symbol is longer than [tablebits] bits? (i=node index) */ \
|
||||
if (sym >= LZX_##tbl##_MAXSYMBOLS) { \
|
||||
/* decode remaining bits by tree traversal */ \
|
||||
i = 1 << (BITBUF_WIDTH - LZX_##tbl##_TABLEBITS); \
|
||||
do { \
|
||||
/* one less bit. error if we run out of bits before decode */ \
|
||||
i >>= 1; \
|
||||
if (i == 0) { \
|
||||
D(("out of bits in huffman decode")) \
|
||||
return lzx->error = MSPACK_ERR_DECRUNCH; \
|
||||
} \
|
||||
/* double node index and add 0 (left branch) or 1 (right) */ \
|
||||
sym <<= 1; sym |= (bit_buffer & i) ? 1 : 0; \
|
||||
/* hop to next node index / decoded symbol */ \
|
||||
sym = lzx->tbl##_table[sym]; \
|
||||
/* while we are still in node indicies, not decoded symbols */ \
|
||||
} while (sym >= LZX_##tbl##_MAXSYMBOLS); \
|
||||
} \
|
||||
/* result */ \
|
||||
(var) = sym; \
|
||||
/* look up the code length of that symbol and discard those bits */ \
|
||||
i = lzx->tbl##_len[sym]; \
|
||||
REMOVE_BITS(i); \
|
||||
} while (0)
|
||||
/* import huffman-reading macros and code */
|
||||
#define TABLEBITS(tbl) LZX_##tbl##_TABLEBITS
|
||||
#define MAXSYMBOLS(tbl) LZX_##tbl##_MAXSYMBOLS
|
||||
#define HUFF_TABLE(tbl,idx) lzx->tbl##_table[idx]
|
||||
#define HUFF_LEN(tbl,idx) lzx->tbl##_len[idx]
|
||||
#define HUFF_ERROR return lzx->error = MSPACK_ERR_DECRUNCH
|
||||
#include <readhuff.h>
|
||||
|
||||
/* BUILD_TABLE(tbl) builds a huffman lookup table from code lengths */
|
||||
#define BUILD_TABLE(tbl) \
|
||||
if (make_decode_table(LZX_##tbl##_MAXSYMBOLS, LZX_##tbl##_TABLEBITS, \
|
||||
&lzx->tbl##_len[0], &lzx->tbl##_table[0])) \
|
||||
if (make_decode_table(MAXSYMBOLS(tbl), TABLEBITS(tbl), \
|
||||
&HUFF_LEN(tbl,0), &HUFF_TABLE(tbl,0))) \
|
||||
{ \
|
||||
D(("failed to build %s table", #tbl)) \
|
||||
return lzx->error = MSPACK_ERR_DECRUNCH; \
|
||||
}
|
||||
|
||||
/* make_decode_table(nsyms, nbits, length[], table[])
|
||||
*
|
||||
* This function was coded by David Tritscher. It builds a fast huffman
|
||||
* decoding table from a canonical huffman code lengths table.
|
||||
*
|
||||
* nsyms = total number of symbols in this huffman tree.
|
||||
* nbits = any symbols with a code length of nbits or less can be decoded
|
||||
* in one lookup of the table.
|
||||
* length = A table to get code lengths from [0 to syms-1]
|
||||
* table = The table to fill up with decoded symbols and pointers.
|
||||
*
|
||||
* Returns 0 for OK or 1 for error
|
||||
*/
|
||||
|
||||
static int make_decode_table(unsigned int nsyms, unsigned int nbits,
|
||||
unsigned char *length, unsigned short *table)
|
||||
{
|
||||
unsigned short sym;
|
||||
unsigned int leaf, fill;
|
||||
unsigned char bit_num;
|
||||
unsigned int pos = 0; /* the current position in the decode table */
|
||||
unsigned int table_mask = 1 << nbits;
|
||||
unsigned int bit_mask = table_mask >> 1; /* don't do 0 length codes */
|
||||
unsigned int next_symbol = bit_mask; /* base of allocation for long codes */
|
||||
|
||||
/* fill entries for codes short enough for a direct mapping */
|
||||
for (bit_num = 1; bit_num <= nbits; bit_num++) {
|
||||
for (sym = 0; sym < nsyms; sym++) {
|
||||
if (length[sym] != bit_num) continue;
|
||||
leaf = pos;
|
||||
if((pos += bit_mask) > table_mask) return 1; /* table overrun */
|
||||
/* fill all possible lookups of this symbol with the symbol itself */
|
||||
for (fill = bit_mask; fill-- > 0;) table[leaf++] = sym;
|
||||
}
|
||||
bit_mask >>= 1;
|
||||
}
|
||||
|
||||
/* full table already? */
|
||||
if (pos == table_mask) return 0;
|
||||
|
||||
/* clear the remainder of the table */
|
||||
for (sym = pos; sym < table_mask; sym++) table[sym] = 0xFFFF;
|
||||
|
||||
/* allow codes to be up to nbits+16 long, instead of nbits */
|
||||
pos <<= 16;
|
||||
table_mask <<= 16;
|
||||
bit_mask = 1 << 15;
|
||||
|
||||
for (bit_num = nbits+1; bit_num <= 16; bit_num++) {
|
||||
for (sym = 0; sym < nsyms; sym++) {
|
||||
if (length[sym] != bit_num) continue;
|
||||
|
||||
leaf = pos >> 16;
|
||||
for (fill = 0; fill < bit_num - nbits; fill++) {
|
||||
/* if this path hasn't been taken yet, 'allocate' two entries */
|
||||
if (table[leaf] == 0xFFFF) {
|
||||
table[(next_symbol << 1)] = 0xFFFF;
|
||||
table[(next_symbol << 1) + 1] = 0xFFFF;
|
||||
table[leaf] = next_symbol++;
|
||||
}
|
||||
/* follow the path and select either left or right for next bit */
|
||||
leaf = table[leaf] << 1;
|
||||
if ((pos >> (15-fill)) & 1) leaf++;
|
||||
}
|
||||
table[leaf] = sym;
|
||||
|
||||
if ((pos += bit_mask) > table_mask) return 1; /* table overflow */
|
||||
}
|
||||
bit_mask >>= 1;
|
||||
}
|
||||
|
||||
/* full table? */
|
||||
if (pos == table_mask) return 0;
|
||||
|
||||
/* either erroneous table, or all elements are 0 - let's find out. */
|
||||
for (sym = 0; sym < nsyms; sym++) if (length[sym]) return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define BUILD_TABLE_MAYBE_EMPTY(tbl) do { \
|
||||
lzx->tbl##_empty = 0; \
|
||||
if (make_decode_table(MAXSYMBOLS(tbl), TABLEBITS(tbl), \
|
||||
&HUFF_LEN(tbl,0), &HUFF_TABLE(tbl,0))) \
|
||||
{ \
|
||||
for (i = 0; i < MAXSYMBOLS(tbl); i++) { \
|
||||
if (HUFF_LEN(tbl, i) > 0) { \
|
||||
D(("failed to build %s table", #tbl)) \
|
||||
return lzx->error = MSPACK_ERR_DECRUNCH; \
|
||||
} \
|
||||
} \
|
||||
/* empty tree - allow it, but don't decode symbols with it */ \
|
||||
lzx->tbl##_empty = 1; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
|
||||
* first to last in the given table. The code lengths are stored in their
|
||||
|
@ -285,7 +130,7 @@ static int make_decode_table(unsigned int nsyms, unsigned int nbits,
|
|||
*/
|
||||
#define READ_LENGTHS(tbl, first, last) do { \
|
||||
STORE_BITS; \
|
||||
if (lzxd_read_lens(lzx, &lzx->tbl##_len[0], (first), \
|
||||
if (lzxd_read_lens(lzx, &HUFF_LEN(tbl, 0), (first), \
|
||||
(unsigned int)(last))) return lzx->error; \
|
||||
RESTORE_BITS; \
|
||||
} while (0)
|
||||
|
@ -348,27 +193,71 @@ static int lzxd_read_lens(struct lzxd_stream *lzx, unsigned char *lens,
|
|||
* a small 'position slot' number and a small offset from that slot are
|
||||
* encoded instead of one large offset.
|
||||
*
|
||||
* The number of slots is decided by how many are needed to encode the
|
||||
* largest offset for a given window size. This is easy when the gap between
|
||||
* slots is less than 128Kb, it's a linear relationship. But when extra_bits
|
||||
* reaches its limit of 17 (because LZX can only ensure reading 17 bits of
|
||||
* data at a time), we can only jump 128Kb at a time and have to start
|
||||
* using more and more position slots as each window size doubles.
|
||||
*
|
||||
* position_base[] is an index to the position slot bases
|
||||
*
|
||||
* extra_bits[] states how many bits of offset-from-base data is needed.
|
||||
*
|
||||
* They are calculated as follows:
|
||||
* extra_bits[i] = 0 where i < 4
|
||||
* extra_bits[i] = floor(i/2)-1 where i >= 4 && i < 36
|
||||
* extra_bits[i] = 17 where i >= 36
|
||||
* position_base[0] = 0
|
||||
* position_base[i] = position_base[i-1] + (1 << extra_bits[i-1])
|
||||
*/
|
||||
static unsigned int position_base[51];
|
||||
static unsigned char extra_bits[51];
|
||||
|
||||
static void lzxd_static_init() {
|
||||
int i, j;
|
||||
|
||||
for (i = 0, j = 0; i < 51; i += 2) {
|
||||
extra_bits[i] = j; /* 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7... */
|
||||
extra_bits[i+1] = j;
|
||||
if ((i != 0) && (j < 17)) j++; /* 0,0,1,2,3,4...15,16,17,17,17,17... */
|
||||
}
|
||||
|
||||
for (i = 0, j = 0; i < 51; i++) {
|
||||
position_base[i] = j; /* 0,1,2,3,4,6,8,12,16,24,32,... */
|
||||
j += 1 << extra_bits[i]; /* 1,1,1,1,2,2,4,4,8,8,16,16,32,32,... */
|
||||
}
|
||||
}
|
||||
static const unsigned int position_slots[11] = {
|
||||
30, 32, 34, 36, 38, 42, 50, 66, 98, 162, 290
|
||||
};
|
||||
static const unsigned char extra_bits[36] = {
|
||||
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
|
||||
9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16
|
||||
};
|
||||
static const unsigned int position_base[290] = {
|
||||
0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512,
|
||||
768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768,
|
||||
49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 655360,
|
||||
786432, 917504, 1048576, 1179648, 1310720, 1441792, 1572864, 1703936,
|
||||
1835008, 1966080, 2097152, 2228224, 2359296, 2490368, 2621440, 2752512,
|
||||
2883584, 3014656, 3145728, 3276800, 3407872, 3538944, 3670016, 3801088,
|
||||
3932160, 4063232, 4194304, 4325376, 4456448, 4587520, 4718592, 4849664,
|
||||
4980736, 5111808, 5242880, 5373952, 5505024, 5636096, 5767168, 5898240,
|
||||
6029312, 6160384, 6291456, 6422528, 6553600, 6684672, 6815744, 6946816,
|
||||
7077888, 7208960, 7340032, 7471104, 7602176, 7733248, 7864320, 7995392,
|
||||
8126464, 8257536, 8388608, 8519680, 8650752, 8781824, 8912896, 9043968,
|
||||
9175040, 9306112, 9437184, 9568256, 9699328, 9830400, 9961472, 10092544,
|
||||
10223616, 10354688, 10485760, 10616832, 10747904, 10878976, 11010048,
|
||||
11141120, 11272192, 11403264, 11534336, 11665408, 11796480, 11927552,
|
||||
12058624, 12189696, 12320768, 12451840, 12582912, 12713984, 12845056,
|
||||
12976128, 13107200, 13238272, 13369344, 13500416, 13631488, 13762560,
|
||||
13893632, 14024704, 14155776, 14286848, 14417920, 14548992, 14680064,
|
||||
14811136, 14942208, 15073280, 15204352, 15335424, 15466496, 15597568,
|
||||
15728640, 15859712, 15990784, 16121856, 16252928, 16384000, 16515072,
|
||||
16646144, 16777216, 16908288, 17039360, 17170432, 17301504, 17432576,
|
||||
17563648, 17694720, 17825792, 17956864, 18087936, 18219008, 18350080,
|
||||
18481152, 18612224, 18743296, 18874368, 19005440, 19136512, 19267584,
|
||||
19398656, 19529728, 19660800, 19791872, 19922944, 20054016, 20185088,
|
||||
20316160, 20447232, 20578304, 20709376, 20840448, 20971520, 21102592,
|
||||
21233664, 21364736, 21495808, 21626880, 21757952, 21889024, 22020096,
|
||||
22151168, 22282240, 22413312, 22544384, 22675456, 22806528, 22937600,
|
||||
23068672, 23199744, 23330816, 23461888, 23592960, 23724032, 23855104,
|
||||
23986176, 24117248, 24248320, 24379392, 24510464, 24641536, 24772608,
|
||||
24903680, 25034752, 25165824, 25296896, 25427968, 25559040, 25690112,
|
||||
25821184, 25952256, 26083328, 26214400, 26345472, 26476544, 26607616,
|
||||
26738688, 26869760, 27000832, 27131904, 27262976, 27394048, 27525120,
|
||||
27656192, 27787264, 27918336, 28049408, 28180480, 28311552, 28442624,
|
||||
28573696, 28704768, 28835840, 28966912, 29097984, 29229056, 29360128,
|
||||
29491200, 29622272, 29753344, 29884416, 30015488, 30146560, 30277632,
|
||||
30408704, 30539776, 30670848, 30801920, 30932992, 31064064, 31195136,
|
||||
31326208, 31457280, 31588352, 31719424, 31850496, 31981568, 32112640,
|
||||
32243712, 32374784, 32505856, 32636928, 32768000, 32899072, 33030144,
|
||||
33161216, 33292288, 33423360
|
||||
};
|
||||
|
||||
static void lzxd_reset_state(struct lzxd_stream *lzx) {
|
||||
int i;
|
||||
|
@ -393,30 +282,41 @@ struct lzxd_stream *lzxd_init(struct mspack_system *system,
|
|||
int window_bits,
|
||||
int reset_interval,
|
||||
int input_buffer_size,
|
||||
off_t output_length)
|
||||
off_t output_length,
|
||||
char is_delta)
|
||||
{
|
||||
unsigned int window_size = 1 << window_bits;
|
||||
struct lzxd_stream *lzx;
|
||||
|
||||
if (!system) return NULL;
|
||||
|
||||
/* LZX supports window sizes of 2^15 (32Kb) through 2^21 (2Mb) */
|
||||
/* LZX DELTA window sizes are between 2^17 (128KiB) and 2^25 (32MiB),
|
||||
* regular LZX windows are between 2^15 (32KiB) and 2^21 (2MiB)
|
||||
*/
|
||||
if (is_delta) {
|
||||
if (window_bits < 17 || window_bits > 25) return NULL;
|
||||
}
|
||||
else {
|
||||
if (window_bits < 15 || window_bits > 21) return NULL;
|
||||
}
|
||||
|
||||
if (reset_interval < 0 || output_length < 0) {
|
||||
D(("reset interval or output length < 0"))
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* round up input buffer size to multiple of two */
|
||||
input_buffer_size = (input_buffer_size + 1) & -2;
|
||||
if (!input_buffer_size) return NULL;
|
||||
|
||||
/* initialise static data */
|
||||
lzxd_static_init();
|
||||
if (input_buffer_size < 2) return NULL;
|
||||
|
||||
/* allocate decompression state */
|
||||
if (!(lzx = (struct lzxd_stream *)system->alloc(system, sizeof(struct lzxd_stream)))) {
|
||||
if (!(lzx = (struct lzxd_stream *) system->alloc(system, sizeof(struct lzxd_stream)))) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* allocate decompression window and input buffer */
|
||||
lzx->window = (unsigned char *)system->alloc(system, (size_t) window_size);
|
||||
lzx->inbuf = (unsigned char *)system->alloc(system, (size_t) input_buffer_size);
|
||||
lzx->window = (unsigned char *) system->alloc(system, (size_t) window_size);
|
||||
lzx->inbuf = (unsigned char *) system->alloc(system, (size_t) input_buffer_size);
|
||||
if (!lzx->window || !lzx->inbuf) {
|
||||
system->free(lzx->window);
|
||||
system->free(lzx->inbuf);
|
||||
|
@ -433,43 +333,73 @@ struct lzxd_stream *lzxd_init(struct mspack_system *system,
|
|||
|
||||
lzx->inbuf_size = input_buffer_size;
|
||||
lzx->window_size = 1 << window_bits;
|
||||
lzx->ref_data_size = 0;
|
||||
lzx->window_posn = 0;
|
||||
lzx->frame_posn = 0;
|
||||
lzx->frame = 0;
|
||||
lzx->reset_interval = reset_interval;
|
||||
lzx->intel_filesize = 0;
|
||||
lzx->intel_curpos = 0;
|
||||
|
||||
/* window bits: 15 16 17 18 19 20 21
|
||||
* position slots: 30 32 34 36 38 42 50 */
|
||||
lzx->posn_slots = ((window_bits == 21) ? 50 :
|
||||
((window_bits == 20) ? 42 : (window_bits << 1)));
|
||||
lzx->intel_started = 0;
|
||||
lzx->input_end = 0;
|
||||
|
||||
lzx->error = MSPACK_ERR_OK;
|
||||
lzx->num_offsets = position_slots[window_bits - 15] << 3;
|
||||
lzx->is_delta = is_delta;
|
||||
|
||||
lzx->i_ptr = lzx->i_end = &lzx->inbuf[0];
|
||||
lzx->o_ptr = lzx->o_end = &lzx->e8_buf[0];
|
||||
lzx->bit_buffer = lzx->bits_left = 0;
|
||||
|
||||
lzxd_reset_state(lzx);
|
||||
INIT_BITS;
|
||||
return lzx;
|
||||
}
|
||||
|
||||
int lzxd_set_reference_data(struct lzxd_stream *lzx,
|
||||
struct mspack_system *system,
|
||||
struct mspack_file *input,
|
||||
unsigned int length)
|
||||
{
|
||||
if (!lzx) return MSPACK_ERR_ARGS;
|
||||
|
||||
if (!lzx->is_delta) {
|
||||
D(("only LZX DELTA streams support reference data"))
|
||||
return MSPACK_ERR_ARGS;
|
||||
}
|
||||
if (lzx->offset) {
|
||||
D(("too late to set reference data after decoding starts"))
|
||||
return MSPACK_ERR_ARGS;
|
||||
}
|
||||
if (length > lzx->window_size) {
|
||||
D(("reference length (%u) is longer than the window", length))
|
||||
return MSPACK_ERR_ARGS;
|
||||
}
|
||||
if (length > 0 && (!system || !input)) {
|
||||
D(("length > 0 but no system or input"))
|
||||
return MSPACK_ERR_ARGS;
|
||||
}
|
||||
|
||||
lzx->ref_data_size = length;
|
||||
if (length > 0) {
|
||||
/* copy reference data */
|
||||
unsigned char *pos = &lzx->window[lzx->window_size - length];
|
||||
int bytes = system->read(input, pos, length);
|
||||
/* length can't be more than 2^25, so no signedness problem */
|
||||
if (bytes < (int)length) return MSPACK_ERR_READ;
|
||||
}
|
||||
lzx->ref_data_size = length;
|
||||
return MSPACK_ERR_OK;
|
||||
}
|
||||
|
||||
void lzxd_set_output_length(struct lzxd_stream *lzx, off_t out_bytes) {
|
||||
if (lzx) lzx->length = out_bytes;
|
||||
if (lzx && out_bytes > 0) lzx->length = out_bytes;
|
||||
}
|
||||
|
||||
int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
||||
/* bitstream reading and huffman variables */
|
||||
/* bitstream and huffman reading variables */
|
||||
unsigned int bit_buffer;
|
||||
int bits_left, i=0;
|
||||
unsigned short sym;
|
||||
unsigned char *i_ptr, *i_end;
|
||||
unsigned short sym;
|
||||
|
||||
int match_length, length_footer, extra, verbatim_bits, bytes_todo;
|
||||
int this_run, main_element, aligned_bits, j;
|
||||
int this_run, main_element, aligned_bits, j, warned = 0;
|
||||
unsigned char *window, *runsrc, *rundest, buf[12];
|
||||
unsigned int frame_size=0, end_frame, match_offset, window_posn;
|
||||
unsigned int R0, R1, R2;
|
||||
|
@ -505,12 +435,25 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
/* have we reached the reset interval? (if there is one?) */
|
||||
if (lzx->reset_interval && ((lzx->frame % lzx->reset_interval) == 0)) {
|
||||
if (lzx->block_remaining) {
|
||||
/* this is a file format error, we can make a best effort to extract what we can */
|
||||
D(("%d bytes remaining at reset interval", lzx->block_remaining))
|
||||
return lzx->error = MSPACK_ERR_DECRUNCH;
|
||||
if (!warned) {
|
||||
lzx->sys->message(NULL, "WARNING; invalid reset interval detected during LZX decompression");
|
||||
warned++;
|
||||
}
|
||||
}
|
||||
|
||||
/* re-read the intel header and reset the huffman lengths */
|
||||
lzxd_reset_state(lzx);
|
||||
R0 = lzx->R0;
|
||||
R1 = lzx->R1;
|
||||
R2 = lzx->R2;
|
||||
}
|
||||
|
||||
/* LZX DELTA format has chunk_size, not present in LZX format */
|
||||
if (lzx->is_delta) {
|
||||
ENSURE_BITS(16);
|
||||
REMOVE_BITS(16);
|
||||
}
|
||||
|
||||
/* read header if necessary */
|
||||
|
@ -527,7 +470,7 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
* has been filled in. */
|
||||
frame_size = LZX_FRAME_SIZE;
|
||||
if (lzx->length && (lzx->length - lzx->offset) < (off_t)frame_size) {
|
||||
frame_size = (unsigned int)(lzx->length - lzx->offset);
|
||||
frame_size = lzx->length - lzx->offset;
|
||||
}
|
||||
|
||||
/* decode until one more frame is available */
|
||||
|
@ -539,11 +482,7 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
if ((lzx->block_type == LZX_BLOCKTYPE_UNCOMPRESSED) &&
|
||||
(lzx->block_length & 1))
|
||||
{
|
||||
if (i_ptr == i_end) {
|
||||
if (lzxd_read_input(lzx)) return lzx->error;
|
||||
i_ptr = lzx->i_ptr;
|
||||
i_end = lzx->i_end;
|
||||
}
|
||||
READ_IF_NEEDED;
|
||||
i_ptr++;
|
||||
}
|
||||
|
||||
|
@ -559,17 +498,17 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
/* read lengths of and build aligned huffman decoding tree */
|
||||
for (i = 0; i < 8; i++) { READ_BITS(j, 3); lzx->ALIGNED_len[i] = j; }
|
||||
BUILD_TABLE(ALIGNED);
|
||||
/* no break -- rest of aligned header is same as verbatim */
|
||||
/* rest of aligned header is same as verbatim */ /*@fallthrough@*/
|
||||
case LZX_BLOCKTYPE_VERBATIM:
|
||||
/* read lengths of and build main huffman decoding tree */
|
||||
READ_LENGTHS(MAINTREE, 0, 256);
|
||||
READ_LENGTHS(MAINTREE, 256, LZX_NUM_CHARS + (lzx->posn_slots << 3));
|
||||
READ_LENGTHS(MAINTREE, 256, LZX_NUM_CHARS + lzx->num_offsets);
|
||||
BUILD_TABLE(MAINTREE);
|
||||
/* if the literal 0xE8 is anywhere in the block... */
|
||||
if (lzx->MAINTREE_len[0xE8] != 0) lzx->intel_started = 1;
|
||||
/* read lengths of and build lengths huffman decoding tree */
|
||||
READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS);
|
||||
BUILD_TABLE(LENGTH);
|
||||
BUILD_TABLE_MAYBE_EMPTY(LENGTH);
|
||||
break;
|
||||
|
||||
case LZX_BLOCKTYPE_UNCOMPRESSED:
|
||||
|
@ -577,17 +516,12 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
lzx->intel_started = 1;
|
||||
|
||||
/* read 1-16 (not 0-15) bits to align to bytes */
|
||||
ENSURE_BITS(16);
|
||||
if (bits_left > 16) i_ptr -= 2;
|
||||
if (bits_left == 0) ENSURE_BITS(16);
|
||||
bits_left = 0; bit_buffer = 0;
|
||||
|
||||
/* read 12 bytes of stored R0 / R1 / R2 values */
|
||||
for (rundest = &buf[0], i = 0; i < 12; i++) {
|
||||
if (i_ptr == i_end) {
|
||||
if (lzxd_read_input(lzx)) return lzx->error;
|
||||
i_ptr = lzx->i_ptr;
|
||||
i_end = lzx->i_end;
|
||||
}
|
||||
READ_IF_NEEDED;
|
||||
*rundest++ = *i_ptr++;
|
||||
}
|
||||
R0 = buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
|
||||
|
@ -627,6 +561,10 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
/* get match length */
|
||||
match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
|
||||
if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
|
||||
if (lzx->LENGTH_empty) {
|
||||
D(("LENGTH symbol needed but tree is empty"))
|
||||
return lzx->error = MSPACK_ERR_DECRUNCH;
|
||||
}
|
||||
READ_HUFFSYM(LENGTH, length_footer);
|
||||
match_length += length_footer;
|
||||
}
|
||||
|
@ -639,12 +577,37 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
case 2: match_offset = R2; R2=R0; R0 = match_offset; break;
|
||||
case 3: match_offset = 1; R2=R1; R1=R0; R0 = match_offset; break;
|
||||
default:
|
||||
extra = extra_bits[match_offset];
|
||||
extra = (match_offset >= 36) ? 17 : extra_bits[match_offset];
|
||||
READ_BITS(verbatim_bits, extra);
|
||||
match_offset = position_base[match_offset] - 2 + verbatim_bits;
|
||||
R2 = R1; R1 = R0; R0 = match_offset;
|
||||
}
|
||||
|
||||
/* LZX DELTA uses max match length to signal even longer match */
|
||||
if (match_length == LZX_MAX_MATCH && lzx->is_delta) {
|
||||
int extra_len = 0;
|
||||
ENSURE_BITS(3); /* 4 entry huffman tree */
|
||||
if (PEEK_BITS(1) == 0) {
|
||||
REMOVE_BITS(1); /* '0' -> 8 extra length bits */
|
||||
READ_BITS(extra_len, 8);
|
||||
}
|
||||
else if (PEEK_BITS(2) == 2) {
|
||||
REMOVE_BITS(2); /* '10' -> 10 extra length bits + 0x100 */
|
||||
READ_BITS(extra_len, 10);
|
||||
extra_len += 0x100;
|
||||
}
|
||||
else if (PEEK_BITS(3) == 6) {
|
||||
REMOVE_BITS(3); /* '110' -> 12 extra length bits + 0x500 */
|
||||
READ_BITS(extra_len, 12);
|
||||
extra_len += 0x500;
|
||||
}
|
||||
else {
|
||||
REMOVE_BITS(3); /* '111' -> 15 extra length bits */
|
||||
READ_BITS(extra_len, 15);
|
||||
}
|
||||
match_length += extra_len;
|
||||
}
|
||||
|
||||
if ((window_posn + match_length) > lzx->window_size) {
|
||||
D(("match ran over window wrap"))
|
||||
return lzx->error = MSPACK_ERR_DECRUNCH;
|
||||
|
@ -655,6 +618,12 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
i = match_length;
|
||||
/* does match offset wrap the window? */
|
||||
if (match_offset > window_posn) {
|
||||
if ((off_t)match_offset > lzx->offset &&
|
||||
(match_offset - window_posn) > lzx->ref_data_size)
|
||||
{
|
||||
D(("match offset beyond LZX stream"))
|
||||
return lzx->error = MSPACK_ERR_DECRUNCH;
|
||||
}
|
||||
/* j = length from match offset to end of window */
|
||||
j = match_offset - window_posn;
|
||||
if (j > (int) lzx->window_size) {
|
||||
|
@ -695,6 +664,10 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
/* get match length */
|
||||
match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
|
||||
if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
|
||||
if (lzx->LENGTH_empty) {
|
||||
D(("LENGTH symbol needed but tree is empty"))
|
||||
return lzx->error = MSPACK_ERR_DECRUNCH;
|
||||
}
|
||||
READ_HUFFSYM(LENGTH, length_footer);
|
||||
match_length += length_footer;
|
||||
}
|
||||
|
@ -706,7 +679,7 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
case 1: match_offset = R1; R1 = R0; R0 = match_offset; break;
|
||||
case 2: match_offset = R2; R2 = R0; R0 = match_offset; break;
|
||||
default:
|
||||
extra = extra_bits[match_offset];
|
||||
extra = (match_offset >= 36) ? 17 : extra_bits[match_offset];
|
||||
match_offset = position_base[match_offset] - 2;
|
||||
if (extra > 3) {
|
||||
/* verbatim and aligned bits */
|
||||
|
@ -734,6 +707,31 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
R2 = R1; R1 = R0; R0 = match_offset;
|
||||
}
|
||||
|
||||
/* LZX DELTA uses max match length to signal even longer match */
|
||||
if (match_length == LZX_MAX_MATCH && lzx->is_delta) {
|
||||
int extra_len = 0;
|
||||
ENSURE_BITS(3); /* 4 entry huffman tree */
|
||||
if (PEEK_BITS(1) == 0) {
|
||||
REMOVE_BITS(1); /* '0' -> 8 extra length bits */
|
||||
READ_BITS(extra_len, 8);
|
||||
}
|
||||
else if (PEEK_BITS(2) == 2) {
|
||||
REMOVE_BITS(2); /* '10' -> 10 extra length bits + 0x100 */
|
||||
READ_BITS(extra_len, 10);
|
||||
extra_len += 0x100;
|
||||
}
|
||||
else if (PEEK_BITS(3) == 6) {
|
||||
REMOVE_BITS(3); /* '110' -> 12 extra length bits + 0x500 */
|
||||
READ_BITS(extra_len, 12);
|
||||
extra_len += 0x500;
|
||||
}
|
||||
else {
|
||||
REMOVE_BITS(3); /* '111' -> 15 extra length bits */
|
||||
READ_BITS(extra_len, 15);
|
||||
}
|
||||
match_length += extra_len;
|
||||
}
|
||||
|
||||
if ((window_posn + match_length) > lzx->window_size) {
|
||||
D(("match ran over window wrap"))
|
||||
return lzx->error = MSPACK_ERR_DECRUNCH;
|
||||
|
@ -744,6 +742,12 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
i = match_length;
|
||||
/* does match offset wrap the window? */
|
||||
if (match_offset > window_posn) {
|
||||
if ((off_t)match_offset > lzx->offset &&
|
||||
(match_offset - window_posn) > lzx->ref_data_size)
|
||||
{
|
||||
D(("match offset beyond LZX stream"))
|
||||
return lzx->error = MSPACK_ERR_DECRUNCH;
|
||||
}
|
||||
/* j = length from match offset to end of window */
|
||||
j = match_offset - window_posn;
|
||||
if (j > (int) lzx->window_size) {
|
||||
|
@ -775,18 +779,16 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
rundest = &window[window_posn];
|
||||
window_posn += this_run;
|
||||
while (this_run > 0) {
|
||||
if ((i = (int)(i_end - i_ptr))) {
|
||||
if ((i = (int)(i_end - i_ptr)) == 0) {
|
||||
READ_IF_NEEDED;
|
||||
}
|
||||
else {
|
||||
if (i > this_run) i = this_run;
|
||||
lzx->sys->copy(i_ptr, rundest, (size_t) i);
|
||||
rundest += i;
|
||||
i_ptr += i;
|
||||
this_run -= i;
|
||||
}
|
||||
else {
|
||||
if (lzxd_read_input(lzx)) return lzx->error;
|
||||
i_ptr = lzx->i_ptr;
|
||||
i_end = lzx->i_end;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -818,7 +820,8 @@ int lzxd_decompress(struct lzxd_stream *lzx, off_t out_bytes) {
|
|||
|
||||
/* check that we've used all of the previous frame first */
|
||||
if (lzx->o_ptr != lzx->o_end) {
|
||||
D(("%d avail bytes, new %d frame", lzx->o_end-lzx->o_ptr, frame_size))
|
||||
D(("%ld avail bytes, new %d frame",
|
||||
(long)(lzx->o_end - lzx->o_ptr), frame_size))
|
||||
return lzx->error = MSPACK_ERR_DECRUNCH;
|
||||
}
|
||||
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,207 @@
|
|||
/* This file is part of libmspack.
|
||||
* (C) 2003-2010 Stuart Caie.
|
||||
*
|
||||
* libmspack is free software; you can redistribute it and/or modify it under
|
||||
* the terms of the GNU Lesser General Public License (LGPL) version 2.1
|
||||
*
|
||||
* For further details, see the file COPYING.LIB distributed with libmspack
|
||||
*/
|
||||
|
||||
#ifndef MSPACK_READBITS_H
|
||||
#define MSPACK_READBITS_H 1
|
||||
|
||||
/* this header defines macros that read data streams by
|
||||
* the individual bits
|
||||
*
|
||||
* INIT_BITS initialises bitstream state in state structure
|
||||
* STORE_BITS stores bitstream state in state structure
|
||||
* RESTORE_BITS restores bitstream state from state structure
|
||||
* ENSURE_BITS(n) ensure there are at least N bits in the bit buffer
|
||||
* READ_BITS(var,n) takes N bits from the buffer and puts them in var
|
||||
* PEEK_BITS(n) extracts without removing N bits from the bit buffer
|
||||
* REMOVE_BITS(n) removes N bits from the bit buffer
|
||||
*
|
||||
* READ_BITS simply calls ENSURE_BITS, PEEK_BITS and REMOVE_BITS,
|
||||
* which means it's limited to reading the number of bits you can
|
||||
* ensure at any one time. It also fails if asked to read zero bits.
|
||||
* If you need to read zero bits, or more bits than can be ensured in
|
||||
* one go, use READ_MANY_BITS instead.
|
||||
*
|
||||
* These macros have variable names baked into them, so to use them
|
||||
* you have to define some macros:
|
||||
* - BITS_TYPE: the type name of your state structure
|
||||
* - BITS_VAR: the variable that points to your state structure
|
||||
* - define BITS_ORDER_MSB if bits are read from the MSB, or
|
||||
* define BITS_ORDER_LSB if bits are read from the LSB
|
||||
* - READ_BYTES: some code that reads more data into the bit buffer,
|
||||
* it should use READ_IF_NEEDED (calls read_input if the byte buffer
|
||||
* is empty), then INJECT_BITS(data,n) to put data from the byte
|
||||
* buffer into the bit buffer.
|
||||
*
|
||||
* You also need to define some variables and structure members:
|
||||
* - unsigned char *i_ptr; // current position in the byte buffer
|
||||
* - unsigned char *i_end; // end of the byte buffer
|
||||
* - unsigned int bit_buffer; // the bit buffer itself
|
||||
* - unsigned int bits_left; // number of bits remaining
|
||||
*
|
||||
* If you use read_input() and READ_IF_NEEDED, they also expect these
|
||||
* structure members:
|
||||
* - struct mspack_system *sys; // to access sys->read()
|
||||
* - unsigned int error; // to record/return read errors
|
||||
* - unsigned char input_end; // to mark reaching the EOF
|
||||
* - unsigned char *inbuf; // the input byte buffer
|
||||
* - unsigned int inbuf_size; // the size of the input byte buffer
|
||||
*
|
||||
* Your READ_BYTES implementation should read data from *i_ptr and
|
||||
* put them in the bit buffer. READ_IF_NEEDED will call read_input()
|
||||
* if i_ptr reaches i_end, and will fill up inbuf and set i_ptr to
|
||||
* the start of inbuf and i_end to the end of inbuf.
|
||||
*
|
||||
* If you're reading in MSB order, the routines work by using the area
|
||||
* beyond the MSB and the LSB of the bit buffer as a free source of
|
||||
* zeroes when shifting. This avoids having to mask any bits. So we
|
||||
* have to know the bit width of the bit buffer variable. We use
|
||||
* <limits.h> and CHAR_BIT to find the size of the bit buffer in bits.
|
||||
*
|
||||
* If you are reading in LSB order, bits need to be masked. Normally
|
||||
* this is done by computing the mask: N bits are masked by the value
|
||||
* (1<<N)-1). However, you can define BITS_LSB_TABLE to use a lookup
|
||||
* table instead of computing this. This adds two new macros,
|
||||
* PEEK_BITS_T and READ_BITS_T which work the same way as PEEK_BITS
|
||||
* and READ_BITS, except they use this lookup table. This is useful if
|
||||
* you need to look up a number of bits that are only known at
|
||||
* runtime, so the bit mask can't be turned into a constant by the
|
||||
* compiler.
|
||||
|
||||
* The bit buffer datatype should be at least 32 bits wide: it must be
|
||||
* possible to ENSURE_BITS(17), so it must be possible to add 16 new bits
|
||||
* to the bit buffer when the bit buffer already has 1 to 15 bits left.
|
||||
*/
|
||||
|
||||
#ifndef BITS_VAR
|
||||
# error "define BITS_VAR as the state structure poiner variable name"
|
||||
#endif
|
||||
#ifndef BITS_TYPE
|
||||
# error "define BITS_TYPE as the state structure type"
|
||||
#endif
|
||||
#if defined(BITS_ORDER_MSB) && defined(BITS_ORDER_LSB)
|
||||
# error "you must define either BITS_ORDER_MSB or BITS_ORDER_LSB"
|
||||
#else
|
||||
# if !(defined(BITS_ORDER_MSB) || defined(BITS_ORDER_LSB))
|
||||
# error "you must define BITS_ORDER_MSB or BITS_ORDER_LSB"
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if HAVE_LIMITS_H
|
||||
# include <limits.h>
|
||||
#endif
|
||||
#ifndef CHAR_BIT
|
||||
# define CHAR_BIT (8)
|
||||
#endif
|
||||
#define BITBUF_WIDTH (sizeof(bit_buffer) * CHAR_BIT)
|
||||
|
||||
#define INIT_BITS do { \
|
||||
BITS_VAR->i_ptr = &BITS_VAR->inbuf[0]; \
|
||||
BITS_VAR->i_end = &BITS_VAR->inbuf[0]; \
|
||||
BITS_VAR->bit_buffer = 0; \
|
||||
BITS_VAR->bits_left = 0; \
|
||||
BITS_VAR->input_end = 0; \
|
||||
} while (0)
|
||||
|
||||
#define STORE_BITS do { \
|
||||
BITS_VAR->i_ptr = i_ptr; \
|
||||
BITS_VAR->i_end = i_end; \
|
||||
BITS_VAR->bit_buffer = bit_buffer; \
|
||||
BITS_VAR->bits_left = bits_left; \
|
||||
} while (0)
|
||||
|
||||
#define RESTORE_BITS do { \
|
||||
i_ptr = BITS_VAR->i_ptr; \
|
||||
i_end = BITS_VAR->i_end; \
|
||||
bit_buffer = BITS_VAR->bit_buffer; \
|
||||
bits_left = BITS_VAR->bits_left; \
|
||||
} while (0)
|
||||
|
||||
#define ENSURE_BITS(nbits) do { \
|
||||
while (bits_left < (nbits)) READ_BYTES; \
|
||||
} while (0)
|
||||
|
||||
#define READ_BITS(val, nbits) do { \
|
||||
ENSURE_BITS(nbits); \
|
||||
(val) = PEEK_BITS(nbits); \
|
||||
REMOVE_BITS(nbits); \
|
||||
} while (0)
|
||||
|
||||
#define READ_MANY_BITS(val, bits) do { \
|
||||
unsigned char needed = (bits), bitrun; \
|
||||
(val) = 0; \
|
||||
while (needed > 0) { \
|
||||
if (bits_left <= (BITBUF_WIDTH - 16)) READ_BYTES; \
|
||||
bitrun = (bits_left < needed) ? bits_left : needed; \
|
||||
(val) = ((val) << bitrun) | PEEK_BITS(bitrun); \
|
||||
REMOVE_BITS(bitrun); \
|
||||
needed -= bitrun; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#ifdef BITS_ORDER_MSB
|
||||
# define PEEK_BITS(nbits) (bit_buffer >> (BITBUF_WIDTH - (nbits)))
|
||||
# define REMOVE_BITS(nbits) ((bit_buffer <<= (nbits)), (bits_left -= (nbits)))
|
||||
# define INJECT_BITS(bitdata,nbits) ((bit_buffer |= \
|
||||
(bitdata) << (BITBUF_WIDTH - (nbits) - bits_left)), (bits_left += (nbits)))
|
||||
#else /* BITS_ORDER_LSB */
|
||||
# define PEEK_BITS(nbits) (bit_buffer & ((1 << (nbits))-1))
|
||||
# define REMOVE_BITS(nbits) ((bit_buffer >>= (nbits)), (bits_left -= (nbits)))
|
||||
# define INJECT_BITS(bitdata,nbits) ((bit_buffer |= \
|
||||
(bitdata) << bits_left), (bits_left += (nbits)))
|
||||
#endif
|
||||
|
||||
#ifdef BITS_LSB_TABLE
|
||||
/* lsb_bit_mask[n] = (1 << n) - 1 */
|
||||
static const unsigned short lsb_bit_mask[17] = {
|
||||
0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
|
||||
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
|
||||
};
|
||||
# define PEEK_BITS_T(nbits) (bit_buffer & lsb_bit_mask[(nbits)])
|
||||
# define READ_BITS_T(val, nbits) do { \
|
||||
ENSURE_BITS(nbits); \
|
||||
(val) = PEEK_BITS_T(nbits); \
|
||||
REMOVE_BITS(nbits); \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#ifndef BITS_NO_READ_INPUT
|
||||
# define READ_IF_NEEDED do { \
|
||||
if (i_ptr >= i_end) { \
|
||||
if (read_input(BITS_VAR)) \
|
||||
return BITS_VAR->error; \
|
||||
i_ptr = BITS_VAR->i_ptr; \
|
||||
i_end = BITS_VAR->i_end; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
static int read_input(BITS_TYPE *p) {
|
||||
int read = p->sys->read(p->input, &p->inbuf[0], (int)p->inbuf_size);
|
||||
if (read < 0) return p->error = MSPACK_ERR_READ;
|
||||
|
||||
/* we might overrun the input stream by asking for bits we don't use,
|
||||
* so fake 2 more bytes at the end of input */
|
||||
if (read == 0) {
|
||||
if (p->input_end) {
|
||||
D(("out of input bytes"))
|
||||
return p->error = MSPACK_ERR_READ;
|
||||
}
|
||||
else {
|
||||
read = 2;
|
||||
p->inbuf[0] = p->inbuf[1] = 0;
|
||||
p->input_end = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* update i_ptr and i_end */
|
||||
p->i_ptr = &p->inbuf[0];
|
||||
p->i_end = &p->inbuf[read];
|
||||
return MSPACK_ERR_OK;
|
||||
}
|
||||
#endif
|
||||
#endif
|
|
@ -0,0 +1,172 @@
|
|||
/* This file is part of libmspack.
|
||||
* (C) 2003-2014 Stuart Caie.
|
||||
*
|
||||
* libmspack is free software; you can redistribute it and/or modify it under
|
||||
* the terms of the GNU Lesser General Public License (LGPL) version 2.1
|
||||
*
|
||||
* For further details, see the file COPYING.LIB distributed with libmspack
|
||||
*/
|
||||
|
||||
#ifndef MSPACK_READHUFF_H
|
||||
#define MSPACK_READHUFF_H 1
|
||||
|
||||
/* This implements a fast Huffman tree decoding system. */
|
||||
|
||||
#if !(defined(BITS_ORDER_MSB) || defined(BITS_ORDER_LSB))
|
||||
# error "readhuff.h is used in conjunction with readbits.h, include that first"
|
||||
#endif
|
||||
#if !(defined(TABLEBITS) && defined(MAXSYMBOLS))
|
||||
# error "define TABLEBITS(tbl) and MAXSYMBOLS(tbl) before using readhuff.h"
|
||||
#endif
|
||||
#if !(defined(HUFF_TABLE) && defined(HUFF_LEN))
|
||||
# error "define HUFF_TABLE(tbl) and HUFF_LEN(tbl) before using readhuff.h"
|
||||
#endif
|
||||
#ifndef HUFF_ERROR
|
||||
# error "define HUFF_ERROR before using readhuff.h"
|
||||
#endif
|
||||
#ifndef HUFF_MAXBITS
|
||||
# define HUFF_MAXBITS 16
|
||||
#endif
|
||||
|
||||
/* Decodes the next huffman symbol from the input bitstream into var.
|
||||
* Do not use this macro on a table unless build_decode_table() succeeded.
|
||||
*/
|
||||
#define READ_HUFFSYM(tbl, var) do { \
|
||||
ENSURE_BITS(HUFF_MAXBITS); \
|
||||
sym = HUFF_TABLE(tbl, PEEK_BITS(TABLEBITS(tbl))); \
|
||||
if (sym >= MAXSYMBOLS(tbl)) HUFF_TRAVERSE(tbl); \
|
||||
(var) = sym; \
|
||||
i = HUFF_LEN(tbl, sym); \
|
||||
REMOVE_BITS(i); \
|
||||
} while (0)
|
||||
|
||||
#ifdef BITS_ORDER_LSB
|
||||
# define HUFF_TRAVERSE(tbl) do { \
|
||||
i = TABLEBITS(tbl) - 1; \
|
||||
do { \
|
||||
if (i++ > HUFF_MAXBITS) HUFF_ERROR; \
|
||||
sym = HUFF_TABLE(tbl, \
|
||||
(sym << 1) | ((bit_buffer >> i) & 1)); \
|
||||
} while (sym >= MAXSYMBOLS(tbl)); \
|
||||
} while (0)
|
||||
#else
|
||||
#define HUFF_TRAVERSE(tbl) do { \
|
||||
i = 1 << (BITBUF_WIDTH - TABLEBITS(tbl)); \
|
||||
do { \
|
||||
if ((i >>= 1) == 0) HUFF_ERROR; \
|
||||
sym = HUFF_TABLE(tbl, \
|
||||
(sym << 1) | ((bit_buffer & i) ? 1 : 0)); \
|
||||
} while (sym >= MAXSYMBOLS(tbl)); \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
/* make_decode_table(nsyms, nbits, length[], table[])
|
||||
*
|
||||
* This function was originally coded by David Tritscher.
|
||||
* It builds a fast huffman decoding table from
|
||||
* a canonical huffman code lengths table.
|
||||
*
|
||||
* nsyms = total number of symbols in this huffman tree.
|
||||
* nbits = any symbols with a code length of nbits or less can be decoded
|
||||
* in one lookup of the table.
|
||||
* length = A table to get code lengths from [0 to nsyms-1]
|
||||
* table = The table to fill up with decoded symbols and pointers.
|
||||
* Should be ((1<<nbits) + (nsyms*2)) in length.
|
||||
*
|
||||
* Returns 0 for OK or 1 for error
|
||||
*/
|
||||
static int make_decode_table(unsigned int nsyms, unsigned int nbits,
|
||||
unsigned char *length, unsigned short *table)
|
||||
{
|
||||
register unsigned short sym, next_symbol;
|
||||
register unsigned int leaf, fill;
|
||||
#ifdef BITS_ORDER_LSB
|
||||
register unsigned int reverse;
|
||||
#endif
|
||||
register unsigned char bit_num;
|
||||
unsigned int pos = 0; /* the current position in the decode table */
|
||||
unsigned int table_mask = 1 << nbits;
|
||||
unsigned int bit_mask = table_mask >> 1; /* don't do 0 length codes */
|
||||
|
||||
/* fill entries for codes short enough for a direct mapping */
|
||||
for (bit_num = 1; bit_num <= nbits; bit_num++) {
|
||||
for (sym = 0; sym < nsyms; sym++) {
|
||||
if (length[sym] != bit_num) continue;
|
||||
#ifdef BITS_ORDER_MSB
|
||||
leaf = pos;
|
||||
#else
|
||||
/* reverse the significant bits */
|
||||
fill = length[sym]; reverse = pos >> (nbits - fill); leaf = 0;
|
||||
do {leaf <<= 1; leaf |= reverse & 1; reverse >>= 1;} while (--fill);
|
||||
#endif
|
||||
|
||||
if((pos += bit_mask) > table_mask) return 1; /* table overrun */
|
||||
|
||||
/* fill all possible lookups of this symbol with the symbol itself */
|
||||
#ifdef BITS_ORDER_MSB
|
||||
for (fill = bit_mask; fill-- > 0;) table[leaf++] = sym;
|
||||
#else
|
||||
fill = bit_mask; next_symbol = 1 << bit_num;
|
||||
do { table[leaf] = sym; leaf += next_symbol; } while (--fill);
|
||||
#endif
|
||||
}
|
||||
bit_mask >>= 1;
|
||||
}
|
||||
|
||||
/* exit with success if table is now complete */
|
||||
if (pos == table_mask) return 0;
|
||||
|
||||
/* mark all remaining table entries as unused */
|
||||
for (sym = pos; sym < table_mask; sym++) {
|
||||
#ifdef BITS_ORDER_MSB
|
||||
table[sym] = 0xFFFF;
|
||||
#else
|
||||
reverse = sym; leaf = 0; fill = nbits;
|
||||
do { leaf <<= 1; leaf |= reverse & 1; reverse >>= 1; } while (--fill);
|
||||
table[leaf] = 0xFFFF;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* next_symbol = base of allocation for long codes */
|
||||
next_symbol = ((table_mask >> 1) < nsyms) ? nsyms : (table_mask >> 1);
|
||||
|
||||
/* give ourselves room for codes to grow by up to 16 more bits.
|
||||
* codes now start at bit nbits+16 and end at (nbits+16-codelength) */
|
||||
pos <<= 16;
|
||||
table_mask <<= 16;
|
||||
bit_mask = 1 << 15;
|
||||
|
||||
for (bit_num = nbits+1; bit_num <= HUFF_MAXBITS; bit_num++) {
|
||||
for (sym = 0; sym < nsyms; sym++) {
|
||||
if (length[sym] != bit_num) continue;
|
||||
if (pos >= table_mask) return 1; /* table overflow */
|
||||
|
||||
#ifdef BITS_ORDER_MSB
|
||||
leaf = pos >> 16;
|
||||
#else
|
||||
/* leaf = the first nbits of the code, reversed */
|
||||
reverse = pos >> 16; leaf = 0; fill = nbits;
|
||||
do {leaf <<= 1; leaf |= reverse & 1; reverse >>= 1;} while (--fill);
|
||||
#endif
|
||||
for (fill = 0; fill < (bit_num - nbits); fill++) {
|
||||
/* if this path hasn't been taken yet, 'allocate' two entries */
|
||||
if (table[leaf] == 0xFFFF) {
|
||||
table[(next_symbol << 1) ] = 0xFFFF;
|
||||
table[(next_symbol << 1) + 1 ] = 0xFFFF;
|
||||
table[leaf] = next_symbol++;
|
||||
}
|
||||
|
||||
/* follow the path and select either left or right for next bit */
|
||||
leaf = table[leaf] << 1;
|
||||
if ((pos >> (15-fill)) & 1) leaf++;
|
||||
}
|
||||
table[leaf] = sym;
|
||||
pos += bit_mask;
|
||||
}
|
||||
bit_mask >>= 1;
|
||||
}
|
||||
|
||||
/* full table? */
|
||||
return (pos == table_mask) ? 0 : 1;
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,242 @@
|
|||
/* This file is part of libmspack.
|
||||
* (C) 2003-2004 Stuart Caie.
|
||||
*
|
||||
* libmspack is free software; you can redistribute it and/or modify it under
|
||||
* the terms of the GNU Lesser General Public License (LGPL) version 2.1
|
||||
*
|
||||
* For further details, see the file COPYING.LIB distributed with libmspack
|
||||
*/
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
# include <config.h>
|
||||
#endif
|
||||
|
||||
#include <system.h>
|
||||
|
||||
#if !LARGEFILE_SUPPORT
|
||||
const char *largefile_msg = "library not compiled to support large files.";
|
||||
#endif
|
||||
|
||||
|
||||
int mspack_version(int entity) {
|
||||
switch (entity) {
|
||||
/* CHM decoder version 1 -> 2 changes:
|
||||
* - added mschmd_sec_mscompressed::spaninfo
|
||||
* - added mschmd_header::first_pmgl
|
||||
* - added mschmd_header::last_pmgl
|
||||
* - added mschmd_header::chunk_cache;
|
||||
*/
|
||||
case MSPACK_VER_MSCHMD:
|
||||
/* CAB decoder version 1 -> 2 changes:
|
||||
* - added MSCABD_PARAM_SALVAGE
|
||||
*/
|
||||
case MSPACK_VER_MSCABD:
|
||||
return 2;
|
||||
case MSPACK_VER_LIBRARY:
|
||||
case MSPACK_VER_SYSTEM:
|
||||
case MSPACK_VER_MSSZDDD:
|
||||
case MSPACK_VER_MSKWAJD:
|
||||
case MSPACK_VER_MSOABD:
|
||||
return 1;
|
||||
case MSPACK_VER_MSCABC:
|
||||
case MSPACK_VER_MSCHMC:
|
||||
case MSPACK_VER_MSLITD:
|
||||
case MSPACK_VER_MSLITC:
|
||||
case MSPACK_VER_MSHLPD:
|
||||
case MSPACK_VER_MSHLPC:
|
||||
case MSPACK_VER_MSSZDDC:
|
||||
case MSPACK_VER_MSKWAJC:
|
||||
case MSPACK_VER_MSOABC:
|
||||
return 0;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
int mspack_sys_selftest_internal(int offt_size) {
|
||||
return (sizeof(off_t) == offt_size) ? MSPACK_ERR_OK : MSPACK_ERR_SEEK;
|
||||
}
|
||||
|
||||
/* validates a system structure */
|
||||
int mspack_valid_system(struct mspack_system *sys) {
|
||||
return (sys != NULL) && (sys->open != NULL) && (sys->close != NULL) &&
|
||||
(sys->read != NULL) && (sys->write != NULL) && (sys->seek != NULL) &&
|
||||
(sys->tell != NULL) && (sys->message != NULL) && (sys->alloc != NULL) &&
|
||||
(sys->free != NULL) && (sys->copy != NULL) && (sys->null_ptr == NULL);
|
||||
}
|
||||
|
||||
/* returns the length of a file opened for reading */
|
||||
int mspack_sys_filelen(struct mspack_system *system,
|
||||
struct mspack_file *file, off_t *length)
|
||||
{
|
||||
off_t current;
|
||||
|
||||
if (!system || !file || !length) return MSPACK_ERR_OPEN;
|
||||
|
||||
/* get current offset */
|
||||
current = system->tell(file);
|
||||
|
||||
/* seek to end of file */
|
||||
if (system->seek(file, (off_t) 0, MSPACK_SYS_SEEK_END)) {
|
||||
return MSPACK_ERR_SEEK;
|
||||
}
|
||||
|
||||
/* get offset of end of file */
|
||||
*length = system->tell(file);
|
||||
|
||||
/* seek back to original offset */
|
||||
if (system->seek(file, current, MSPACK_SYS_SEEK_START)) {
|
||||
return MSPACK_ERR_SEEK;
|
||||
}
|
||||
|
||||
return MSPACK_ERR_OK;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* definition of mspack_default_system -- if the library is compiled with
|
||||
* MSPACK_NO_DEFAULT_SYSTEM, no default system will be provided. Otherwise,
|
||||
* an appropriate default system (e.g. the standard C library, or some native
|
||||
* API calls)
|
||||
*/
|
||||
|
||||
#ifdef MSPACK_NO_DEFAULT_SYSTEM
|
||||
struct mspack_system *mspack_default_system = NULL;
|
||||
#else
|
||||
|
||||
/* implementation of mspack_default_system for standard C library */
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <stdarg.h>
|
||||
|
||||
struct mspack_file_p {
|
||||
FILE *fh;
|
||||
const char *name;
|
||||
};
|
||||
|
||||
static struct mspack_file *msp_open(struct mspack_system *self,
|
||||
const char *filename, int mode)
|
||||
{
|
||||
struct mspack_file_p *fh;
|
||||
const char *fmode;
|
||||
|
||||
switch (mode) {
|
||||
case MSPACK_SYS_OPEN_READ: fmode = "rb"; break;
|
||||
case MSPACK_SYS_OPEN_WRITE: fmode = "wb"; break;
|
||||
case MSPACK_SYS_OPEN_UPDATE: fmode = "r+b"; break;
|
||||
case MSPACK_SYS_OPEN_APPEND: fmode = "ab"; break;
|
||||
default: return NULL;
|
||||
}
|
||||
|
||||
if ((fh = (struct mspack_file_p *) malloc(sizeof(struct mspack_file_p)))) {
|
||||
fh->name = filename;
|
||||
if ((fh->fh = fopen(filename, fmode))) return (struct mspack_file *) fh;
|
||||
free(fh);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void msp_close(struct mspack_file *file) {
|
||||
struct mspack_file_p *self = (struct mspack_file_p *) file;
|
||||
if (self) {
|
||||
fclose(self->fh);
|
||||
free(self);
|
||||
}
|
||||
}
|
||||
|
||||
static int msp_read(struct mspack_file *file, void *buffer, int bytes) {
|
||||
struct mspack_file_p *self = (struct mspack_file_p *) file;
|
||||
if (self && buffer && bytes >= 0) {
|
||||
size_t count = fread(buffer, 1, (size_t) bytes, self->fh);
|
||||
if (!ferror(self->fh)) return (int) count;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int msp_write(struct mspack_file *file, void *buffer, int bytes) {
|
||||
struct mspack_file_p *self = (struct mspack_file_p *) file;
|
||||
if (self && buffer && bytes >= 0) {
|
||||
size_t count = fwrite(buffer, 1, (size_t) bytes, self->fh);
|
||||
if (!ferror(self->fh)) return (int) count;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int msp_seek(struct mspack_file *file, off_t offset, int mode) {
|
||||
struct mspack_file_p *self = (struct mspack_file_p *) file;
|
||||
if (self) {
|
||||
switch (mode) {
|
||||
case MSPACK_SYS_SEEK_START: mode = SEEK_SET; break;
|
||||
case MSPACK_SYS_SEEK_CUR: mode = SEEK_CUR; break;
|
||||
case MSPACK_SYS_SEEK_END: mode = SEEK_END; break;
|
||||
default: return -1;
|
||||
}
|
||||
#if HAVE_FSEEKO
|
||||
return fseeko(self->fh, offset, mode);
|
||||
#else
|
||||
return fseek(self->fh, offset, mode);
|
||||
#endif
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
static off_t msp_tell(struct mspack_file *file) {
|
||||
struct mspack_file_p *self = (struct mspack_file_p *) file;
|
||||
#if HAVE_FSEEKO
|
||||
return (self) ? (off_t) ftello(self->fh) : 0;
|
||||
#else
|
||||
return (self) ? (off_t) ftell(self->fh) : 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void msp_msg(struct mspack_file *file, const char *format, ...) {
|
||||
va_list ap;
|
||||
if (file) fprintf(stderr, "%s: ", ((struct mspack_file_p *) file)->name);
|
||||
va_start(ap, format);
|
||||
vfprintf(stderr, format, ap);
|
||||
va_end(ap);
|
||||
fputc((int) '\n', stderr);
|
||||
fflush(stderr);
|
||||
}
|
||||
|
||||
static void *msp_alloc(struct mspack_system *self, size_t bytes) {
|
||||
#if DEBUG
|
||||
/* make uninitialised data obvious */
|
||||
char *buf = malloc(bytes + 8);
|
||||
if (buf) memset(buf, 0xDC, bytes);
|
||||
*((size_t *)buf) = bytes;
|
||||
return &buf[8];
|
||||
#else
|
||||
return malloc(bytes);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void msp_free(void *buffer) {
|
||||
#if DEBUG
|
||||
char *buf = buffer;
|
||||
size_t bytes;
|
||||
if (buf) {
|
||||
buf -= 8;
|
||||
bytes = *((size_t *)buf);
|
||||
/* make freed data obvious */
|
||||
memset(buf, 0xED, bytes);
|
||||
free(buf);
|
||||
}
|
||||
#else
|
||||
free(buffer);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void msp_copy(void *src, void *dest, size_t bytes) {
|
||||
memcpy(dest, src, bytes);
|
||||
}
|
||||
|
||||
static struct mspack_system msp_system = {
|
||||
&msp_open, &msp_close, &msp_read, &msp_write, &msp_seek,
|
||||
&msp_tell, &msp_msg, &msp_alloc, &msp_free, &msp_copy, NULL
|
||||
};
|
||||
|
||||
struct mspack_system *mspack_default_system = &msp_system;
|
||||
|
||||
#endif
|
|
@ -0,0 +1,113 @@
|
|||
/* This file is part of libmspack.
|
||||
* (C) 2003-2018 Stuart Caie.
|
||||
*
|
||||
* libmspack is free software; you can redistribute it and/or modify it under
|
||||
* the terms of the GNU Lesser General Public License (LGPL) version 2.1
|
||||
*
|
||||
* For further details, see the file COPYING.LIB distributed with libmspack
|
||||
*/
|
||||
|
||||
#ifndef MSPACK_SYSTEM_H
|
||||
#define MSPACK_SYSTEM_H 1
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* ensure config.h is read before mspack.h */
|
||||
#ifdef HAVE_CONFIG_H
|
||||
# include <config.h>
|
||||
#endif
|
||||
|
||||
#include <mspack.h>
|
||||
|
||||
/* assume <string.h> exists */
|
||||
#include <string.h>
|
||||
|
||||
/* fix for problem with GCC 4 and glibc (thanks to Ville Skytta)
|
||||
* http://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=150429
|
||||
*/
|
||||
#ifdef read
|
||||
# undef read
|
||||
#endif
|
||||
|
||||
/* Old GCCs don't have __func__, but __FUNCTION__:
|
||||
* http://gcc.gnu.org/onlinedocs/gcc/Function-Names.html
|
||||
*/
|
||||
#if __STDC_VERSION__ < 199901L
|
||||
# if __GNUC__ >= 2
|
||||
# define __func__ __FUNCTION__
|
||||
# else
|
||||
# define __func__ "<unknown>"
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if DEBUG
|
||||
# include <stdio.h>
|
||||
# define D(x) do { printf("%s:%d (%s) ",__FILE__, __LINE__, __func__); \
|
||||
printf x ; fputc('\n', stdout); fflush(stdout);} while (0);
|
||||
#else
|
||||
# define D(x)
|
||||
#endif
|
||||
|
||||
/* CAB supports searching through files over 4GB in size, and the CHM file
|
||||
* format actively uses 64-bit offsets. These can only be fully supported
|
||||
* if the system the code runs on supports large files. If not, the library
|
||||
* will work as normal using only 32-bit arithmetic, but if an offset
|
||||
* greater than 2GB is detected, an error message indicating the library
|
||||
* can't support the file should be printed.
|
||||
*/
|
||||
#if HAVE_INTTYPES_H
|
||||
# include <inttypes.h>
|
||||
#else
|
||||
# define PRId64 "lld"
|
||||
# define PRIu64 "llu"
|
||||
# define PRId32 "ld"
|
||||
# define PRIu32 "lu"
|
||||
#endif
|
||||
|
||||
#include <limits.h>
|
||||
#if ((defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS >= 64) || \
|
||||
(defined(FILESIZEBITS) && FILESIZEBITS >= 64) || \
|
||||
defined(_LARGEFILE_SOURCE) || defined(_LARGEFILE64_SOURCE) || \
|
||||
SIZEOF_OFF_T >= 8)
|
||||
# define LARGEFILE_SUPPORT 1
|
||||
# define LD PRId64
|
||||
# define LU PRIu64
|
||||
#else
|
||||
extern const char *largefile_msg;
|
||||
# define LD PRId32
|
||||
# define LU PRIu32
|
||||
#endif
|
||||
|
||||
/* endian-neutral reading of little-endian data */
|
||||
#define __egi32(a,n) ( ((((unsigned char *) a)[n+3]) << 24) | \
|
||||
((((unsigned char *) a)[n+2]) << 16) | \
|
||||
((((unsigned char *) a)[n+1]) << 8) | \
|
||||
((((unsigned char *) a)[n+0])))
|
||||
#define EndGetI64(a) ((((unsigned long long int) __egi32(a,4)) << 32) | \
|
||||
((unsigned int) __egi32(a,0)))
|
||||
#define EndGetI32(a) __egi32(a,0)
|
||||
#define EndGetI16(a) ((((a)[1])<<8)|((a)[0]))
|
||||
|
||||
/* endian-neutral reading of big-endian data */
|
||||
#define EndGetM32(a) (((((unsigned char *) a)[0]) << 24) | \
|
||||
((((unsigned char *) a)[1]) << 16) | \
|
||||
((((unsigned char *) a)[2]) << 8) | \
|
||||
((((unsigned char *) a)[3])))
|
||||
#define EndGetM16(a) ((((a)[0])<<8)|((a)[1]))
|
||||
|
||||
extern struct mspack_system *mspack_default_system;
|
||||
|
||||
/* returns the length of a file opened for reading */
|
||||
extern int mspack_sys_filelen(struct mspack_system *system,
|
||||
struct mspack_file *file, off_t *length);
|
||||
|
||||
/* validates a system structure */
|
||||
extern int mspack_valid_system(struct mspack_system *sys);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue