Moving around some math macros.
This commit is contained in:
parent
54ce9db743
commit
5b83cf5fd1
|
@ -78,12 +78,12 @@ int IVMAssembler::Assemble(FunctionInfo* symbol_info, HIRBuilder* builder,
|
|||
auto slot = *it;
|
||||
size_t type_size = GetTypeSize(slot->type);
|
||||
// Align to natural size.
|
||||
stack_offset = XEALIGN(stack_offset, type_size);
|
||||
stack_offset = poly::align(stack_offset, type_size);
|
||||
slot->set_constant((uint32_t)stack_offset);
|
||||
stack_offset += type_size;
|
||||
}
|
||||
// Ensure 16b alignment.
|
||||
stack_offset = XEALIGN(stack_offset, 16);
|
||||
stack_offset = poly::align(stack_offset, 16ull);
|
||||
ctx.stack_size = stack_offset;
|
||||
|
||||
auto block = builder->first_block();
|
||||
|
|
|
@ -63,11 +63,11 @@ void* X64CodeCache::PlaceCode(void* machine_code, size_t code_size,
|
|||
size_t alloc_size = code_size;
|
||||
|
||||
// Add unwind info into the allocation size. Keep things 16b aligned.
|
||||
alloc_size += XEROUNDUP(X64CodeChunk::UNWIND_INFO_SIZE, 16);
|
||||
alloc_size += poly::round_up(X64CodeChunk::UNWIND_INFO_SIZE, 16);
|
||||
|
||||
// Always move the code to land on 16b alignment. We do this by rounding up
|
||||
// to 16b so that all offsets are aligned.
|
||||
alloc_size = XEROUNDUP(alloc_size, 16);
|
||||
alloc_size = poly::round_up(alloc_size, 16);
|
||||
|
||||
lock_.lock();
|
||||
|
||||
|
@ -106,7 +106,8 @@ X64CodeChunk::X64CodeChunk(size_t chunk_size)
|
|||
buffer = (uint8_t*)VirtualAlloc(NULL, capacity, MEM_RESERVE | MEM_COMMIT,
|
||||
PAGE_EXECUTE_READWRITE);
|
||||
|
||||
fn_table_capacity = (uint32_t)XEROUNDUP(capacity / ESTIMATED_FN_SIZE, 16);
|
||||
fn_table_capacity =
|
||||
static_cast<uint32_t>(poly::round_up(capacity / ESTIMATED_FN_SIZE, 16));
|
||||
size_t table_size = fn_table_capacity * sizeof(RUNTIME_FUNCTION);
|
||||
fn_table = (RUNTIME_FUNCTION*)xe_malloc(table_size);
|
||||
fn_table_count = 0;
|
||||
|
|
|
@ -121,13 +121,13 @@ int X64Emitter::Emit(HIRBuilder* builder, size_t& out_stack_size) {
|
|||
auto slot = *it;
|
||||
size_t type_size = GetTypeSize(slot->type);
|
||||
// Align to natural size.
|
||||
stack_offset = XEALIGN(stack_offset, type_size);
|
||||
stack_offset = poly::align(stack_offset, type_size);
|
||||
slot->set_constant((uint32_t)stack_offset);
|
||||
stack_offset += type_size;
|
||||
}
|
||||
// Ensure 16b alignment.
|
||||
stack_offset -= StackLayout::GUEST_STACK_SIZE;
|
||||
stack_offset = XEALIGN(stack_offset, 16);
|
||||
stack_offset = poly::align(stack_offset, 16ull);
|
||||
|
||||
// Function prolog.
|
||||
// Must be 16b aligned.
|
||||
|
|
|
@ -287,13 +287,13 @@ void Disasm_bx(InstrData& i, StringBuffer* str) {
|
|||
void Disasm_bcx(InstrData& i, StringBuffer* str) {
|
||||
const char* s0 = i.B.LK ? "lr, " : "";
|
||||
const char* s1;
|
||||
if (!XESELECTBITS(i.B.BO, 2, 2)) {
|
||||
if (!select_bits(i.B.BO, 2, 2)) {
|
||||
s1 = "ctr, ";
|
||||
} else {
|
||||
s1 = "";
|
||||
}
|
||||
char s2[8] = {0};
|
||||
if (!XESELECTBITS(i.B.BO, 4, 4)) {
|
||||
if (!select_bits(i.B.BO, 4, 4)) {
|
||||
xesnprintfa(s2, XECOUNT(s2), "cr%d, ", i.B.BI >> 2);
|
||||
}
|
||||
uint32_t nia;
|
||||
|
@ -309,7 +309,7 @@ void Disasm_bcctrx(InstrData& i, StringBuffer* str) {
|
|||
// TODO(benvanik): mnemonics
|
||||
const char* s0 = i.XL.LK ? "lr, " : "";
|
||||
char s2[8] = {0};
|
||||
if (!XESELECTBITS(i.XL.BO, 4, 4)) {
|
||||
if (!select_bits(i.XL.BO, 4, 4)) {
|
||||
xesnprintfa(s2, XECOUNT(s2), "cr%d, ", i.XL.BI >> 2);
|
||||
}
|
||||
str->Append("%-8s %s%sctr", i.type->name, s0, s2);
|
||||
|
@ -321,13 +321,13 @@ void Disasm_bclrx(InstrData& i, StringBuffer* str) {
|
|||
name = "blr";
|
||||
}
|
||||
const char* s1;
|
||||
if (!XESELECTBITS(i.XL.BO, 2, 2)) {
|
||||
if (!select_bits(i.XL.BO, 2, 2)) {
|
||||
s1 = "ctr, ";
|
||||
} else {
|
||||
s1 = "";
|
||||
}
|
||||
char s2[8] = {0};
|
||||
if (!XESELECTBITS(i.XL.BO, 4, 4)) {
|
||||
if (!select_bits(i.XL.BO, 4, 4)) {
|
||||
xesnprintfa(s2, XECOUNT(s2), "cr%d, ", i.XL.BI >> 2);
|
||||
}
|
||||
str->Append("%-8s %s%s", name, s1, s2);
|
||||
|
|
|
@ -176,7 +176,7 @@ XEEMITTER(bcx, 0x40000000, B)(PPCHIRBuilder& f, InstrData& i) {
|
|||
// 43210 (real)
|
||||
|
||||
Value* ctr_ok = NULL;
|
||||
if (XESELECTBITS(i.B.BO, 2, 2)) {
|
||||
if (select_bits(i.B.BO, 2, 2)) {
|
||||
// Ignore ctr.
|
||||
} else {
|
||||
// Decrement counter.
|
||||
|
@ -187,7 +187,7 @@ XEEMITTER(bcx, 0x40000000, B)(PPCHIRBuilder& f, InstrData& i) {
|
|||
ctr = f.Truncate(ctr, INT32_TYPE);
|
||||
// TODO(benvanik): could do something similar to cond and avoid the
|
||||
// is_true/branch_true pairing.
|
||||
if (XESELECTBITS(i.B.BO, 1, 1)) {
|
||||
if (select_bits(i.B.BO, 1, 1)) {
|
||||
ctr_ok = f.IsFalse(ctr);
|
||||
} else {
|
||||
ctr_ok = f.IsTrue(ctr);
|
||||
|
@ -196,12 +196,12 @@ XEEMITTER(bcx, 0x40000000, B)(PPCHIRBuilder& f, InstrData& i) {
|
|||
|
||||
Value* cond_ok = NULL;
|
||||
bool not_cond_ok = false;
|
||||
if (XESELECTBITS(i.B.BO, 4, 4)) {
|
||||
if (select_bits(i.B.BO, 4, 4)) {
|
||||
// Ignore cond.
|
||||
} else {
|
||||
Value* cr = f.LoadCRField(i.B.BI >> 2, i.B.BI & 3);
|
||||
cond_ok = cr;
|
||||
if (XESELECTBITS(i.B.BO, 3, 3)) {
|
||||
if (select_bits(i.B.BO, 3, 3)) {
|
||||
// Expect true.
|
||||
not_cond_ok = false;
|
||||
} else {
|
||||
|
@ -248,12 +248,12 @@ XEEMITTER(bcctrx, 0x4C000420, XL)(PPCHIRBuilder& f, InstrData& i) {
|
|||
|
||||
Value* cond_ok = NULL;
|
||||
bool not_cond_ok = false;
|
||||
if (XESELECTBITS(i.XL.BO, 4, 4)) {
|
||||
if (select_bits(i.XL.BO, 4, 4)) {
|
||||
// Ignore cond.
|
||||
} else {
|
||||
Value* cr = f.LoadCRField(i.XL.BI >> 2, i.XL.BI & 3);
|
||||
cond_ok = cr;
|
||||
if (XESELECTBITS(i.XL.BO, 3, 3)) {
|
||||
if (select_bits(i.XL.BO, 3, 3)) {
|
||||
// Expect true.
|
||||
not_cond_ok = false;
|
||||
} else {
|
||||
|
@ -282,7 +282,7 @@ XEEMITTER(bclrx, 0x4C000020, XL)(PPCHIRBuilder& f, InstrData& i) {
|
|||
// 43210 (real)
|
||||
|
||||
Value* ctr_ok = NULL;
|
||||
if (XESELECTBITS(i.XL.BO, 2, 2)) {
|
||||
if (select_bits(i.XL.BO, 2, 2)) {
|
||||
// Ignore ctr.
|
||||
} else {
|
||||
// Decrement counter.
|
||||
|
@ -293,7 +293,7 @@ XEEMITTER(bclrx, 0x4C000020, XL)(PPCHIRBuilder& f, InstrData& i) {
|
|||
ctr = f.Truncate(ctr, INT32_TYPE);
|
||||
// TODO(benvanik): could do something similar to cond and avoid the
|
||||
// is_true/branch_true pairing.
|
||||
if (XESELECTBITS(i.XL.BO, 1, 1)) {
|
||||
if (select_bits(i.XL.BO, 1, 1)) {
|
||||
ctr_ok = f.IsFalse(ctr);
|
||||
} else {
|
||||
ctr_ok = f.IsTrue(ctr);
|
||||
|
@ -302,12 +302,12 @@ XEEMITTER(bclrx, 0x4C000020, XL)(PPCHIRBuilder& f, InstrData& i) {
|
|||
|
||||
Value* cond_ok = NULL;
|
||||
bool not_cond_ok = false;
|
||||
if (XESELECTBITS(i.XL.BO, 4, 4)) {
|
||||
if (select_bits(i.XL.BO, 4, 4)) {
|
||||
// Ignore cond.
|
||||
} else {
|
||||
Value* cr = f.LoadCRField(i.XL.BI >> 2, i.XL.BI & 3);
|
||||
cond_ok = cr;
|
||||
if (XESELECTBITS(i.XL.BO, 3, 3)) {
|
||||
if (select_bits(i.XL.BO, 3, 3)) {
|
||||
// Expect true.
|
||||
not_cond_ok = false;
|
||||
} else {
|
||||
|
|
|
@ -322,48 +322,48 @@ InstrType* GetInstrType(uint32_t code) {
|
|||
switch (code >> 26) {
|
||||
case 4:
|
||||
// Opcode = 4, index = bits 10-0 (10)
|
||||
slot = alloy::frontend::ppc::tables::instr_table_4[XESELECTBITS(code, 0,
|
||||
10)];
|
||||
slot =
|
||||
alloy::frontend::ppc::tables::instr_table_4[select_bits(code, 0, 10)];
|
||||
break;
|
||||
case 19:
|
||||
// Opcode = 19, index = bits 10-1 (10)
|
||||
slot = alloy::frontend::ppc::tables::instr_table_19[XESELECTBITS(code, 1,
|
||||
slot = alloy::frontend::ppc::tables::instr_table_19[select_bits(code, 1,
|
||||
10)];
|
||||
break;
|
||||
case 30:
|
||||
// Opcode = 30, index = bits 4-1 (4)
|
||||
// Special cased to an uber instruction.
|
||||
slot = alloy::frontend::ppc::tables::instr_table_30[XESELECTBITS(code, 0,
|
||||
0)];
|
||||
slot =
|
||||
alloy::frontend::ppc::tables::instr_table_30[select_bits(code, 0, 0)];
|
||||
break;
|
||||
case 31:
|
||||
// Opcode = 31, index = bits 10-1 (10)
|
||||
slot = alloy::frontend::ppc::tables::instr_table_31[XESELECTBITS(code, 1,
|
||||
slot = alloy::frontend::ppc::tables::instr_table_31[select_bits(code, 1,
|
||||
10)];
|
||||
break;
|
||||
case 58:
|
||||
// Opcode = 58, index = bits 1-0 (2)
|
||||
slot = alloy::frontend::ppc::tables::instr_table_58[XESELECTBITS(code, 0,
|
||||
1)];
|
||||
slot =
|
||||
alloy::frontend::ppc::tables::instr_table_58[select_bits(code, 0, 1)];
|
||||
break;
|
||||
case 59:
|
||||
// Opcode = 59, index = bits 5-1 (5)
|
||||
slot = alloy::frontend::ppc::tables::instr_table_59[XESELECTBITS(code, 1,
|
||||
5)];
|
||||
slot =
|
||||
alloy::frontend::ppc::tables::instr_table_59[select_bits(code, 1, 5)];
|
||||
break;
|
||||
case 62:
|
||||
// Opcode = 62, index = bits 1-0 (2)
|
||||
slot = alloy::frontend::ppc::tables::instr_table_62[XESELECTBITS(code, 0,
|
||||
1)];
|
||||
slot =
|
||||
alloy::frontend::ppc::tables::instr_table_62[select_bits(code, 0, 1)];
|
||||
break;
|
||||
case 63:
|
||||
// Opcode = 63, index = bits 10-1 (10)
|
||||
slot = alloy::frontend::ppc::tables::instr_table_63[XESELECTBITS(code, 1,
|
||||
slot = alloy::frontend::ppc::tables::instr_table_63[select_bits(code, 1,
|
||||
10)];
|
||||
break;
|
||||
default:
|
||||
slot =
|
||||
alloy::frontend::ppc::tables::instr_table[XESELECTBITS(code, 26, 31)];
|
||||
alloy::frontend::ppc::tables::instr_table[select_bits(code, 26, 31)];
|
||||
break;
|
||||
}
|
||||
if (slot && slot->opcode) {
|
||||
|
|
|
@ -23,6 +23,14 @@ namespace alloy {
|
|||
namespace frontend {
|
||||
namespace ppc {
|
||||
|
||||
inline uint32_t make_bitmask(uint32_t a, uint32_t b) {
|
||||
return (static_cast<uint32_t>(-1) >> (31 - b)) & ~((1u << a) - 1);
|
||||
}
|
||||
|
||||
inline uint32_t select_bits(uint32_t value, uint32_t a, uint32_t b) {
|
||||
return (value & make_bitmask(a, b)) >> a;
|
||||
}
|
||||
|
||||
// TODO(benvanik): rename these
|
||||
typedef enum {
|
||||
kXEPPCInstrFormatI = 0,
|
||||
|
|
|
@ -96,7 +96,7 @@ static InstrType** instr_table_prep(InstrType* unprep, int unprep_count, int a,
|
|||
int prep_count = (int)pow(2.0, b - a + 1);
|
||||
InstrType** prep = (InstrType**)xe_calloc(prep_count * sizeof(void*));
|
||||
for (int n = 0; n < unprep_count; n++) {
|
||||
int ordinal = XESELECTBITS(unprep[n].opcode, a, b);
|
||||
int ordinal = select_bits(unprep[n].opcode, a, b);
|
||||
prep[ordinal] = &unprep[n];
|
||||
}
|
||||
return prep;
|
||||
|
@ -108,7 +108,7 @@ static InstrType** instr_table_prep_63(InstrType* unprep, int unprep_count,
|
|||
int prep_count = (int)pow(2.0, b - a + 1);
|
||||
InstrType** prep = (InstrType**)xe_calloc(prep_count * sizeof(void*));
|
||||
for (int n = 0; n < unprep_count; n++) {
|
||||
int ordinal = XESELECTBITS(unprep[n].opcode, a, b);
|
||||
int ordinal = select_bits(unprep[n].opcode, a, b);
|
||||
if (unprep[n].format == kXEPPCInstrFormatA) {
|
||||
// Must splat this into all of the slots that it could be in.
|
||||
for (int m = 0; m < 32; m++) {
|
||||
|
|
|
@ -50,8 +50,8 @@ int PPCScanner::FindExtents(FunctionInfo* symbol_info) {
|
|||
|
||||
XELOGSDB("Analyzing function %.8X...", symbol_info->address());
|
||||
|
||||
uint32_t start_address = symbol_info->address();
|
||||
uint32_t end_address = symbol_info->end_address();
|
||||
uint32_t start_address = static_cast<uint32_t>(symbol_info->address());
|
||||
uint32_t end_address = static_cast<uint32_t>(symbol_info->end_address());
|
||||
uint32_t address = start_address;
|
||||
uint32_t furthest_target = start_address;
|
||||
size_t blocks_found = 0;
|
||||
|
|
|
@ -20,6 +20,32 @@
|
|||
|
||||
namespace poly {
|
||||
|
||||
// Rounds up the given value to the given alignment.
|
||||
template <typename T>
|
||||
T align(T value, T alignment) {
|
||||
return (value + alignment - 1) & ~(alignment - 1);
|
||||
}
|
||||
|
||||
// Rounds the given number up to the next highest multiple.
|
||||
template <typename T, typename V>
|
||||
T round_up(T value, V multiple) {
|
||||
return value + multiple - 1 - (value - 1) % multiple;
|
||||
}
|
||||
|
||||
// Gets the next power of two value that is greater than or equal to the given
|
||||
// value.
|
||||
template <typename T>
|
||||
T next_pow2(T value) {
|
||||
value--;
|
||||
value |= value >> 1;
|
||||
value |= value >> 2;
|
||||
value |= value >> 4;
|
||||
value |= value >> 8;
|
||||
value |= value >> 16;
|
||||
value++;
|
||||
return value;
|
||||
}
|
||||
|
||||
// lzcnt instruction, typed for integers of all sizes.
|
||||
// The number of leading zero bits in the value parameter. If value is zero, the
|
||||
// return value is the size of the input operand (8, 16, 32, or 64). If the most
|
||||
|
|
|
@ -17,7 +17,6 @@ namespace xe {
|
|||
using Memory = alloy::Memory;
|
||||
} // namespace xe
|
||||
|
||||
#include <xenia/core/hash.h>
|
||||
#include <xenia/core/mmap.h>
|
||||
#include <xenia/core/pal.h>
|
||||
#include <xenia/core/ref.h>
|
||||
|
|
|
@ -38,8 +38,10 @@
|
|||
|
||||
#include <xenia/core/hash.h>
|
||||
|
||||
#include <string.h>
|
||||
#include <algorithm>
|
||||
#include <string.h> // for memcpy and memset
|
||||
|
||||
namespace xe {
|
||||
|
||||
namespace {
|
||||
|
||||
|
@ -61,20 +63,6 @@ inline uint64_t Hash128to64(const uint128_t& x) {
|
|||
return b;
|
||||
}
|
||||
|
||||
using namespace std;
|
||||
|
||||
#if 0
|
||||
static uint64_t UNALIGNED_LOAD64(const char *p) {
|
||||
uint64_t result;
|
||||
memcpy(&result, p, sizeof(result));
|
||||
return result;
|
||||
}
|
||||
static uint32_t UNALIGNED_LOAD32(const char *p) {
|
||||
uint32_t result;
|
||||
memcpy(&result, p, sizeof(result));
|
||||
return result;
|
||||
}
|
||||
#else
|
||||
XEFORCEINLINE uint64_t UNALIGNED_LOAD64(const char *p) {
|
||||
const uint64_t *p64 = (const uint64_t *)p;
|
||||
return *p64;
|
||||
|
@ -83,15 +71,6 @@ XEFORCEINLINE uint32_t UNALIGNED_LOAD32(const char *p) {
|
|||
const uint32_t *p32 = (const uint32_t *)p;
|
||||
return *p32;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if XE_CPU_BIGENDIAN
|
||||
#define uint32_t_in_expected_order(x) (poly::byte_swap(x))
|
||||
#define uint64_in_expected_order(x) (poly::byte_swap(x))
|
||||
#else
|
||||
#define uint32_t_in_expected_order(x) (x)
|
||||
#define uint64_in_expected_order(x) (x)
|
||||
#endif // XE_CPU_BIGENDIAN
|
||||
|
||||
#if !defined(LIKELY)
|
||||
#if HAVE_BUILTIN_EXPECT
|
||||
|
@ -101,13 +80,9 @@ XEFORCEINLINE uint32_t UNALIGNED_LOAD32(const char *p) {
|
|||
#endif
|
||||
#endif
|
||||
|
||||
static uint64_t Fetch64(const char *p) {
|
||||
return uint64_in_expected_order(UNALIGNED_LOAD64(p));
|
||||
}
|
||||
static uint64_t Fetch64(const char *p) { return UNALIGNED_LOAD64(p); }
|
||||
|
||||
static uint32_t Fetch32(const char *p) {
|
||||
return uint32_t_in_expected_order(UNALIGNED_LOAD32(p));
|
||||
}
|
||||
static uint32_t Fetch32(const char *p) { return UNALIGNED_LOAD32(p); }
|
||||
|
||||
// Some primes between 2^63 and 2^64 for various uses.
|
||||
static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
|
||||
|
@ -119,8 +94,7 @@ static const uint32_t c1 = 0xcc9e2d51;
|
|||
static const uint32_t c2 = 0x1b873593;
|
||||
|
||||
// A 32-bit to 32-bit integer hash copied from Murmur3.
|
||||
static uint32_t fmix(uint32_t h)
|
||||
{
|
||||
static uint32_t fmix(uint32_t h) {
|
||||
h ^= h >> 16;
|
||||
h *= 0x85ebca6b;
|
||||
h ^= h >> 13;
|
||||
|
@ -135,7 +109,11 @@ static uint32_t Rotate32(uint32_t val, int shift) {
|
|||
}
|
||||
|
||||
#undef PERMUTE3
|
||||
#define PERMUTE3(a, b, c) do { std::swap(a, b); std::swap(a, c); } while (0)
|
||||
#define PERMUTE3(a, b, c) \
|
||||
do { \
|
||||
std::swap(a, b); \
|
||||
std::swap(a, c); \
|
||||
} while (0)
|
||||
|
||||
static uint32_t Mur(uint32_t a, uint32_t h) {
|
||||
// Helper from Murmur3 for combining two 32-bit values.
|
||||
|
@ -180,9 +158,9 @@ static uint32_t Hash32Len5to12(const char *s, size_t len) {
|
|||
|
||||
uint32_t CityHash32(const char *s, size_t len) {
|
||||
if (len <= 24) {
|
||||
return len <= 12 ?
|
||||
(len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len)) :
|
||||
Hash32Len13to24(s, len);
|
||||
return len <= 12
|
||||
? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len))
|
||||
: Hash32Len13to24(s, len);
|
||||
}
|
||||
|
||||
// len > 24
|
||||
|
@ -254,9 +232,7 @@ static uint64_t Rotate(uint64_t val, int shift) {
|
|||
return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
|
||||
}
|
||||
|
||||
static uint64_t ShiftMix(uint64_t val) {
|
||||
return val ^ (val >> 47);
|
||||
}
|
||||
static uint64_t ShiftMix(uint64_t val) { return val ^ (val >> 47); }
|
||||
|
||||
static uint64_t HashLen16(uint64_t u, uint64_t v) {
|
||||
return Hash128to64(uint128_t(u, v));
|
||||
|
@ -311,7 +287,7 @@ static uint64_t HashLen17to32(const char *s, size_t len) {
|
|||
|
||||
// Return a 16-byte hash for 48 bytes. Quick and dirty.
|
||||
// Callers do best to use "random-looking" values for a and b.
|
||||
static pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(
|
||||
static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(
|
||||
uint64_t w, uint64_t x, uint64_t y, uint64_t z, uint64_t a, uint64_t b) {
|
||||
a += w;
|
||||
b = Rotate(b + a + z, 21);
|
||||
|
@ -319,18 +295,15 @@ static pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(
|
|||
a += x;
|
||||
a += y;
|
||||
b += Rotate(a, 44);
|
||||
return make_pair(a + z, b + c);
|
||||
return std::make_pair(a + z, b + c);
|
||||
}
|
||||
|
||||
// Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty.
|
||||
static pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(
|
||||
const char* s, uint64_t a, uint64_t b) {
|
||||
return WeakHashLen32WithSeeds(Fetch64(s),
|
||||
Fetch64(s + 8),
|
||||
Fetch64(s + 16),
|
||||
Fetch64(s + 24),
|
||||
a,
|
||||
b);
|
||||
static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(const char *s,
|
||||
uint64_t a,
|
||||
uint64_t b) {
|
||||
return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16),
|
||||
Fetch64(s + 24), a, b);
|
||||
}
|
||||
|
||||
// Return an 8-byte hash for 33 to 64 bytes.
|
||||
|
@ -371,8 +344,10 @@ uint64_t CityHash64(const char *s, size_t len) {
|
|||
uint64_t x = Fetch64(s + len - 40);
|
||||
uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56);
|
||||
uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24));
|
||||
pair<uint64_t, uint64_t> v = WeakHashLen32WithSeeds(s + len - 64, len, z);
|
||||
pair<uint64_t, uint64_t> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
|
||||
std::pair<uint64_t, uint64_t> v =
|
||||
WeakHashLen32WithSeeds(s + len - 64, len, z);
|
||||
std::pair<uint64_t, uint64_t> w =
|
||||
WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
|
||||
x = x * k1 + Fetch64(s);
|
||||
|
||||
// Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
|
||||
|
@ -395,7 +370,8 @@ uint64_t CityHash64(const char *s, size_t len) {
|
|||
|
||||
} // anonymous namespace
|
||||
|
||||
|
||||
uint64_t xe_hash64(const void* data, size_t length, uint64_t seed) {
|
||||
uint64_t hash64(const void *data, size_t length, uint64_t seed) {
|
||||
return HashLen16(CityHash64((const char *)data, length) - k2, seed);
|
||||
}
|
||||
|
||||
} // namespace xe
|
|
@ -12,8 +12,19 @@
|
|||
|
||||
#include <xenia/common.h>
|
||||
|
||||
namespace xe {
|
||||
|
||||
uint64_t xe_hash64(const void* data, size_t length, uint64_t seed = 0);
|
||||
inline size_t hash_combine(size_t seed) { return seed; }
|
||||
|
||||
template <typename T, typename... Ts>
|
||||
size_t hash_combine(size_t seed, const T& v, const Ts&... vs) {
|
||||
std::hash<T> hasher;
|
||||
seed ^= hasher(v) + 0x9E3779B9 + (seed << 6) + (seed >> 2);
|
||||
return hash_combine(seed, vs...);
|
||||
}
|
||||
|
||||
uint64_t hash64(const void* data, size_t length, uint64_t seed = 0);
|
||||
|
||||
} // namespace xe
|
||||
|
||||
#endif // XENIA_CORE_HASH_H_
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
#include <mutex>
|
||||
|
||||
#include <gflags/gflags.h>
|
||||
#include <poly/math.h>
|
||||
|
||||
using namespace alloy;
|
||||
using namespace xe::cpu;
|
||||
|
@ -510,7 +511,7 @@ uint64_t XenonMemoryHeap::Alloc(
|
|||
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
|
||||
if (heap_guard_size) {
|
||||
alignment = std::max(alignment, static_cast<uint32_t>(heap_guard_size));
|
||||
alloc_size = (uint32_t)XEROUNDUP(size, heap_guard_size);
|
||||
alloc_size = static_cast<uint32_t>(poly::round_up(size, heap_guard_size));
|
||||
}
|
||||
uint8_t* p = (uint8_t*)mspace_memalign(space_, alignment,
|
||||
alloc_size + heap_guard_size * 2);
|
||||
|
|
|
@ -9,6 +9,7 @@
|
|||
|
||||
#include <xenia/gpu/d3d11/d3d11_geometry_shader.h>
|
||||
|
||||
#include <xenia/core/hash.h>
|
||||
#include <xenia/gpu/gpu-private.h>
|
||||
#include <xenia/gpu/d3d11/d3d11_shader_resource.h>
|
||||
#include <xenia/gpu/d3d11/d3d11_shader_translator.h>
|
||||
|
@ -95,7 +96,7 @@ ID3D10Blob* D3D11GeometryShader::Compile(const char* shader_source) {
|
|||
if (FLAGS_dump_shaders.size()) {
|
||||
base_path = FLAGS_dump_shaders.c_str();
|
||||
}
|
||||
uint64_t hash = xe_hash64(shader_source, strlen(shader_source)); // ?
|
||||
uint64_t hash = hash64(shader_source, strlen(shader_source)); // ?
|
||||
char file_name[poly::max_path];
|
||||
xesnprintfa(file_name, XECOUNT(file_name),
|
||||
"%s/gen_%.16llX.gs",
|
||||
|
|
|
@ -9,6 +9,7 @@
|
|||
|
||||
#include <xenia/gpu/d3d11/d3d11_graphics_driver.h>
|
||||
|
||||
#include <xenia/core/hash.h>
|
||||
#include <xenia/gpu/gpu-private.h>
|
||||
#include <xenia/gpu/buffer_resource.h>
|
||||
#include <xenia/gpu/shader_resource.h>
|
||||
|
|
|
@ -9,6 +9,7 @@
|
|||
|
||||
#include <xenia/gpu/d3d11/d3d11_shader_resource.h>
|
||||
|
||||
#include <xenia/core/hash.h>
|
||||
#include <xenia/gpu/gpu-private.h>
|
||||
#include <xenia/gpu/d3d11/d3d11_geometry_shader.h>
|
||||
#include <xenia/gpu/d3d11/d3d11_resource_cache.h>
|
||||
|
@ -46,7 +47,7 @@ ID3D10Blob* D3D11ShaderCompile(XE_GPU_SHADER_TYPE type,
|
|||
if (FLAGS_dump_shaders.size()) {
|
||||
base_path = FLAGS_dump_shaders.c_str();
|
||||
}
|
||||
size_t hash = xe_hash64(disasm_source, strlen(disasm_source)); // ?
|
||||
size_t hash = hash64(disasm_source, strlen(disasm_source)); // ?
|
||||
char file_name[poly::max_path];
|
||||
xesnprintfa(file_name, XECOUNT(file_name),
|
||||
"%s/gen_%.16llX.%s",
|
||||
|
|
|
@ -11,6 +11,7 @@
|
|||
|
||||
#include <algorithm>
|
||||
|
||||
#include <xenia/core/hash.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace xe;
|
||||
|
@ -108,7 +109,7 @@ VertexBufferResource* ResourceCache::FetchVertexBuffer(
|
|||
|
||||
uint64_t ResourceCache::HashRange(const MemoryRange& memory_range) {
|
||||
// We could do something smarter here to potentially early exit.
|
||||
return xe_hash64(memory_range.host_base, memory_range.length);
|
||||
return hash64(memory_range.host_base, memory_range.length);
|
||||
}
|
||||
|
||||
void ResourceCache::SyncRange(uint32_t address, int length) {
|
||||
|
|
|
@ -10,6 +10,7 @@
|
|||
#ifndef XENIA_GPU_SAMPLER_STATE_RESOURCE_H_
|
||||
#define XENIA_GPU_SAMPLER_STATE_RESOURCE_H_
|
||||
|
||||
#include <xenia/core/hash.h>
|
||||
#include <xenia/gpu/resource.h>
|
||||
#include <xenia/gpu/xenos/ucode.h>
|
||||
#include <xenia/gpu/xenos/xenos.h>
|
||||
|
|
|
@ -9,6 +9,7 @@
|
|||
|
||||
#include <xenia/gpu/texture_resource.h>
|
||||
|
||||
#include <poly/math.h>
|
||||
#include <xenia/gpu/xenos/ucode.h>
|
||||
#include <xenia/gpu/xenos/xenos.h>
|
||||
|
||||
|
@ -253,16 +254,16 @@ void TextureResource::Info::CalculateTextureSizes2D(
|
|||
width_multiple = minimum_multiple;
|
||||
}
|
||||
}
|
||||
size_2d.input_width = XEROUNDUP(size_2d.logical_width, width_multiple);
|
||||
size_2d.input_height = XEROUNDUP(size_2d.logical_height, 32);
|
||||
size_2d.input_width = poly::round_up(size_2d.logical_width, width_multiple);
|
||||
size_2d.input_height = poly::round_up(size_2d.logical_height, 32);
|
||||
size_2d.output_width = size_2d.logical_width;
|
||||
size_2d.output_height = size_2d.logical_height;
|
||||
} else {
|
||||
// must be 128x128
|
||||
size_2d.input_width = XEROUNDUP(size_2d.logical_width, 128);
|
||||
size_2d.input_height = XEROUNDUP(size_2d.logical_height, 128);
|
||||
size_2d.output_width = XENEXTPOW2(size_2d.logical_width);
|
||||
size_2d.output_height = XENEXTPOW2(size_2d.logical_height);
|
||||
size_2d.input_width = poly::round_up(size_2d.logical_width, 128);
|
||||
size_2d.input_height = poly::round_up(size_2d.logical_height, 128);
|
||||
size_2d.output_width = poly::next_pow2(size_2d.logical_width);
|
||||
size_2d.output_height = poly::next_pow2(size_2d.logical_height);
|
||||
}
|
||||
|
||||
size_2d.logical_pitch = (size_2d.logical_width / block_size) * texel_pitch;
|
||||
|
|
|
@ -9,13 +9,14 @@
|
|||
|
||||
#include <xenia/common.h>
|
||||
#include <xenia/core.h>
|
||||
#include <xenia/xbox.h>
|
||||
#include <xenia/core/hash.h>
|
||||
#include <xenia/kernel/async_request.h>
|
||||
#include <xenia/kernel/kernel_state.h>
|
||||
#include <xenia/kernel/xboxkrnl_private.h>
|
||||
#include <xenia/kernel/objects/xevent.h>
|
||||
#include <xenia/kernel/objects/xfile.h>
|
||||
#include <xenia/kernel/util/shim_utils.h>
|
||||
#include <xenia/xbox.h>
|
||||
|
||||
|
||||
namespace xe {
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
******************************************************************************
|
||||
*/
|
||||
|
||||
#include <poly/math.h>
|
||||
#include <xenia/common.h>
|
||||
#include <xenia/core.h>
|
||||
#include <xenia/xbox.h>
|
||||
|
@ -251,8 +252,8 @@ SHIM_CALL MmAllocatePhysicalMemoryEx_shim(
|
|||
}
|
||||
|
||||
// Round up the region size and alignment to the next page.
|
||||
uint32_t adjusted_size = XEROUNDUP(region_size, page_size);
|
||||
uint32_t adjusted_alignment = XEROUNDUP(alignment, page_size);
|
||||
uint32_t adjusted_size = poly::round_up(region_size, page_size);
|
||||
uint32_t adjusted_alignment = poly::round_up(alignment, page_size);
|
||||
|
||||
// Callers can pick an address to allocate with min_addr_range/max_addr_range
|
||||
// and the memory must be allocated there. I haven't seen a game do this,
|
||||
|
@ -433,7 +434,7 @@ SHIM_CALL ExAllocatePoolTypeWithTag_shim(
|
|||
uint32_t alignment = 8;
|
||||
uint32_t adjusted_size = size;
|
||||
if (adjusted_size < 4 * 1024) {
|
||||
adjusted_size = XEROUNDUP(adjusted_size, 4 * 1024);
|
||||
adjusted_size = poly::round_up(adjusted_size, 4 * 1024);
|
||||
} else {
|
||||
alignment = 4 * 1024;
|
||||
}
|
||||
|
|
|
@ -91,29 +91,10 @@ typedef XECACHEALIGN volatile void xe_aligned_void_t;
|
|||
#define XECOUNT(array) (sizeof(array) / sizeof(array[0]))
|
||||
#endif // MSVC
|
||||
|
||||
XEFORCEINLINE size_t hash_combine(size_t seed) {
|
||||
return seed;
|
||||
}
|
||||
template <typename T, typename... Ts>
|
||||
size_t hash_combine(size_t seed, const T& v, const Ts&... vs) {
|
||||
std::hash<T> hasher;
|
||||
seed ^= hasher(v) + 0x9E3779B9 + (seed << 6) + (seed >> 2);
|
||||
return hash_combine(seed, vs...);
|
||||
}
|
||||
|
||||
#if XE_PLATFORM_WIN32
|
||||
#define XESAFERELEASE(p) if (p) { p->Release(); }
|
||||
#endif // WIN32
|
||||
|
||||
#define XEBITMASK(a, b) (((unsigned) -1 >> (31 - (b))) & ~((1U << (a)) - 1))
|
||||
#define XESELECTBITS(value, a, b) ((value & XEBITMASK(a, b)) >> a)
|
||||
|
||||
#define XEROUNDUP(v, multiple) ((v) + (multiple) - 1 - ((v) - 1) % (multiple))
|
||||
static inline uint32_t XENEXTPOW2(uint32_t v) {
|
||||
v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v;
|
||||
}
|
||||
#define XEALIGN(value, align) ((value + align - 1) & ~(align - 1))
|
||||
|
||||
#define XEFAIL() goto XECLEANUP
|
||||
#define XEEXPECT(expr) if (!(expr) ) { goto XECLEANUP; }
|
||||
#define XEEXPECTTRUE(expr) if (!(expr) ) { goto XECLEANUP; }
|
||||
|
|
Loading…
Reference in New Issue