Moving around some math macros.

This commit is contained in:
Ben Vanik 2014-08-16 17:18:20 -07:00
parent 54ce9db743
commit 5b83cf5fd1
23 changed files with 148 additions and 137 deletions

View File

@ -78,12 +78,12 @@ int IVMAssembler::Assemble(FunctionInfo* symbol_info, HIRBuilder* builder,
auto slot = *it; auto slot = *it;
size_t type_size = GetTypeSize(slot->type); size_t type_size = GetTypeSize(slot->type);
// Align to natural size. // Align to natural size.
stack_offset = XEALIGN(stack_offset, type_size); stack_offset = poly::align(stack_offset, type_size);
slot->set_constant((uint32_t)stack_offset); slot->set_constant((uint32_t)stack_offset);
stack_offset += type_size; stack_offset += type_size;
} }
// Ensure 16b alignment. // Ensure 16b alignment.
stack_offset = XEALIGN(stack_offset, 16); stack_offset = poly::align(stack_offset, 16ull);
ctx.stack_size = stack_offset; ctx.stack_size = stack_offset;
auto block = builder->first_block(); auto block = builder->first_block();

View File

@ -63,11 +63,11 @@ void* X64CodeCache::PlaceCode(void* machine_code, size_t code_size,
size_t alloc_size = code_size; size_t alloc_size = code_size;
// Add unwind info into the allocation size. Keep things 16b aligned. // Add unwind info into the allocation size. Keep things 16b aligned.
alloc_size += XEROUNDUP(X64CodeChunk::UNWIND_INFO_SIZE, 16); alloc_size += poly::round_up(X64CodeChunk::UNWIND_INFO_SIZE, 16);
// Always move the code to land on 16b alignment. We do this by rounding up // Always move the code to land on 16b alignment. We do this by rounding up
// to 16b so that all offsets are aligned. // to 16b so that all offsets are aligned.
alloc_size = XEROUNDUP(alloc_size, 16); alloc_size = poly::round_up(alloc_size, 16);
lock_.lock(); lock_.lock();
@ -106,7 +106,8 @@ X64CodeChunk::X64CodeChunk(size_t chunk_size)
buffer = (uint8_t*)VirtualAlloc(NULL, capacity, MEM_RESERVE | MEM_COMMIT, buffer = (uint8_t*)VirtualAlloc(NULL, capacity, MEM_RESERVE | MEM_COMMIT,
PAGE_EXECUTE_READWRITE); PAGE_EXECUTE_READWRITE);
fn_table_capacity = (uint32_t)XEROUNDUP(capacity / ESTIMATED_FN_SIZE, 16); fn_table_capacity =
static_cast<uint32_t>(poly::round_up(capacity / ESTIMATED_FN_SIZE, 16));
size_t table_size = fn_table_capacity * sizeof(RUNTIME_FUNCTION); size_t table_size = fn_table_capacity * sizeof(RUNTIME_FUNCTION);
fn_table = (RUNTIME_FUNCTION*)xe_malloc(table_size); fn_table = (RUNTIME_FUNCTION*)xe_malloc(table_size);
fn_table_count = 0; fn_table_count = 0;

View File

@ -121,13 +121,13 @@ int X64Emitter::Emit(HIRBuilder* builder, size_t& out_stack_size) {
auto slot = *it; auto slot = *it;
size_t type_size = GetTypeSize(slot->type); size_t type_size = GetTypeSize(slot->type);
// Align to natural size. // Align to natural size.
stack_offset = XEALIGN(stack_offset, type_size); stack_offset = poly::align(stack_offset, type_size);
slot->set_constant((uint32_t)stack_offset); slot->set_constant((uint32_t)stack_offset);
stack_offset += type_size; stack_offset += type_size;
} }
// Ensure 16b alignment. // Ensure 16b alignment.
stack_offset -= StackLayout::GUEST_STACK_SIZE; stack_offset -= StackLayout::GUEST_STACK_SIZE;
stack_offset = XEALIGN(stack_offset, 16); stack_offset = poly::align(stack_offset, 16ull);
// Function prolog. // Function prolog.
// Must be 16b aligned. // Must be 16b aligned.

View File

@ -287,13 +287,13 @@ void Disasm_bx(InstrData& i, StringBuffer* str) {
void Disasm_bcx(InstrData& i, StringBuffer* str) { void Disasm_bcx(InstrData& i, StringBuffer* str) {
const char* s0 = i.B.LK ? "lr, " : ""; const char* s0 = i.B.LK ? "lr, " : "";
const char* s1; const char* s1;
if (!XESELECTBITS(i.B.BO, 2, 2)) { if (!select_bits(i.B.BO, 2, 2)) {
s1 = "ctr, "; s1 = "ctr, ";
} else { } else {
s1 = ""; s1 = "";
} }
char s2[8] = {0}; char s2[8] = {0};
if (!XESELECTBITS(i.B.BO, 4, 4)) { if (!select_bits(i.B.BO, 4, 4)) {
xesnprintfa(s2, XECOUNT(s2), "cr%d, ", i.B.BI >> 2); xesnprintfa(s2, XECOUNT(s2), "cr%d, ", i.B.BI >> 2);
} }
uint32_t nia; uint32_t nia;
@ -309,7 +309,7 @@ void Disasm_bcctrx(InstrData& i, StringBuffer* str) {
// TODO(benvanik): mnemonics // TODO(benvanik): mnemonics
const char* s0 = i.XL.LK ? "lr, " : ""; const char* s0 = i.XL.LK ? "lr, " : "";
char s2[8] = {0}; char s2[8] = {0};
if (!XESELECTBITS(i.XL.BO, 4, 4)) { if (!select_bits(i.XL.BO, 4, 4)) {
xesnprintfa(s2, XECOUNT(s2), "cr%d, ", i.XL.BI >> 2); xesnprintfa(s2, XECOUNT(s2), "cr%d, ", i.XL.BI >> 2);
} }
str->Append("%-8s %s%sctr", i.type->name, s0, s2); str->Append("%-8s %s%sctr", i.type->name, s0, s2);
@ -321,13 +321,13 @@ void Disasm_bclrx(InstrData& i, StringBuffer* str) {
name = "blr"; name = "blr";
} }
const char* s1; const char* s1;
if (!XESELECTBITS(i.XL.BO, 2, 2)) { if (!select_bits(i.XL.BO, 2, 2)) {
s1 = "ctr, "; s1 = "ctr, ";
} else { } else {
s1 = ""; s1 = "";
} }
char s2[8] = {0}; char s2[8] = {0};
if (!XESELECTBITS(i.XL.BO, 4, 4)) { if (!select_bits(i.XL.BO, 4, 4)) {
xesnprintfa(s2, XECOUNT(s2), "cr%d, ", i.XL.BI >> 2); xesnprintfa(s2, XECOUNT(s2), "cr%d, ", i.XL.BI >> 2);
} }
str->Append("%-8s %s%s", name, s1, s2); str->Append("%-8s %s%s", name, s1, s2);

View File

@ -176,7 +176,7 @@ XEEMITTER(bcx, 0x40000000, B)(PPCHIRBuilder& f, InstrData& i) {
// 43210 (real) // 43210 (real)
Value* ctr_ok = NULL; Value* ctr_ok = NULL;
if (XESELECTBITS(i.B.BO, 2, 2)) { if (select_bits(i.B.BO, 2, 2)) {
// Ignore ctr. // Ignore ctr.
} else { } else {
// Decrement counter. // Decrement counter.
@ -187,7 +187,7 @@ XEEMITTER(bcx, 0x40000000, B)(PPCHIRBuilder& f, InstrData& i) {
ctr = f.Truncate(ctr, INT32_TYPE); ctr = f.Truncate(ctr, INT32_TYPE);
// TODO(benvanik): could do something similar to cond and avoid the // TODO(benvanik): could do something similar to cond and avoid the
// is_true/branch_true pairing. // is_true/branch_true pairing.
if (XESELECTBITS(i.B.BO, 1, 1)) { if (select_bits(i.B.BO, 1, 1)) {
ctr_ok = f.IsFalse(ctr); ctr_ok = f.IsFalse(ctr);
} else { } else {
ctr_ok = f.IsTrue(ctr); ctr_ok = f.IsTrue(ctr);
@ -196,12 +196,12 @@ XEEMITTER(bcx, 0x40000000, B)(PPCHIRBuilder& f, InstrData& i) {
Value* cond_ok = NULL; Value* cond_ok = NULL;
bool not_cond_ok = false; bool not_cond_ok = false;
if (XESELECTBITS(i.B.BO, 4, 4)) { if (select_bits(i.B.BO, 4, 4)) {
// Ignore cond. // Ignore cond.
} else { } else {
Value* cr = f.LoadCRField(i.B.BI >> 2, i.B.BI & 3); Value* cr = f.LoadCRField(i.B.BI >> 2, i.B.BI & 3);
cond_ok = cr; cond_ok = cr;
if (XESELECTBITS(i.B.BO, 3, 3)) { if (select_bits(i.B.BO, 3, 3)) {
// Expect true. // Expect true.
not_cond_ok = false; not_cond_ok = false;
} else { } else {
@ -248,12 +248,12 @@ XEEMITTER(bcctrx, 0x4C000420, XL)(PPCHIRBuilder& f, InstrData& i) {
Value* cond_ok = NULL; Value* cond_ok = NULL;
bool not_cond_ok = false; bool not_cond_ok = false;
if (XESELECTBITS(i.XL.BO, 4, 4)) { if (select_bits(i.XL.BO, 4, 4)) {
// Ignore cond. // Ignore cond.
} else { } else {
Value* cr = f.LoadCRField(i.XL.BI >> 2, i.XL.BI & 3); Value* cr = f.LoadCRField(i.XL.BI >> 2, i.XL.BI & 3);
cond_ok = cr; cond_ok = cr;
if (XESELECTBITS(i.XL.BO, 3, 3)) { if (select_bits(i.XL.BO, 3, 3)) {
// Expect true. // Expect true.
not_cond_ok = false; not_cond_ok = false;
} else { } else {
@ -282,7 +282,7 @@ XEEMITTER(bclrx, 0x4C000020, XL)(PPCHIRBuilder& f, InstrData& i) {
// 43210 (real) // 43210 (real)
Value* ctr_ok = NULL; Value* ctr_ok = NULL;
if (XESELECTBITS(i.XL.BO, 2, 2)) { if (select_bits(i.XL.BO, 2, 2)) {
// Ignore ctr. // Ignore ctr.
} else { } else {
// Decrement counter. // Decrement counter.
@ -293,7 +293,7 @@ XEEMITTER(bclrx, 0x4C000020, XL)(PPCHIRBuilder& f, InstrData& i) {
ctr = f.Truncate(ctr, INT32_TYPE); ctr = f.Truncate(ctr, INT32_TYPE);
// TODO(benvanik): could do something similar to cond and avoid the // TODO(benvanik): could do something similar to cond and avoid the
// is_true/branch_true pairing. // is_true/branch_true pairing.
if (XESELECTBITS(i.XL.BO, 1, 1)) { if (select_bits(i.XL.BO, 1, 1)) {
ctr_ok = f.IsFalse(ctr); ctr_ok = f.IsFalse(ctr);
} else { } else {
ctr_ok = f.IsTrue(ctr); ctr_ok = f.IsTrue(ctr);
@ -302,12 +302,12 @@ XEEMITTER(bclrx, 0x4C000020, XL)(PPCHIRBuilder& f, InstrData& i) {
Value* cond_ok = NULL; Value* cond_ok = NULL;
bool not_cond_ok = false; bool not_cond_ok = false;
if (XESELECTBITS(i.XL.BO, 4, 4)) { if (select_bits(i.XL.BO, 4, 4)) {
// Ignore cond. // Ignore cond.
} else { } else {
Value* cr = f.LoadCRField(i.XL.BI >> 2, i.XL.BI & 3); Value* cr = f.LoadCRField(i.XL.BI >> 2, i.XL.BI & 3);
cond_ok = cr; cond_ok = cr;
if (XESELECTBITS(i.XL.BO, 3, 3)) { if (select_bits(i.XL.BO, 3, 3)) {
// Expect true. // Expect true.
not_cond_ok = false; not_cond_ok = false;
} else { } else {

View File

@ -322,48 +322,48 @@ InstrType* GetInstrType(uint32_t code) {
switch (code >> 26) { switch (code >> 26) {
case 4: case 4:
// Opcode = 4, index = bits 10-0 (10) // Opcode = 4, index = bits 10-0 (10)
slot = alloy::frontend::ppc::tables::instr_table_4[XESELECTBITS(code, 0, slot =
10)]; alloy::frontend::ppc::tables::instr_table_4[select_bits(code, 0, 10)];
break; break;
case 19: case 19:
// Opcode = 19, index = bits 10-1 (10) // Opcode = 19, index = bits 10-1 (10)
slot = alloy::frontend::ppc::tables::instr_table_19[XESELECTBITS(code, 1, slot = alloy::frontend::ppc::tables::instr_table_19[select_bits(code, 1,
10)]; 10)];
break; break;
case 30: case 30:
// Opcode = 30, index = bits 4-1 (4) // Opcode = 30, index = bits 4-1 (4)
// Special cased to an uber instruction. // Special cased to an uber instruction.
slot = alloy::frontend::ppc::tables::instr_table_30[XESELECTBITS(code, 0, slot =
0)]; alloy::frontend::ppc::tables::instr_table_30[select_bits(code, 0, 0)];
break; break;
case 31: case 31:
// Opcode = 31, index = bits 10-1 (10) // Opcode = 31, index = bits 10-1 (10)
slot = alloy::frontend::ppc::tables::instr_table_31[XESELECTBITS(code, 1, slot = alloy::frontend::ppc::tables::instr_table_31[select_bits(code, 1,
10)]; 10)];
break; break;
case 58: case 58:
// Opcode = 58, index = bits 1-0 (2) // Opcode = 58, index = bits 1-0 (2)
slot = alloy::frontend::ppc::tables::instr_table_58[XESELECTBITS(code, 0, slot =
1)]; alloy::frontend::ppc::tables::instr_table_58[select_bits(code, 0, 1)];
break; break;
case 59: case 59:
// Opcode = 59, index = bits 5-1 (5) // Opcode = 59, index = bits 5-1 (5)
slot = alloy::frontend::ppc::tables::instr_table_59[XESELECTBITS(code, 1, slot =
5)]; alloy::frontend::ppc::tables::instr_table_59[select_bits(code, 1, 5)];
break; break;
case 62: case 62:
// Opcode = 62, index = bits 1-0 (2) // Opcode = 62, index = bits 1-0 (2)
slot = alloy::frontend::ppc::tables::instr_table_62[XESELECTBITS(code, 0, slot =
1)]; alloy::frontend::ppc::tables::instr_table_62[select_bits(code, 0, 1)];
break; break;
case 63: case 63:
// Opcode = 63, index = bits 10-1 (10) // Opcode = 63, index = bits 10-1 (10)
slot = alloy::frontend::ppc::tables::instr_table_63[XESELECTBITS(code, 1, slot = alloy::frontend::ppc::tables::instr_table_63[select_bits(code, 1,
10)]; 10)];
break; break;
default: default:
slot = slot =
alloy::frontend::ppc::tables::instr_table[XESELECTBITS(code, 26, 31)]; alloy::frontend::ppc::tables::instr_table[select_bits(code, 26, 31)];
break; break;
} }
if (slot && slot->opcode) { if (slot && slot->opcode) {

View File

@ -23,6 +23,14 @@ namespace alloy {
namespace frontend { namespace frontend {
namespace ppc { namespace ppc {
inline uint32_t make_bitmask(uint32_t a, uint32_t b) {
return (static_cast<uint32_t>(-1) >> (31 - b)) & ~((1u << a) - 1);
}
inline uint32_t select_bits(uint32_t value, uint32_t a, uint32_t b) {
return (value & make_bitmask(a, b)) >> a;
}
// TODO(benvanik): rename these // TODO(benvanik): rename these
typedef enum { typedef enum {
kXEPPCInstrFormatI = 0, kXEPPCInstrFormatI = 0,

View File

@ -96,7 +96,7 @@ static InstrType** instr_table_prep(InstrType* unprep, int unprep_count, int a,
int prep_count = (int)pow(2.0, b - a + 1); int prep_count = (int)pow(2.0, b - a + 1);
InstrType** prep = (InstrType**)xe_calloc(prep_count * sizeof(void*)); InstrType** prep = (InstrType**)xe_calloc(prep_count * sizeof(void*));
for (int n = 0; n < unprep_count; n++) { for (int n = 0; n < unprep_count; n++) {
int ordinal = XESELECTBITS(unprep[n].opcode, a, b); int ordinal = select_bits(unprep[n].opcode, a, b);
prep[ordinal] = &unprep[n]; prep[ordinal] = &unprep[n];
} }
return prep; return prep;
@ -108,7 +108,7 @@ static InstrType** instr_table_prep_63(InstrType* unprep, int unprep_count,
int prep_count = (int)pow(2.0, b - a + 1); int prep_count = (int)pow(2.0, b - a + 1);
InstrType** prep = (InstrType**)xe_calloc(prep_count * sizeof(void*)); InstrType** prep = (InstrType**)xe_calloc(prep_count * sizeof(void*));
for (int n = 0; n < unprep_count; n++) { for (int n = 0; n < unprep_count; n++) {
int ordinal = XESELECTBITS(unprep[n].opcode, a, b); int ordinal = select_bits(unprep[n].opcode, a, b);
if (unprep[n].format == kXEPPCInstrFormatA) { if (unprep[n].format == kXEPPCInstrFormatA) {
// Must splat this into all of the slots that it could be in. // Must splat this into all of the slots that it could be in.
for (int m = 0; m < 32; m++) { for (int m = 0; m < 32; m++) {

View File

@ -50,8 +50,8 @@ int PPCScanner::FindExtents(FunctionInfo* symbol_info) {
XELOGSDB("Analyzing function %.8X...", symbol_info->address()); XELOGSDB("Analyzing function %.8X...", symbol_info->address());
uint32_t start_address = symbol_info->address(); uint32_t start_address = static_cast<uint32_t>(symbol_info->address());
uint32_t end_address = symbol_info->end_address(); uint32_t end_address = static_cast<uint32_t>(symbol_info->end_address());
uint32_t address = start_address; uint32_t address = start_address;
uint32_t furthest_target = start_address; uint32_t furthest_target = start_address;
size_t blocks_found = 0; size_t blocks_found = 0;

View File

@ -20,6 +20,32 @@
namespace poly { namespace poly {
// Rounds up the given value to the given alignment.
template <typename T>
T align(T value, T alignment) {
return (value + alignment - 1) & ~(alignment - 1);
}
// Rounds the given number up to the next highest multiple.
template <typename T, typename V>
T round_up(T value, V multiple) {
return value + multiple - 1 - (value - 1) % multiple;
}
// Gets the next power of two value that is greater than or equal to the given
// value.
template <typename T>
T next_pow2(T value) {
value--;
value |= value >> 1;
value |= value >> 2;
value |= value >> 4;
value |= value >> 8;
value |= value >> 16;
value++;
return value;
}
// lzcnt instruction, typed for integers of all sizes. // lzcnt instruction, typed for integers of all sizes.
// The number of leading zero bits in the value parameter. If value is zero, the // The number of leading zero bits in the value parameter. If value is zero, the
// return value is the size of the input operand (8, 16, 32, or 64). If the most // return value is the size of the input operand (8, 16, 32, or 64). If the most

View File

@ -17,7 +17,6 @@ namespace xe {
using Memory = alloy::Memory; using Memory = alloy::Memory;
} // namespace xe } // namespace xe
#include <xenia/core/hash.h>
#include <xenia/core/mmap.h> #include <xenia/core/mmap.h>
#include <xenia/core/pal.h> #include <xenia/core/pal.h>
#include <xenia/core/ref.h> #include <xenia/core/ref.h>

View File

@ -38,8 +38,10 @@
#include <xenia/core/hash.h> #include <xenia/core/hash.h>
#include <string.h>
#include <algorithm> #include <algorithm>
#include <string.h> // for memcpy and memset
namespace xe {
namespace { namespace {
@ -61,20 +63,6 @@ inline uint64_t Hash128to64(const uint128_t& x) {
return b; return b;
} }
using namespace std;
#if 0
static uint64_t UNALIGNED_LOAD64(const char *p) {
uint64_t result;
memcpy(&result, p, sizeof(result));
return result;
}
static uint32_t UNALIGNED_LOAD32(const char *p) {
uint32_t result;
memcpy(&result, p, sizeof(result));
return result;
}
#else
XEFORCEINLINE uint64_t UNALIGNED_LOAD64(const char *p) { XEFORCEINLINE uint64_t UNALIGNED_LOAD64(const char *p) {
const uint64_t *p64 = (const uint64_t *)p; const uint64_t *p64 = (const uint64_t *)p;
return *p64; return *p64;
@ -83,15 +71,6 @@ XEFORCEINLINE uint32_t UNALIGNED_LOAD32(const char *p) {
const uint32_t *p32 = (const uint32_t *)p; const uint32_t *p32 = (const uint32_t *)p;
return *p32; return *p32;
} }
#endif
#if XE_CPU_BIGENDIAN
#define uint32_t_in_expected_order(x) (poly::byte_swap(x))
#define uint64_in_expected_order(x) (poly::byte_swap(x))
#else
#define uint32_t_in_expected_order(x) (x)
#define uint64_in_expected_order(x) (x)
#endif // XE_CPU_BIGENDIAN
#if !defined(LIKELY) #if !defined(LIKELY)
#if HAVE_BUILTIN_EXPECT #if HAVE_BUILTIN_EXPECT
@ -101,13 +80,9 @@ XEFORCEINLINE uint32_t UNALIGNED_LOAD32(const char *p) {
#endif #endif
#endif #endif
static uint64_t Fetch64(const char *p) { static uint64_t Fetch64(const char *p) { return UNALIGNED_LOAD64(p); }
return uint64_in_expected_order(UNALIGNED_LOAD64(p));
}
static uint32_t Fetch32(const char *p) { static uint32_t Fetch32(const char *p) { return UNALIGNED_LOAD32(p); }
return uint32_t_in_expected_order(UNALIGNED_LOAD32(p));
}
// Some primes between 2^63 and 2^64 for various uses. // Some primes between 2^63 and 2^64 for various uses.
static const uint64_t k0 = 0xc3a5c85c97cb3127ULL; static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
@ -119,8 +94,7 @@ static const uint32_t c1 = 0xcc9e2d51;
static const uint32_t c2 = 0x1b873593; static const uint32_t c2 = 0x1b873593;
// A 32-bit to 32-bit integer hash copied from Murmur3. // A 32-bit to 32-bit integer hash copied from Murmur3.
static uint32_t fmix(uint32_t h) static uint32_t fmix(uint32_t h) {
{
h ^= h >> 16; h ^= h >> 16;
h *= 0x85ebca6b; h *= 0x85ebca6b;
h ^= h >> 13; h ^= h >> 13;
@ -135,7 +109,11 @@ static uint32_t Rotate32(uint32_t val, int shift) {
} }
#undef PERMUTE3 #undef PERMUTE3
#define PERMUTE3(a, b, c) do { std::swap(a, b); std::swap(a, c); } while (0) #define PERMUTE3(a, b, c) \
do { \
std::swap(a, b); \
std::swap(a, c); \
} while (0)
static uint32_t Mur(uint32_t a, uint32_t h) { static uint32_t Mur(uint32_t a, uint32_t h) {
// Helper from Murmur3 for combining two 32-bit values. // Helper from Murmur3 for combining two 32-bit values.
@ -180,9 +158,9 @@ static uint32_t Hash32Len5to12(const char *s, size_t len) {
uint32_t CityHash32(const char *s, size_t len) { uint32_t CityHash32(const char *s, size_t len) {
if (len <= 24) { if (len <= 24) {
return len <= 12 ? return len <= 12
(len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len)) : ? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len))
Hash32Len13to24(s, len); : Hash32Len13to24(s, len);
} }
// len > 24 // len > 24
@ -254,9 +232,7 @@ static uint64_t Rotate(uint64_t val, int shift) {
return shift == 0 ? val : ((val >> shift) | (val << (64 - shift))); return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
} }
static uint64_t ShiftMix(uint64_t val) { static uint64_t ShiftMix(uint64_t val) { return val ^ (val >> 47); }
return val ^ (val >> 47);
}
static uint64_t HashLen16(uint64_t u, uint64_t v) { static uint64_t HashLen16(uint64_t u, uint64_t v) {
return Hash128to64(uint128_t(u, v)); return Hash128to64(uint128_t(u, v));
@ -311,7 +287,7 @@ static uint64_t HashLen17to32(const char *s, size_t len) {
// Return a 16-byte hash for 48 bytes. Quick and dirty. // Return a 16-byte hash for 48 bytes. Quick and dirty.
// Callers do best to use "random-looking" values for a and b. // Callers do best to use "random-looking" values for a and b.
static pair<uint64_t, uint64_t> WeakHashLen32WithSeeds( static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(
uint64_t w, uint64_t x, uint64_t y, uint64_t z, uint64_t a, uint64_t b) { uint64_t w, uint64_t x, uint64_t y, uint64_t z, uint64_t a, uint64_t b) {
a += w; a += w;
b = Rotate(b + a + z, 21); b = Rotate(b + a + z, 21);
@ -319,18 +295,15 @@ static pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(
a += x; a += x;
a += y; a += y;
b += Rotate(a, 44); b += Rotate(a, 44);
return make_pair(a + z, b + c); return std::make_pair(a + z, b + c);
} }
// Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty. // Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty.
static pair<uint64_t, uint64_t> WeakHashLen32WithSeeds( static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(const char *s,
const char* s, uint64_t a, uint64_t b) { uint64_t a,
return WeakHashLen32WithSeeds(Fetch64(s), uint64_t b) {
Fetch64(s + 8), return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16),
Fetch64(s + 16), Fetch64(s + 24), a, b);
Fetch64(s + 24),
a,
b);
} }
// Return an 8-byte hash for 33 to 64 bytes. // Return an 8-byte hash for 33 to 64 bytes.
@ -371,8 +344,10 @@ uint64_t CityHash64(const char *s, size_t len) {
uint64_t x = Fetch64(s + len - 40); uint64_t x = Fetch64(s + len - 40);
uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56); uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56);
uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24)); uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24));
pair<uint64_t, uint64_t> v = WeakHashLen32WithSeeds(s + len - 64, len, z); std::pair<uint64_t, uint64_t> v =
pair<uint64_t, uint64_t> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x); WeakHashLen32WithSeeds(s + len - 64, len, z);
std::pair<uint64_t, uint64_t> w =
WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
x = x * k1 + Fetch64(s); x = x * k1 + Fetch64(s);
// Decrease len to the nearest multiple of 64, and operate on 64-byte chunks. // Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
@ -395,7 +370,8 @@ uint64_t CityHash64(const char *s, size_t len) {
} // anonymous namespace } // anonymous namespace
uint64_t hash64(const void *data, size_t length, uint64_t seed) {
uint64_t xe_hash64(const void* data, size_t length, uint64_t seed) {
return HashLen16(CityHash64((const char *)data, length) - k2, seed); return HashLen16(CityHash64((const char *)data, length) - k2, seed);
} }
} // namespace xe

View File

@ -12,8 +12,19 @@
#include <xenia/common.h> #include <xenia/common.h>
namespace xe {
uint64_t xe_hash64(const void* data, size_t length, uint64_t seed = 0); inline size_t hash_combine(size_t seed) { return seed; }
template <typename T, typename... Ts>
size_t hash_combine(size_t seed, const T& v, const Ts&... vs) {
std::hash<T> hasher;
seed ^= hasher(v) + 0x9E3779B9 + (seed << 6) + (seed >> 2);
return hash_combine(seed, vs...);
}
uint64_t hash64(const void* data, size_t length, uint64_t seed = 0);
} // namespace xe
#endif // XENIA_CORE_HASH_H_ #endif // XENIA_CORE_HASH_H_

View File

@ -13,6 +13,7 @@
#include <mutex> #include <mutex>
#include <gflags/gflags.h> #include <gflags/gflags.h>
#include <poly/math.h>
using namespace alloy; using namespace alloy;
using namespace xe::cpu; using namespace xe::cpu;
@ -510,7 +511,7 @@ uint64_t XenonMemoryHeap::Alloc(
size_t heap_guard_size = FLAGS_heap_guard_pages * 4096; size_t heap_guard_size = FLAGS_heap_guard_pages * 4096;
if (heap_guard_size) { if (heap_guard_size) {
alignment = std::max(alignment, static_cast<uint32_t>(heap_guard_size)); alignment = std::max(alignment, static_cast<uint32_t>(heap_guard_size));
alloc_size = (uint32_t)XEROUNDUP(size, heap_guard_size); alloc_size = static_cast<uint32_t>(poly::round_up(size, heap_guard_size));
} }
uint8_t* p = (uint8_t*)mspace_memalign(space_, alignment, uint8_t* p = (uint8_t*)mspace_memalign(space_, alignment,
alloc_size + heap_guard_size * 2); alloc_size + heap_guard_size * 2);

View File

@ -9,6 +9,7 @@
#include <xenia/gpu/d3d11/d3d11_geometry_shader.h> #include <xenia/gpu/d3d11/d3d11_geometry_shader.h>
#include <xenia/core/hash.h>
#include <xenia/gpu/gpu-private.h> #include <xenia/gpu/gpu-private.h>
#include <xenia/gpu/d3d11/d3d11_shader_resource.h> #include <xenia/gpu/d3d11/d3d11_shader_resource.h>
#include <xenia/gpu/d3d11/d3d11_shader_translator.h> #include <xenia/gpu/d3d11/d3d11_shader_translator.h>
@ -95,7 +96,7 @@ ID3D10Blob* D3D11GeometryShader::Compile(const char* shader_source) {
if (FLAGS_dump_shaders.size()) { if (FLAGS_dump_shaders.size()) {
base_path = FLAGS_dump_shaders.c_str(); base_path = FLAGS_dump_shaders.c_str();
} }
uint64_t hash = xe_hash64(shader_source, strlen(shader_source)); // ? uint64_t hash = hash64(shader_source, strlen(shader_source)); // ?
char file_name[poly::max_path]; char file_name[poly::max_path];
xesnprintfa(file_name, XECOUNT(file_name), xesnprintfa(file_name, XECOUNT(file_name),
"%s/gen_%.16llX.gs", "%s/gen_%.16llX.gs",

View File

@ -9,6 +9,7 @@
#include <xenia/gpu/d3d11/d3d11_graphics_driver.h> #include <xenia/gpu/d3d11/d3d11_graphics_driver.h>
#include <xenia/core/hash.h>
#include <xenia/gpu/gpu-private.h> #include <xenia/gpu/gpu-private.h>
#include <xenia/gpu/buffer_resource.h> #include <xenia/gpu/buffer_resource.h>
#include <xenia/gpu/shader_resource.h> #include <xenia/gpu/shader_resource.h>

View File

@ -9,6 +9,7 @@
#include <xenia/gpu/d3d11/d3d11_shader_resource.h> #include <xenia/gpu/d3d11/d3d11_shader_resource.h>
#include <xenia/core/hash.h>
#include <xenia/gpu/gpu-private.h> #include <xenia/gpu/gpu-private.h>
#include <xenia/gpu/d3d11/d3d11_geometry_shader.h> #include <xenia/gpu/d3d11/d3d11_geometry_shader.h>
#include <xenia/gpu/d3d11/d3d11_resource_cache.h> #include <xenia/gpu/d3d11/d3d11_resource_cache.h>
@ -46,7 +47,7 @@ ID3D10Blob* D3D11ShaderCompile(XE_GPU_SHADER_TYPE type,
if (FLAGS_dump_shaders.size()) { if (FLAGS_dump_shaders.size()) {
base_path = FLAGS_dump_shaders.c_str(); base_path = FLAGS_dump_shaders.c_str();
} }
size_t hash = xe_hash64(disasm_source, strlen(disasm_source)); // ? size_t hash = hash64(disasm_source, strlen(disasm_source)); // ?
char file_name[poly::max_path]; char file_name[poly::max_path];
xesnprintfa(file_name, XECOUNT(file_name), xesnprintfa(file_name, XECOUNT(file_name),
"%s/gen_%.16llX.%s", "%s/gen_%.16llX.%s",

View File

@ -11,6 +11,7 @@
#include <algorithm> #include <algorithm>
#include <xenia/core/hash.h>
using namespace std; using namespace std;
using namespace xe; using namespace xe;
@ -108,7 +109,7 @@ VertexBufferResource* ResourceCache::FetchVertexBuffer(
uint64_t ResourceCache::HashRange(const MemoryRange& memory_range) { uint64_t ResourceCache::HashRange(const MemoryRange& memory_range) {
// We could do something smarter here to potentially early exit. // We could do something smarter here to potentially early exit.
return xe_hash64(memory_range.host_base, memory_range.length); return hash64(memory_range.host_base, memory_range.length);
} }
void ResourceCache::SyncRange(uint32_t address, int length) { void ResourceCache::SyncRange(uint32_t address, int length) {

View File

@ -10,6 +10,7 @@
#ifndef XENIA_GPU_SAMPLER_STATE_RESOURCE_H_ #ifndef XENIA_GPU_SAMPLER_STATE_RESOURCE_H_
#define XENIA_GPU_SAMPLER_STATE_RESOURCE_H_ #define XENIA_GPU_SAMPLER_STATE_RESOURCE_H_
#include <xenia/core/hash.h>
#include <xenia/gpu/resource.h> #include <xenia/gpu/resource.h>
#include <xenia/gpu/xenos/ucode.h> #include <xenia/gpu/xenos/ucode.h>
#include <xenia/gpu/xenos/xenos.h> #include <xenia/gpu/xenos/xenos.h>

View File

@ -9,6 +9,7 @@
#include <xenia/gpu/texture_resource.h> #include <xenia/gpu/texture_resource.h>
#include <poly/math.h>
#include <xenia/gpu/xenos/ucode.h> #include <xenia/gpu/xenos/ucode.h>
#include <xenia/gpu/xenos/xenos.h> #include <xenia/gpu/xenos/xenos.h>
@ -253,16 +254,16 @@ void TextureResource::Info::CalculateTextureSizes2D(
width_multiple = minimum_multiple; width_multiple = minimum_multiple;
} }
} }
size_2d.input_width = XEROUNDUP(size_2d.logical_width, width_multiple); size_2d.input_width = poly::round_up(size_2d.logical_width, width_multiple);
size_2d.input_height = XEROUNDUP(size_2d.logical_height, 32); size_2d.input_height = poly::round_up(size_2d.logical_height, 32);
size_2d.output_width = size_2d.logical_width; size_2d.output_width = size_2d.logical_width;
size_2d.output_height = size_2d.logical_height; size_2d.output_height = size_2d.logical_height;
} else { } else {
// must be 128x128 // must be 128x128
size_2d.input_width = XEROUNDUP(size_2d.logical_width, 128); size_2d.input_width = poly::round_up(size_2d.logical_width, 128);
size_2d.input_height = XEROUNDUP(size_2d.logical_height, 128); size_2d.input_height = poly::round_up(size_2d.logical_height, 128);
size_2d.output_width = XENEXTPOW2(size_2d.logical_width); size_2d.output_width = poly::next_pow2(size_2d.logical_width);
size_2d.output_height = XENEXTPOW2(size_2d.logical_height); size_2d.output_height = poly::next_pow2(size_2d.logical_height);
} }
size_2d.logical_pitch = (size_2d.logical_width / block_size) * texel_pitch; size_2d.logical_pitch = (size_2d.logical_width / block_size) * texel_pitch;

View File

@ -9,13 +9,14 @@
#include <xenia/common.h> #include <xenia/common.h>
#include <xenia/core.h> #include <xenia/core.h>
#include <xenia/xbox.h> #include <xenia/core/hash.h>
#include <xenia/kernel/async_request.h> #include <xenia/kernel/async_request.h>
#include <xenia/kernel/kernel_state.h> #include <xenia/kernel/kernel_state.h>
#include <xenia/kernel/xboxkrnl_private.h> #include <xenia/kernel/xboxkrnl_private.h>
#include <xenia/kernel/objects/xevent.h> #include <xenia/kernel/objects/xevent.h>
#include <xenia/kernel/objects/xfile.h> #include <xenia/kernel/objects/xfile.h>
#include <xenia/kernel/util/shim_utils.h> #include <xenia/kernel/util/shim_utils.h>
#include <xenia/xbox.h>
namespace xe { namespace xe {

View File

@ -7,6 +7,7 @@
****************************************************************************** ******************************************************************************
*/ */
#include <poly/math.h>
#include <xenia/common.h> #include <xenia/common.h>
#include <xenia/core.h> #include <xenia/core.h>
#include <xenia/xbox.h> #include <xenia/xbox.h>
@ -251,8 +252,8 @@ SHIM_CALL MmAllocatePhysicalMemoryEx_shim(
} }
// Round up the region size and alignment to the next page. // Round up the region size and alignment to the next page.
uint32_t adjusted_size = XEROUNDUP(region_size, page_size); uint32_t adjusted_size = poly::round_up(region_size, page_size);
uint32_t adjusted_alignment = XEROUNDUP(alignment, page_size); uint32_t adjusted_alignment = poly::round_up(alignment, page_size);
// Callers can pick an address to allocate with min_addr_range/max_addr_range // Callers can pick an address to allocate with min_addr_range/max_addr_range
// and the memory must be allocated there. I haven't seen a game do this, // and the memory must be allocated there. I haven't seen a game do this,
@ -433,7 +434,7 @@ SHIM_CALL ExAllocatePoolTypeWithTag_shim(
uint32_t alignment = 8; uint32_t alignment = 8;
uint32_t adjusted_size = size; uint32_t adjusted_size = size;
if (adjusted_size < 4 * 1024) { if (adjusted_size < 4 * 1024) {
adjusted_size = XEROUNDUP(adjusted_size, 4 * 1024); adjusted_size = poly::round_up(adjusted_size, 4 * 1024);
} else { } else {
alignment = 4 * 1024; alignment = 4 * 1024;
} }

View File

@ -91,29 +91,10 @@ typedef XECACHEALIGN volatile void xe_aligned_void_t;
#define XECOUNT(array) (sizeof(array) / sizeof(array[0])) #define XECOUNT(array) (sizeof(array) / sizeof(array[0]))
#endif // MSVC #endif // MSVC
XEFORCEINLINE size_t hash_combine(size_t seed) {
return seed;
}
template <typename T, typename... Ts>
size_t hash_combine(size_t seed, const T& v, const Ts&... vs) {
std::hash<T> hasher;
seed ^= hasher(v) + 0x9E3779B9 + (seed << 6) + (seed >> 2);
return hash_combine(seed, vs...);
}
#if XE_PLATFORM_WIN32 #if XE_PLATFORM_WIN32
#define XESAFERELEASE(p) if (p) { p->Release(); } #define XESAFERELEASE(p) if (p) { p->Release(); }
#endif // WIN32 #endif // WIN32
#define XEBITMASK(a, b) (((unsigned) -1 >> (31 - (b))) & ~((1U << (a)) - 1))
#define XESELECTBITS(value, a, b) ((value & XEBITMASK(a, b)) >> a)
#define XEROUNDUP(v, multiple) ((v) + (multiple) - 1 - ((v) - 1) % (multiple))
static inline uint32_t XENEXTPOW2(uint32_t v) {
v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v;
}
#define XEALIGN(value, align) ((value + align - 1) & ~(align - 1))
#define XEFAIL() goto XECLEANUP #define XEFAIL() goto XECLEANUP
#define XEEXPECT(expr) if (!(expr) ) { goto XECLEANUP; } #define XEEXPECT(expr) if (!(expr) ) { goto XECLEANUP; }
#define XEEXPECTTRUE(expr) if (!(expr) ) { goto XECLEANUP; } #define XEEXPECTTRUE(expr) if (!(expr) ) { goto XECLEANUP; }