[Memory] Move new watches to heap-aware Memory from MMIOHandler

This commit is contained in:
Triang3l 2019-07-30 08:00:20 +03:00
parent 83da671bb4
commit 4aceeb73c4
12 changed files with 535 additions and 387 deletions

View File

@ -26,11 +26,19 @@ class Exception {
kIllegalInstruction, kIllegalInstruction,
}; };
enum class AccessViolationOperation {
kUnknown,
kRead,
kWrite,
};
void InitializeAccessViolation(X64Context* thread_context, void InitializeAccessViolation(X64Context* thread_context,
uint64_t fault_address) { uint64_t fault_address,
AccessViolationOperation operation) {
code_ = Code::kAccessViolation; code_ = Code::kAccessViolation;
thread_context_ = thread_context; thread_context_ = thread_context;
fault_address_ = fault_address; fault_address_ = fault_address;
access_violation_operation_ = operation;
} }
void InitializeIllegalInstruction(X64Context* thread_context) { void InitializeIllegalInstruction(X64Context* thread_context) {
code_ = Code::kIllegalInstruction; code_ = Code::kIllegalInstruction;
@ -62,10 +70,17 @@ class Exception {
// In case of AV, address that was read from/written to. // In case of AV, address that was read from/written to.
uint64_t fault_address() const { return fault_address_; } uint64_t fault_address() const { return fault_address_; }
// In case of AV, what kind of operation caused it.
AccessViolationOperation access_violation_operation() const {
return access_violation_operation_;
}
private: private:
Code code_ = Code::kInvalidException; Code code_ = Code::kInvalidException;
X64Context* thread_context_ = nullptr; X64Context* thread_context_ = nullptr;
uint64_t fault_address_ = 0; uint64_t fault_address_ = 0;
AccessViolationOperation access_violation_operation_ =
AccessViolationOperation::kUnknown;
}; };
class ExceptionHandler { class ExceptionHandler {

View File

@ -51,10 +51,26 @@ LONG CALLBACK ExceptionHandlerCallback(PEXCEPTION_POINTERS ex_info) {
case STATUS_ILLEGAL_INSTRUCTION: case STATUS_ILLEGAL_INSTRUCTION:
ex.InitializeIllegalInstruction(&thread_context); ex.InitializeIllegalInstruction(&thread_context);
break; break;
case STATUS_ACCESS_VIOLATION: case STATUS_ACCESS_VIOLATION: {
ex.InitializeAccessViolation( Exception::AccessViolationOperation access_violation_operation;
&thread_context, ex_info->ExceptionRecord->ExceptionInformation[1]); switch (ex_info->ExceptionRecord->ExceptionInformation[0]) {
case 0:
access_violation_operation =
Exception::AccessViolationOperation::kRead;
break; break;
case 1:
access_violation_operation =
Exception::AccessViolationOperation::kWrite;
break;
default:
access_violation_operation =
Exception::AccessViolationOperation::kUnknown;
break;
}
ex.InitializeAccessViolation(
&thread_context, ex_info->ExceptionRecord->ExceptionInformation[1],
access_violation_operation);
} break;
default: default:
// Unknown/unhandled type. // Unknown/unhandled type.
return EXCEPTION_CONTINUE_SEARCH; return EXCEPTION_CONTINUE_SEARCH;

View File

@ -62,7 +62,7 @@ bool DeallocFixed(void* base_address, size_t length,
// Sets the access rights for the given block of memory and returns the previous // Sets the access rights for the given block of memory and returns the previous
// access rights. Both base_address and length will be adjusted to page_size(). // access rights. Both base_address and length will be adjusted to page_size().
bool Protect(void* base_address, size_t length, PageAccess access, bool Protect(void* base_address, size_t length, PageAccess access,
PageAccess* out_old_access); PageAccess* out_old_access = nullptr);
// Queries a region of pages to get the access rights. This will modify the // Queries a region of pages to get the access rights. This will modify the
// length parameter to the length of pages with the same consecutive access // length parameter to the length of pages with the same consecutive access

View File

@ -24,17 +24,19 @@ namespace cpu {
MMIOHandler* MMIOHandler::global_handler_ = nullptr; MMIOHandler* MMIOHandler::global_handler_ = nullptr;
std::unique_ptr<MMIOHandler> MMIOHandler::Install(uint8_t* virtual_membase, std::unique_ptr<MMIOHandler> MMIOHandler::Install(
uint8_t* physical_membase, uint8_t* virtual_membase, uint8_t* physical_membase, uint8_t* membase_end,
uint8_t* membase_end) { AccessViolationCallback access_violation_callback,
void* access_violation_callback_context) {
// There can be only one handler at a time. // There can be only one handler at a time.
assert_null(global_handler_); assert_null(global_handler_);
if (global_handler_) { if (global_handler_) {
return nullptr; return nullptr;
} }
auto handler = std::unique_ptr<MMIOHandler>( auto handler = std::unique_ptr<MMIOHandler>(new MMIOHandler(
new MMIOHandler(virtual_membase, physical_membase, membase_end)); virtual_membase, physical_membase, membase_end, access_violation_callback,
access_violation_callback_context));
// Install the exception handler directed at the MMIOHandler. // Install the exception handler directed at the MMIOHandler.
ExceptionHandler::Install(ExceptionCallbackThunk, handler.get()); ExceptionHandler::Install(ExceptionCallbackThunk, handler.get());
@ -44,18 +46,14 @@ std::unique_ptr<MMIOHandler> MMIOHandler::Install(uint8_t* virtual_membase,
} }
MMIOHandler::MMIOHandler(uint8_t* virtual_membase, uint8_t* physical_membase, MMIOHandler::MMIOHandler(uint8_t* virtual_membase, uint8_t* physical_membase,
uint8_t* membase_end) uint8_t* membase_end,
AccessViolationCallback access_violation_callback,
void* access_violation_callback_context)
: virtual_membase_(virtual_membase), : virtual_membase_(virtual_membase),
physical_membase_(physical_membase), physical_membase_(physical_membase),
memory_end_(membase_end) { memory_end_(membase_end),
system_page_size_log2_ = xe::log2_ceil(uint32_t(xe::memory::page_size())); access_violation_callback_(access_violation_callback),
access_violation_callback_context_(access_violation_callback_context) {}
uint32_t physical_page_count = (512 * 1024 * 1024) >> system_page_size_log2_;
physical_write_watched_pages_.resize(physical_page_count >> 4);
assert_true(physical_write_watched_pages_.size() != 0);
std::memset(physical_write_watched_pages_.data(), 0,
physical_write_watched_pages_.size() * sizeof(uint64_t));
}
MMIOHandler::~MMIOHandler() { MMIOHandler::~MMIOHandler() {
ExceptionHandler::Uninstall(ExceptionCallbackThunk, this); ExceptionHandler::Uninstall(ExceptionCallbackThunk, this);
@ -231,86 +229,8 @@ void MMIOHandler::CancelAccessWatch(uintptr_t watch_handle) {
delete entry; delete entry;
} }
void* MMIOHandler::RegisterPhysicalWriteWatch(
PhysicalWriteWatchCallback callback, void* callback_context) {
PhysicalWriteWatchEntry* entry = new PhysicalWriteWatchEntry;
entry->callback = callback;
entry->callback_context = callback_context;
auto lock = global_critical_region_.Acquire();
physical_write_watches_.push_back(entry);
return entry;
}
void MMIOHandler::UnregisterPhysicalWriteWatch(void* watch_handle) {
auto entry = reinterpret_cast<PhysicalWriteWatchEntry*>(watch_handle);
{
auto lock = global_critical_region_.Acquire();
auto it = std::find(physical_write_watches_.begin(),
physical_write_watches_.end(), entry);
assert_false(it == physical_write_watches_.end());
if (it != physical_write_watches_.end()) {
physical_write_watches_.erase(it);
}
}
delete entry;
}
void MMIOHandler::ProtectAndWatchPhysicalMemory(
uint32_t physical_address_and_heap, uint32_t length) {
// Bits to set in 16-bit blocks to mark that the pages are protected.
uint64_t block_heap_mask;
if (physical_address_and_heap >= 0xE0000000) {
block_heap_mask = 0x4444444444444444ull;
} else if (physical_address_and_heap >= 0xC0000000) {
block_heap_mask = 0x2222222222222222ull;
} else if (physical_address_and_heap >= 0xA0000000) {
block_heap_mask = 0x1111111111111111ull;
} else {
assert_always();
return;
}
uint32_t heap_relative_address = physical_address_and_heap & 0x1FFFFFFF;
length = std::min(length, 0x20000000u - heap_relative_address);
if (length == 0) {
return;
}
uint32_t page_first = heap_relative_address >> system_page_size_log2_;
uint32_t page_last =
(heap_relative_address + length - 1) >> system_page_size_log2_;
uint32_t block_first = page_first >> 4;
uint32_t block_last = page_last >> 4;
auto lock = global_critical_region_.Acquire();
// Set the bits indicating that the pages are watched and access violations
// there are intentional.
for (uint32_t i = block_first; i <= block_last; ++i) {
uint64_t block_set_bits = block_heap_mask;
if (i == block_first) {
block_set_bits &= ~((1ull << ((page_first & 15) * 4)) - 1);
}
if (i == block_last && (page_last & 15) != 15) {
block_set_bits &= (1ull << (((page_last & 15) + 1) * 4)) - 1;
}
physical_write_watched_pages_[i] |= block_set_bits;
}
// Protect only in one range (due to difficulties synchronizing protection
// levels between those ranges).
memory::Protect(virtual_membase_ + (physical_address_and_heap & ~0x1FFFFFFF) +
(page_first << system_page_size_log2_),
(page_last - page_first + 1) << system_page_size_log2_,
memory::PageAccess::kReadOnly, nullptr);
}
void MMIOHandler::InvalidateRange(uint32_t physical_address_and_heap, void MMIOHandler::InvalidateRange(uint32_t physical_address_and_heap,
uint32_t length, bool unprotect) { uint32_t length) {
uint32_t heap_relative_address = physical_address_and_heap & 0x1FFFFFFF; uint32_t heap_relative_address = physical_address_and_heap & 0x1FFFFFFF;
length = std::min(length, 0x20000000u - heap_relative_address); length = std::min(length, 0x20000000u - heap_relative_address);
if (length == 0) { if (length == 0) {
@ -319,61 +239,6 @@ void MMIOHandler::InvalidateRange(uint32_t physical_address_and_heap,
auto lock = global_critical_region_.Acquire(); auto lock = global_critical_region_.Acquire();
// Trigger the new (per-page) watches and unwatch the pages.
if (physical_address_and_heap >= 0xA0000000) {
uint32_t heap_address = physical_address_and_heap & ~0x1FFFFFFF;
uint64_t heap_bit;
if (heap_address >= 0xE0000000) {
heap_bit = 1 << 2;
} else if (heap_address >= 0xC0000000) {
heap_bit = 1 << 1;
} else {
heap_bit = 1 << 0;
}
uint32_t page_first = heap_relative_address >> system_page_size_log2_;
uint32_t page_last =
(heap_relative_address + length - 1) >> system_page_size_log2_;
uint32_t range_start = UINT32_MAX;
for (uint32_t i = page_first; i <= page_last; ++i) {
uint64_t page_heap_bit = heap_bit << ((i & 15) * 4);
if (physical_write_watched_pages_[i >> 4] & page_heap_bit) {
if (range_start == UINT32_MAX) {
range_start = i;
}
physical_write_watched_pages_[i >> 4] &= ~page_heap_bit;
} else {
if (range_start != UINT32_MAX) {
for (auto it = physical_write_watches_.begin();
it != physical_write_watches_.end(); ++it) {
auto entry = *it;
entry->callback(entry->callback_context, range_start, i - 1);
}
if (unprotect) {
memory::Protect(virtual_membase_ + heap_address +
(range_start << system_page_size_log2_),
(i - range_start) << system_page_size_log2_,
xe::memory::PageAccess::kReadWrite, nullptr);
}
range_start = UINT32_MAX;
}
}
}
if (range_start != UINT32_MAX) {
for (auto it = physical_write_watches_.begin();
it != physical_write_watches_.end(); ++it) {
auto entry = *it;
entry->callback(entry->callback_context, range_start, page_last);
if (unprotect) {
memory::Protect(virtual_membase_ + heap_address +
(range_start << system_page_size_log2_),
(page_last - range_start + 1)
<< system_page_size_log2_,
xe::memory::PageAccess::kReadWrite, nullptr);
}
}
}
}
// Trigger the legacy (per-range) watches. // Trigger the legacy (per-range) watches.
for (auto it = access_watches_.begin(); it != access_watches_.end();) { for (auto it = access_watches_.begin(); it != access_watches_.end();) {
auto entry = *it; auto entry = *it;
@ -421,38 +286,8 @@ bool MMIOHandler::CheckAccessWatch(uint32_t physical_address,
uint32_t heap_address) { uint32_t heap_address) {
bool hit = false; bool hit = false;
// Trigger new (per-page) access watches.
if (heap_address >= 0xA0000000) {
uint32_t page_index = physical_address >> system_page_size_log2_;
// Check the watch only for the virtual memory mapping it was triggered in,
// because as guest protection levels may be different for different
// mappings of the physical memory, it's difficult to synchronize protection
// between the mappings.
uint64_t heap_bit;
if (heap_address >= 0xE0000000) {
heap_bit = 1 << 2;
} else if (heap_address >= 0xC0000000) {
heap_bit = 1 << 1;
} else {
heap_bit = 1 << 0;
}
heap_bit <<= (page_index & 15) * 4;
if (physical_write_watched_pages_[page_index >> 4] & heap_bit) {
hit = true;
memory::Protect(virtual_membase_ + heap_address +
(page_index << system_page_size_log2_),
size_t(1) << system_page_size_log2_,
xe::memory::PageAccess::kReadWrite, nullptr);
physical_write_watched_pages_[page_index >> 4] &= ~heap_bit;
for (auto it = physical_write_watches_.begin();
it != physical_write_watches_.end(); ++it) {
auto entry = *it;
entry->callback(entry->callback_context, page_index, page_index);
}
}
}
// Trigger legacy (per-range) access watches. // Trigger legacy (per-range) access watches.
// TODO(Triang3l): Remove when legacy watches are deleted.
auto lock = global_critical_region_.Acquire(); auto lock = global_critical_region_.Acquire();
for (auto it = access_watches_.begin(); it != access_watches_.end();) { for (auto it = access_watches_.begin(); it != access_watches_.end();) {
auto entry = *it; auto entry = *it;
@ -694,9 +529,24 @@ bool MMIOHandler::ExceptionCallback(Exception* ex) {
// Access is not found within any range, so fail and let the caller handle // Access is not found within any range, so fail and let the caller handle
// it (likely by aborting). // it (likely by aborting).
// TODO(Triang3l): Don't call for the host physical memory view when legacy // TODO(Triang3l): Remove legacy CheckAccessWatch, only call the callback.
// watches are removed. bool hit = CheckAccessWatch(guest_address, guest_heap_address);
return CheckAccessWatch(guest_address, guest_heap_address); if (access_violation_callback_) {
switch (ex->access_violation_operation()) {
case Exception::AccessViolationOperation::kRead:
hit |= access_violation_callback_(access_violation_callback_context_,
size_t(ex->fault_address()), false);
break;
case Exception::AccessViolationOperation::kWrite:
hit |= access_violation_callback_(access_violation_callback_context_,
size_t(ex->fault_address()), true);
break;
default:
// Data Execution Prevention or something else uninteresting.
break;
}
}
return hit;
} }
auto rip = ex->pc(); auto rip = ex->pc();

View File

@ -30,9 +30,6 @@ typedef void (*MMIOWriteCallback)(void* ppc_context, void* callback_context,
uint32_t addr, uint32_t value); uint32_t addr, uint32_t value);
typedef void (*AccessWatchCallback)(void* context_ptr, void* data_ptr, typedef void (*AccessWatchCallback)(void* context_ptr, void* data_ptr,
uint32_t address); uint32_t address);
typedef void (*PhysicalWriteWatchCallback)(void* context_ptr,
uint32_t page_first,
uint32_t page_last);
struct MMIORange { struct MMIORange {
uint32_t address; uint32_t address;
@ -48,15 +45,22 @@ class MMIOHandler {
public: public:
virtual ~MMIOHandler(); virtual ~MMIOHandler();
typedef bool (*AccessViolationCallback)(void* context, size_t host_address,
bool is_write);
enum WatchType { enum WatchType {
kWatchInvalid = 0, kWatchInvalid = 0,
kWatchWrite = 1, kWatchWrite = 1,
kWatchReadWrite = 2, kWatchReadWrite = 2,
}; };
static std::unique_ptr<MMIOHandler> Install(uint8_t* virtual_membase, // access_violation_callback is called in global_critical_region, so if
uint8_t* physical_membase, // multiple threads trigger an access violation in the same page, the callback
uint8_t* membase_end); // will be called only once.
static std::unique_ptr<MMIOHandler> Install(
uint8_t* virtual_membase, uint8_t* physical_membase, uint8_t* membase_end,
AccessViolationCallback access_violation_callback,
void* access_violation_callback_context);
static MMIOHandler* global_handler() { return global_handler_; } static MMIOHandler* global_handler() { return global_handler_; }
bool RegisterRange(uint32_t virtual_address, uint32_t mask, uint32_t size, bool RegisterRange(uint32_t virtual_address, uint32_t mask, uint32_t size,
@ -79,59 +83,10 @@ class MMIOHandler {
void* callback_context, void* callback_data); void* callback_context, void* callback_data);
void CancelAccessWatch(uintptr_t watch_handle); void CancelAccessWatch(uintptr_t watch_handle);
// Physical memory write watching, allowing subsystems to invalidate cached
// data that depends on memory contents.
//
// Placing a watch simply marks the pages (of the system page size) as
// watched, individual watched ranges (or which specific subscribers are
// watching specific pages) are not stored. Because of this, callbacks may be
// triggered multiple times for a single range, and for any watched page every
// registered callbacks is triggered. This is a very simple one-shot method
// for use primarily for cache invalidation - there may be spurious firing,
// for example, if the game only changes the protection level without writing
// anything.
//
// A range of pages can be watched at any time, but pages are only unwatched
// when watches are triggered (since multiple subscribers can depend on the
// same memory, and one subscriber shouldn't interfere with another).
//
// Callbacks can be triggered for one page (if the guest just stores words) or
// for multiple pages (for file reading, protection level changes).
//
// Only guest physical memory mappings are watched - the host-only mapping is
// not protected so it can be used to bypass the write protection (for file
// reads, for example - in this case, watches are triggered manually).
//
// Ranges passed to ProtectAndWatchPhysicalMemory must not contain read-only
// or inaccessible pages - this must be checked externally! Otherwise the MMIO
// handler will make them read-only, but when a read is attempted, it will
// make them read-write!
//
// IMPORTANT NOTE: When a watch is triggered, the watched page is unprotected
// ***ONLY IN THE HEAP WHERE THE ADDRESS IS LOCATED***! Since different
// virtual memory mappings of physical memory can have different protection
// levels for the same pages, and watches must not be placed on read-only or
// totally inaccessible pages, there are significant difficulties with
// synchronizing all the three ranges.
//
// TODO(Triang3l): Allow the callbacks to unwatch regions larger than one page
// (for instance, 64 KB) so there are less access violations. All callbacks
// must agree to unwatch larger ranges because in some cases (like regions
// near the locations that render targets have been resolved to) it is
// necessary to invalidate only a single page and none more.
void* RegisterPhysicalWriteWatch(PhysicalWriteWatchCallback callback,
void* callback_context);
void UnregisterPhysicalWriteWatch(void* watch_handle);
// Force-protects the range in ***ONE SPECIFIC HEAP***, either 0xA0000000,
// 0xC0000000 or 0xE0000000, depending on the higher bits of the address.
void ProtectAndWatchPhysicalMemory(uint32_t physical_address_and_heap,
uint32_t length);
// Fires and clears any write watches that overlap this range in one heap. // Fires and clears any write watches that overlap this range in one heap.
// Unprotecting can be inhibited if this is called right before applying // Unprotecting can be inhibited if this is called right before applying
// different protection to the same range. // different protection to the same range.
void InvalidateRange(uint32_t physical_address_and_heap, uint32_t length, void InvalidateRange(uint32_t physical_address_and_heap, uint32_t length);
bool unprotect = true);
// Returns true if /all/ of this range is watched. // Returns true if /all/ of this range is watched.
// TODO(Triang3l): Remove when legacy watches are removed. // TODO(Triang3l): Remove when legacy watches are removed.
@ -147,13 +102,10 @@ class MMIOHandler {
void* callback_data; void* callback_data;
}; };
struct PhysicalWriteWatchEntry {
PhysicalWriteWatchCallback callback;
void* callback_context;
};
MMIOHandler(uint8_t* virtual_membase, uint8_t* physical_membase, MMIOHandler(uint8_t* virtual_membase, uint8_t* physical_membase,
uint8_t* membase_end); uint8_t* membase_end,
AccessViolationCallback access_violation_callback,
void* access_violation_callback_context);
static bool ExceptionCallbackThunk(Exception* ex, void* data); static bool ExceptionCallbackThunk(Exception* ex, void* data);
bool ExceptionCallback(Exception* ex); bool ExceptionCallback(Exception* ex);
@ -162,24 +114,18 @@ class MMIOHandler {
void ClearAccessWatch(AccessWatchEntry* entry); void ClearAccessWatch(AccessWatchEntry* entry);
bool CheckAccessWatch(uint32_t guest_address, uint32_t guest_heap_address); bool CheckAccessWatch(uint32_t guest_address, uint32_t guest_heap_address);
uint32_t system_page_size_log2_;
uint8_t* virtual_membase_; uint8_t* virtual_membase_;
uint8_t* physical_membase_; uint8_t* physical_membase_;
uint8_t* memory_end_; uint8_t* memory_end_;
std::vector<MMIORange> mapped_ranges_; std::vector<MMIORange> mapped_ranges_;
AccessViolationCallback access_violation_callback_;
void* access_violation_callback_context_;
xe::global_critical_region global_critical_region_; xe::global_critical_region global_critical_region_;
// TODO(benvanik): data structure magic. // TODO(benvanik): data structure magic.
std::list<AccessWatchEntry*> access_watches_; std::list<AccessWatchEntry*> access_watches_;
std::vector<PhysicalWriteWatchEntry*> physical_write_watches_;
// For each page, there are 4 bits (16 pages in each word):
// 0 - whether the page is protected in A0000000.
// 1 - whether the page is protected in C0000000.
// 2 - whether the page is protected in E0000000.
// 3 - unused, always zero.
std::vector<uint64_t> physical_write_watched_pages_;
static MMIOHandler* global_handler_; static MMIOHandler* global_handler_;
}; };

View File

@ -699,11 +699,11 @@ void* PrimitiveConverter::AllocateIndices(
return mapping + simd_offset; return mapping + simd_offset;
} }
void PrimitiveConverter::MemoryWriteCallback(uint32_t page_first, void PrimitiveConverter::MemoryWriteCallback(uint32_t physical_address_start,
uint32_t page_last) { uint32_t length) {
// 1 bit = (512 / 64) MB = 8 MB. Invalidate a region of this size. // 1 bit = (512 / 64) MB = 8 MB. Invalidate a region of this size.
uint32_t bit_index_first = (page_first * system_page_size_) >> 23; uint32_t bit_index_first = physical_address_start >> 23;
uint32_t bit_index_last = (page_last * system_page_size_) >> 23; uint32_t bit_index_last = (physical_address_start + length - 1) >> 23;
uint64_t bits = ~((1ull << bit_index_first) - 1); uint64_t bits = ~((1ull << bit_index_first) - 1);
if (bit_index_last < 63) { if (bit_index_last < 63) {
bits &= (1ull << (bit_index_last + 1)) - 1; bits &= (1ull << (bit_index_last + 1)) - 1;
@ -711,11 +711,10 @@ void PrimitiveConverter::MemoryWriteCallback(uint32_t page_first,
memory_regions_invalidated_ |= bits; memory_regions_invalidated_ |= bits;
} }
void PrimitiveConverter::MemoryWriteCallbackThunk(void* context_ptr, void PrimitiveConverter::MemoryWriteCallbackThunk(
uint32_t page_first, void* context_ptr, uint32_t physical_address_start, uint32_t length) {
uint32_t page_last) {
reinterpret_cast<PrimitiveConverter*>(context_ptr) reinterpret_cast<PrimitiveConverter*>(context_ptr)
->MemoryWriteCallback(page_first, page_last); ->MemoryWriteCallback(physical_address_start, length);
} }
D3D12_GPU_VIRTUAL_ADDRESS PrimitiveConverter::GetStaticIndexBuffer( D3D12_GPU_VIRTUAL_ADDRESS PrimitiveConverter::GetStaticIndexBuffer(

View File

@ -89,9 +89,10 @@ class PrimitiveConverter {
D3D12_GPU_VIRTUAL_ADDRESS& gpu_address_out); D3D12_GPU_VIRTUAL_ADDRESS& gpu_address_out);
// Callback for invalidating buffers mid-frame. // Callback for invalidating buffers mid-frame.
void MemoryWriteCallback(uint32_t page_first, uint32_t page_last); void MemoryWriteCallback(uint32_t physical_address_start, uint32_t length);
static void MemoryWriteCallbackThunk(void* context_ptr, uint32_t page_first, static void MemoryWriteCallbackThunk(void* context_ptr,
uint32_t page_last); uint32_t physical_address_start,
uint32_t length);
D3D12CommandProcessor* command_processor_; D3D12CommandProcessor* command_processor_;
RegisterFile* register_file_; RegisterFile* register_file_;

View File

@ -172,7 +172,7 @@ SharedMemory::GlobalWatchHandle SharedMemory::RegisterGlobalWatch(
watch->callback = callback; watch->callback = callback;
watch->callback_context = callback_context; watch->callback_context = callback_context;
std::lock_guard<std::recursive_mutex> lock(validity_mutex_); auto global_lock = global_critical_region_.Acquire();
global_watches_.push_back(watch); global_watches_.push_back(watch);
return reinterpret_cast<GlobalWatchHandle>(watch); return reinterpret_cast<GlobalWatchHandle>(watch);
@ -182,7 +182,7 @@ void SharedMemory::UnregisterGlobalWatch(GlobalWatchHandle handle) {
auto watch = reinterpret_cast<GlobalWatch*>(handle); auto watch = reinterpret_cast<GlobalWatch*>(handle);
{ {
std::lock_guard<std::recursive_mutex> lock(validity_mutex_); auto global_lock = global_critical_region_.Acquire();
auto it = std::find(global_watches_.begin(), global_watches_.end(), watch); auto it = std::find(global_watches_.begin(), global_watches_.end(), watch);
assert_false(it == global_watches_.end()); assert_false(it == global_watches_.end());
if (it != global_watches_.end()) { if (it != global_watches_.end()) {
@ -208,7 +208,7 @@ SharedMemory::WatchHandle SharedMemory::WatchMemoryRange(
uint32_t bucket_last = uint32_t bucket_last =
watch_page_last << page_size_log2_ >> kWatchBucketSizeLog2; watch_page_last << page_size_log2_ >> kWatchBucketSizeLog2;
std::lock_guard<std::recursive_mutex> lock(validity_mutex_); auto global_lock = global_critical_region_.Acquire();
// Allocate the range. // Allocate the range.
WatchRange* range = watch_range_first_free_; WatchRange* range = watch_range_first_free_;
@ -267,7 +267,7 @@ void SharedMemory::UnwatchMemoryRange(WatchHandle handle) {
// Could be a zero length range. // Could be a zero length range.
return; return;
} }
std::lock_guard<std::recursive_mutex> lock(validity_mutex_); auto global_lock = global_critical_region_.Acquire();
UnlinkWatchRange(reinterpret_cast<WatchRange*>(handle)); UnlinkWatchRange(reinterpret_cast<WatchRange*>(handle));
} }
@ -405,7 +405,7 @@ void SharedMemory::FireWatches(uint32_t page_first, uint32_t page_last,
uint32_t bucket_first = address_first >> kWatchBucketSizeLog2; uint32_t bucket_first = address_first >> kWatchBucketSizeLog2;
uint32_t bucket_last = address_last >> kWatchBucketSizeLog2; uint32_t bucket_last = address_last >> kWatchBucketSizeLog2;
std::lock_guard<std::recursive_mutex> lock(validity_mutex_); auto global_lock = global_critical_region_.Acquire();
// Fire global watches. // Fire global watches.
for (const auto global_watch : global_watches_) { for (const auto global_watch : global_watches_) {
@ -472,7 +472,7 @@ void SharedMemory::MakeRangeValid(uint32_t valid_page_first,
uint32_t valid_block_last = valid_page_last >> 6; uint32_t valid_block_last = valid_page_last >> 6;
{ {
std::lock_guard<std::recursive_mutex> lock(validity_mutex_); auto global_lock = global_critical_region_.Acquire();
for (uint32_t i = valid_block_first; i <= valid_block_last; ++i) { for (uint32_t i = valid_block_first; i <= valid_block_last; ++i) {
uint64_t valid_bits = UINT64_MAX; uint64_t valid_bits = UINT64_MAX;
@ -523,7 +523,7 @@ void SharedMemory::GetRangesToUpload(uint32_t request_page_first,
uint32_t request_block_first = request_page_first >> 6; uint32_t request_block_first = request_page_first >> 6;
uint32_t request_block_last = request_page_last >> 6; uint32_t request_block_last = request_page_last >> 6;
std::lock_guard<std::recursive_mutex> lock(validity_mutex_); auto global_lock = global_critical_region_.Acquire();
uint32_t range_start = UINT32_MAX; uint32_t range_start = UINT32_MAX;
for (uint32_t i = request_block_first; i <= request_block_last; ++i) { for (uint32_t i = request_block_first; i <= request_block_last; ++i) {
@ -570,18 +570,23 @@ void SharedMemory::GetRangesToUpload(uint32_t request_page_first,
} }
void SharedMemory::MemoryWriteCallbackThunk(void* context_ptr, void SharedMemory::MemoryWriteCallbackThunk(void* context_ptr,
uint32_t page_first, uint32_t physical_address_start,
uint32_t page_last) { uint32_t length) {
reinterpret_cast<SharedMemory*>(context_ptr) reinterpret_cast<SharedMemory*>(context_ptr)
->MemoryWriteCallback(page_first, page_last); ->MemoryWriteCallback(physical_address_start, length);
} }
void SharedMemory::MemoryWriteCallback(uint32_t page_first, void SharedMemory::MemoryWriteCallback(uint32_t physical_address_start,
uint32_t page_last) { uint32_t length) {
if (length == 0) {
return;
}
uint32_t page_first = physical_address_start >> page_size_log2_;
uint32_t page_last = (physical_address_start + length - 1) >> page_size_log2_;
uint32_t block_first = page_first >> 6; uint32_t block_first = page_first >> 6;
uint32_t block_last = page_last >> 6; uint32_t block_last = page_last >> 6;
std::lock_guard<std::recursive_mutex> lock(validity_mutex_); auto global_lock = global_critical_region_.Acquire();
for (uint32_t i = block_first; i <= block_last; ++i) { for (uint32_t i = block_first; i <= block_last; ++i) {
uint64_t invalidate_bits = UINT64_MAX; uint64_t invalidate_bits = UINT64_MAX;

View File

@ -14,6 +14,7 @@
#include <mutex> #include <mutex>
#include <vector> #include <vector>
#include "xenia/base/mutex.h"
#include "xenia/memory.h" #include "xenia/memory.h"
#include "xenia/ui/d3d12/d3d12_api.h" #include "xenia/ui/d3d12/d3d12_api.h"
#include "xenia/ui/d3d12/pools.h" #include "xenia/ui/d3d12/pools.h"
@ -73,7 +74,7 @@ class SharedMemory {
// additional subsystem/object-specific data (such as whether the range // additional subsystem/object-specific data (such as whether the range
// belongs to the base mip level or to the rest of the mips). // belongs to the base mip level or to the rest of the mips).
// //
// The callback is called with the mutex locked. Do NOT watch or unwatch // Called with the global critical region locked. Do NOT watch or unwatch
// ranges from within it! The watch for the callback is cancelled after the // ranges from within it! The watch for the callback is cancelled after the
// callback - the handle becomes invalid. // callback - the handle becomes invalid.
WatchHandle WatchMemoryRange(uint32_t start, uint32_t length, WatchHandle WatchMemoryRange(uint32_t start, uint32_t length,
@ -83,8 +84,9 @@ class SharedMemory {
void UnwatchMemoryRange(WatchHandle handle); void UnwatchMemoryRange(WatchHandle handle);
// Locks the mutex that gets locked when watch callbacks are invoked - must be // Locks the mutex that gets locked when watch callbacks are invoked - must be
// done when checking variables that may be changed by a watch callback. // done when checking variables that may be changed by a watch callback.
inline void LockWatchMutex() { validity_mutex_.lock(); } inline std::unique_lock<std::recursive_mutex> LockWatchMutex() {
inline void UnlockWatchMutex() { validity_mutex_.unlock(); } return global_critical_region_.Acquire();
}
// Ensures the buffer tiles backing the range are resident, but doesn't upload // Ensures the buffer tiles backing the range are resident, but doesn't upload
// anything. // anything.
@ -125,8 +127,7 @@ class SharedMemory {
private: private:
bool AreTiledResourcesUsed() const; bool AreTiledResourcesUsed() const;
// Mark the memory range as updated and protect it. The validity mutex must // Mark the memory range as updated and protect it.
// NOT be held when calling!!!
void MakeRangeValid(uint32_t valid_page_first, uint32_t valid_page_count); void MakeRangeValid(uint32_t valid_page_first, uint32_t valid_page_count);
D3D12CommandProcessor* command_processor_; D3D12CommandProcessor* command_processor_;
@ -175,19 +176,20 @@ class SharedMemory {
// Mutex between the exception handler and the command processor, to be locked // Mutex between the exception handler and the command processor, to be locked
// when checking or updating validity of pages/ranges. // when checking or updating validity of pages/ranges.
std::recursive_mutex validity_mutex_; xe::global_critical_region global_critical_region_;
// *************************************************************************** // ***************************************************************************
// Things below should be protected by validity_mutex_. // Things below should be protected by global_critical_region.
// *************************************************************************** // ***************************************************************************
// Bit vector containing whether physical memory system pages are up to date. // Bit vector containing whether physical memory system pages are up to date.
std::vector<uint64_t> valid_pages_; std::vector<uint64_t> valid_pages_;
// Memory access callback. // Memory access callback.
static void MemoryWriteCallbackThunk(void* context_ptr, uint32_t page_first, static void MemoryWriteCallbackThunk(void* context_ptr,
uint32_t page_last); uint32_t physical_address_start,
void MemoryWriteCallback(uint32_t page_first, uint32_t page_last); uint32_t length);
void MemoryWriteCallback(uint32_t physical_address_start, uint32_t length);
struct GlobalWatch { struct GlobalWatch {
GlobalWatchCallback callback; GlobalWatchCallback callback;
@ -249,7 +251,7 @@ class SharedMemory {
void UnlinkWatchRange(WatchRange* range); void UnlinkWatchRange(WatchRange* range);
// *************************************************************************** // ***************************************************************************
// Things above should be protected by validity_mutex_. // Things above should be protected by global_critical_region.
// *************************************************************************** // ***************************************************************************
// First page and length in pages. // First page and length in pages.

View File

@ -1267,7 +1267,7 @@ void TextureCache::MarkRangeAsResolved(uint32_t start_unscaled,
uint32_t page_last = (start_unscaled + length_unscaled - 1) >> 12; uint32_t page_last = (start_unscaled + length_unscaled - 1) >> 12;
uint32_t block_first = page_first >> 5; uint32_t block_first = page_first >> 5;
uint32_t block_last = page_last >> 5; uint32_t block_last = page_last >> 5;
shared_memory_->LockWatchMutex(); auto watch_lock = shared_memory_->LockWatchMutex();
for (uint32_t i = block_first; i <= block_last; ++i) { for (uint32_t i = block_first; i <= block_last; ++i) {
uint32_t add_bits = UINT32_MAX; uint32_t add_bits = UINT32_MAX;
if (i == block_first) { if (i == block_first) {
@ -1279,7 +1279,6 @@ void TextureCache::MarkRangeAsResolved(uint32_t start_unscaled,
scaled_resolve_pages_[i] |= add_bits; scaled_resolve_pages_[i] |= add_bits;
scaled_resolve_pages_l2_[i >> 6] |= 1ull << (i & 63); scaled_resolve_pages_l2_[i >> 6] |= 1ull << (i & 63);
} }
shared_memory_->UnlockWatchMutex();
} }
// Invalidate textures. Toggling individual textures between scaled and // Invalidate textures. Toggling individual textures between scaled and
@ -1970,10 +1969,12 @@ TextureCache::Texture* TextureCache::FindOrCreateTexture(TextureKey key) {
bool TextureCache::LoadTextureData(Texture* texture) { bool TextureCache::LoadTextureData(Texture* texture) {
// See what we need to upload. // See what we need to upload.
shared_memory_->LockWatchMutex(); bool base_in_sync, mips_in_sync;
bool base_in_sync = texture->base_in_sync; {
bool mips_in_sync = texture->mips_in_sync; auto watch_lock = shared_memory_->LockWatchMutex();
shared_memory_->UnlockWatchMutex(); base_in_sync = texture->base_in_sync;
mips_in_sync = texture->mips_in_sync;
}
if (base_in_sync && mips_in_sync) { if (base_in_sync && mips_in_sync) {
return true; return true;
} }
@ -2235,7 +2236,8 @@ bool TextureCache::LoadTextureData(Texture* texture) {
// resolves as well to detect when the CPU wants to reuse the memory for a // resolves as well to detect when the CPU wants to reuse the memory for a
// regular texture or a vertex buffer, and thus the scaled resolve version is // regular texture or a vertex buffer, and thus the scaled resolve version is
// not up to date anymore. // not up to date anymore.
shared_memory_->LockWatchMutex(); {
auto watch_lock = shared_memory_->LockWatchMutex();
texture->base_in_sync = true; texture->base_in_sync = true;
texture->mips_in_sync = true; texture->mips_in_sync = true;
if (!base_in_sync) { if (!base_in_sync) {
@ -2248,7 +2250,7 @@ bool TextureCache::LoadTextureData(Texture* texture) {
texture->key.mip_page << 12, texture->mip_size, WatchCallbackThunk, texture->key.mip_page << 12, texture->mip_size, WatchCallbackThunk,
this, texture, 1); this, texture, 1);
} }
shared_memory_->UnlockWatchMutex(); }
LogTextureAction(texture, "Loaded"); LogTextureAction(texture, "Loaded");
return true; return true;
@ -2325,7 +2327,7 @@ bool TextureCache::IsRangeScaledResolved(uint32_t start_unscaled,
uint32_t block_last = page_last >> 5; uint32_t block_last = page_last >> 5;
uint32_t l2_block_first = block_first >> 6; uint32_t l2_block_first = block_first >> 6;
uint32_t l2_block_last = block_last >> 6; uint32_t l2_block_last = block_last >> 6;
shared_memory_->LockWatchMutex(); auto watch_lock = shared_memory_->LockWatchMutex();
for (uint32_t i = l2_block_first; i <= l2_block_last; ++i) { for (uint32_t i = l2_block_first; i <= l2_block_last; ++i) {
uint64_t l2_block = scaled_resolve_pages_l2_[i]; uint64_t l2_block = scaled_resolve_pages_l2_[i];
if (i == l2_block_first) { if (i == l2_block_first) {
@ -2346,12 +2348,10 @@ bool TextureCache::IsRangeScaledResolved(uint32_t start_unscaled,
check_bits &= (1u << ((page_last & 31) + 1)) - 1; check_bits &= (1u << ((page_last & 31) + 1)) - 1;
} }
if (scaled_resolve_pages_[block_index] & check_bits) { if (scaled_resolve_pages_[block_index] & check_bits) {
shared_memory_->UnlockWatchMutex();
return true; return true;
} }
} }
} }
shared_memory_->UnlockWatchMutex();
return false; return false;
} }

View File

@ -96,6 +96,10 @@ Memory::~Memory() {
// requests. // requests.
mmio_handler_.reset(); mmio_handler_.reset();
for (auto physical_write_watch : physical_write_watches_) {
delete physical_write_watch;
}
heaps_.v00000000.Dispose(); heaps_.v00000000.Dispose();
heaps_.v40000000.Dispose(); heaps_.v40000000.Dispose();
heaps_.v80000000.Dispose(); heaps_.v80000000.Dispose();
@ -152,24 +156,27 @@ bool Memory::Initialize() {
physical_membase_ = mapping_base_ + 0x100000000ull; physical_membase_ = mapping_base_ + 0x100000000ull;
// Prepare virtual heaps. // Prepare virtual heaps.
heaps_.v00000000.Initialize(virtual_membase_, 0x00000000, 0x40000000, 4096); heaps_.v00000000.Initialize(this, virtual_membase_, 0x00000000, 0x40000000,
heaps_.v40000000.Initialize(virtual_membase_, 0x40000000, 4096);
heaps_.v40000000.Initialize(this, virtual_membase_, 0x40000000,
0x40000000 - 0x01000000, 64 * 1024); 0x40000000 - 0x01000000, 64 * 1024);
heaps_.v80000000.Initialize(virtual_membase_, 0x80000000, 0x10000000, heaps_.v80000000.Initialize(this, virtual_membase_, 0x80000000, 0x10000000,
64 * 1024); 64 * 1024);
heaps_.v90000000.Initialize(virtual_membase_, 0x90000000, 0x10000000, 4096); heaps_.v90000000.Initialize(this, virtual_membase_, 0x90000000, 0x10000000,
4096);
// Prepare physical heaps. // Prepare physical heaps.
heaps_.physical.Initialize(physical_membase_, 0x00000000, 0x20000000, 4096); heaps_.physical.Initialize(this, physical_membase_, 0x00000000, 0x20000000,
4096);
// HACK: should be 64k, but with us overlaying A and E it needs to be 4. // HACK: should be 64k, but with us overlaying A and E it needs to be 4.
/*heaps_.vA0000000.Initialize(virtual_membase_, 0xA0000000, 0x20000000, /*heaps_.vA0000000.Initialize(this, virtual_membase_, 0xA0000000, 0x20000000,
64 * 1024, &heaps_.physical);*/ 64 * 1024, &heaps_.physical);*/
heaps_.vA0000000.Initialize(virtual_membase_, 0xA0000000, 0x20000000, heaps_.vA0000000.Initialize(this, virtual_membase_, 0xA0000000, 0x20000000,
4 * 1024, &heaps_.physical); 4 * 1024, &heaps_.physical);
heaps_.vC0000000.Initialize(virtual_membase_, 0xC0000000, 0x20000000, heaps_.vC0000000.Initialize(this, virtual_membase_, 0xC0000000, 0x20000000,
16 * 1024 * 1024, &heaps_.physical); 16 * 1024 * 1024, &heaps_.physical);
heaps_.vE0000000.Initialize(virtual_membase_, 0xE0000000, 0x1FD00000, 4096, heaps_.vE0000000.Initialize(this, virtual_membase_, 0xE0000000, 0x1FD00000,
&heaps_.physical); 4096, &heaps_.physical);
// Protect the first and last 64kb of memory. // Protect the first and last 64kb of memory.
heaps_.v00000000.AllocFixed( heaps_.v00000000.AllocFixed(
@ -189,7 +196,8 @@ bool Memory::Initialize() {
// Add handlers for MMIO. // Add handlers for MMIO.
mmio_handler_ = cpu::MMIOHandler::Install(virtual_membase_, physical_membase_, mmio_handler_ = cpu::MMIOHandler::Install(virtual_membase_, physical_membase_,
physical_membase_ + 0x1FFFFFFF); physical_membase_ + 0x1FFFFFFF,
AccessViolationCallbackThunk, this);
if (!mmio_handler_) { if (!mmio_handler_) {
XELOGE("Unable to install MMIO handlers"); XELOGE("Unable to install MMIO handlers");
assert_always(); assert_always();
@ -397,6 +405,46 @@ cpu::MMIORange* Memory::LookupVirtualMappedRange(uint32_t virtual_address) {
return mmio_handler_->LookupRange(virtual_address); return mmio_handler_->LookupRange(virtual_address);
} }
bool Memory::AccessViolationCallback(size_t host_address, bool is_write) {
if (!is_write) {
// TODO(Triang3l): Handle GPU readback.
return false;
}
// Access via physical_membase_ is special, when need to bypass everything,
// so only watching virtual memory regions.
if (host_address < reinterpret_cast<size_t>(virtual_membase_) ||
host_address >= reinterpret_cast<size_t>(physical_membase_)) {
return false;
}
uint32_t virtual_address =
uint32_t(reinterpret_cast<uint8_t*>(host_address) - virtual_membase_);
// Revert the adjustment made by CPU emulation.
if (virtual_address >= 0xE0000000) {
if (virtual_address < 0xE0001000) {
return false;
}
virtual_address -= 0x1000;
}
BaseHeap* heap = LookupHeap(virtual_address);
if (heap == &heaps_.vA0000000 || heap == &heaps_.vC0000000 ||
heap == &heaps_.vE0000000) {
return static_cast<PhysicalHeap*>(heap)->TriggerWatches(
virtual_address / system_page_size_ * system_page_size_,
system_page_size_, is_write);
}
return false;
}
bool Memory::AccessViolationCallbackThunk(void* context, size_t host_address,
bool is_write) {
return reinterpret_cast<Memory*>(context)->AccessViolationCallback(
host_address, is_write);
}
uintptr_t Memory::AddPhysicalAccessWatch(uint32_t physical_address, uintptr_t Memory::AddPhysicalAccessWatch(uint32_t physical_address,
uint32_t length, uint32_t length,
cpu::MMIOHandler::WatchType type, cpu::MMIOHandler::WatchType type,
@ -412,21 +460,38 @@ void Memory::CancelAccessWatch(uintptr_t watch_handle) {
mmio_handler_->CancelAccessWatch(watch_handle); mmio_handler_->CancelAccessWatch(watch_handle);
} }
void* Memory::RegisterPhysicalWriteWatch( void* Memory::RegisterPhysicalWriteWatch(PhysicalWriteWatchCallback callback,
cpu::PhysicalWriteWatchCallback callback, void* callback_context) { void* callback_context) {
return mmio_handler_->RegisterPhysicalWriteWatch(callback, callback_context); PhysicalWriteWatchEntry* entry = new PhysicalWriteWatchEntry;
entry->callback = callback;
entry->callback_context = callback_context;
auto lock = global_critical_region_.Acquire();
physical_write_watches_.push_back(entry);
return entry;
} }
void Memory::UnregisterPhysicalWriteWatch(void* watch_handle) { void Memory::UnregisterPhysicalWriteWatch(void* watch_handle) {
mmio_handler_->UnregisterPhysicalWriteWatch(watch_handle); auto entry = reinterpret_cast<PhysicalWriteWatchEntry*>(watch_handle);
{
auto lock = global_critical_region_.Acquire();
auto it = std::find(physical_write_watches_.begin(),
physical_write_watches_.end(), entry);
assert_false(it == physical_write_watches_.end());
if (it != physical_write_watches_.end()) {
physical_write_watches_.erase(it);
}
}
delete entry;
} }
void Memory::WatchPhysicalMemoryWrite(uint32_t physical_address, void Memory::WatchPhysicalMemoryWrite(uint32_t physical_address,
uint32_t length) { uint32_t length) {
// Watch independently in all three mappings. // Watch independently in all three mappings.
heaps_.vA0000000.WatchWrite(physical_address, length, mmio_handler_.get()); heaps_.vA0000000.WatchPhysicalWrite(physical_address, length);
heaps_.vC0000000.WatchWrite(physical_address, length, mmio_handler_.get()); heaps_.vC0000000.WatchPhysicalWrite(physical_address, length);
heaps_.vE0000000.WatchWrite(physical_address, length, mmio_handler_.get()); heaps_.vE0000000.WatchPhysicalWrite(physical_address, length);
} }
uint32_t Memory::SystemHeapAlloc(uint32_t size, uint32_t alignment, uint32_t Memory::SystemHeapAlloc(uint32_t size, uint32_t alignment,
@ -536,8 +601,9 @@ BaseHeap::BaseHeap()
BaseHeap::~BaseHeap() = default; BaseHeap::~BaseHeap() = default;
void BaseHeap::Initialize(uint8_t* membase, uint32_t heap_base, void BaseHeap::Initialize(Memory* memory, uint8_t* membase, uint32_t heap_base,
uint32_t heap_size, uint32_t page_size) { uint32_t heap_size, uint32_t page_size) {
memory_ = memory;
membase_ = membase; membase_ = membase;
heap_base_ = heap_base; heap_base_ = heap_base;
heap_size_ = heap_size - 1; heap_size_ = heap_size - 1;
@ -710,6 +776,7 @@ bool BaseHeap::Restore(ByteStream* stream) {
void BaseHeap::Reset() { void BaseHeap::Reset() {
// TODO(DrChat): protect pages. // TODO(DrChat): protect pages.
std::memset(page_table_.data(), 0, sizeof(PageEntry) * page_table_.size()); std::memset(page_table_.data(), 0, sizeof(PageEntry) * page_table_.size());
// TODO(Triang3l): Unwatch pages.
} }
bool BaseHeap::Alloc(uint32_t size, uint32_t alignment, bool BaseHeap::Alloc(uint32_t size, uint32_t alignment,
@ -1207,20 +1274,32 @@ VirtualHeap::VirtualHeap() = default;
VirtualHeap::~VirtualHeap() = default; VirtualHeap::~VirtualHeap() = default;
void VirtualHeap::Initialize(uint8_t* membase, uint32_t heap_base, void VirtualHeap::Initialize(Memory* memory, uint8_t* membase,
uint32_t heap_size, uint32_t page_size) { uint32_t heap_base, uint32_t heap_size,
BaseHeap::Initialize(membase, heap_base, heap_size, page_size); uint32_t page_size) {
BaseHeap::Initialize(memory, membase, heap_base, heap_size, page_size);
} }
PhysicalHeap::PhysicalHeap() : parent_heap_(nullptr) {} PhysicalHeap::PhysicalHeap() : parent_heap_(nullptr) {}
PhysicalHeap::~PhysicalHeap() = default; PhysicalHeap::~PhysicalHeap() = default;
void PhysicalHeap::Initialize(uint8_t* membase, uint32_t heap_base, void PhysicalHeap::Initialize(Memory* memory, uint8_t* membase,
uint32_t heap_size, uint32_t page_size, uint32_t heap_base, uint32_t heap_size,
VirtualHeap* parent_heap) { uint32_t page_size, VirtualHeap* parent_heap) {
BaseHeap::Initialize(membase, heap_base, heap_size, page_size); BaseHeap::Initialize(memory, membase, heap_base, heap_size, page_size);
parent_heap_ = parent_heap; parent_heap_ = parent_heap;
system_page_size_ = uint32_t(xe::memory::page_size());
// Include the 0xE0000000 mapping offset because these bits are for host OS
// pages.
system_page_count_ =
(heap_size_ /* already - 1 */ + (heap_base >= 0xE0000000 ? 0x1000 : 0) +
system_page_size_) /
system_page_size_;
system_pages_watched_write_.resize((system_page_count_ + 63) / 64);
std::memset(system_pages_watched_write_.data(), 0,
system_pages_watched_write_.size() * sizeof(uint64_t));
} }
bool PhysicalHeap::Alloc(uint32_t size, uint32_t alignment, bool PhysicalHeap::Alloc(uint32_t size, uint32_t alignment,
@ -1362,8 +1441,11 @@ bool PhysicalHeap::Release(uint32_t base_address, uint32_t* out_region_size) {
uint32_t parent_base_address = GetPhysicalAddress(base_address); uint32_t parent_base_address = GetPhysicalAddress(base_address);
uint32_t region_size = 0; uint32_t region_size = 0;
if (QuerySize(base_address, &region_size)) { if (QuerySize(base_address, &region_size)) {
cpu::MMIOHandler::global_handler()->InvalidateRange( // TODO(Triang3l): Remove InvalidateRange when legacy (old Vulkan renderer)
base_address, region_size, !FLAGS_protect_on_release); // watches are removed.
cpu::MMIOHandler::global_handler()->InvalidateRange(base_address,
region_size);
TriggerWatches(base_address, region_size, true, !FLAGS_protect_on_release);
} }
if (!parent_heap_->Release(parent_base_address, out_region_size)) { if (!parent_heap_->Release(parent_base_address, out_region_size)) {
@ -1378,7 +1460,10 @@ bool PhysicalHeap::Protect(uint32_t address, uint32_t size, uint32_t protect,
uint32_t* old_protect) { uint32_t* old_protect) {
auto global_lock = global_critical_region_.Acquire(); auto global_lock = global_critical_region_.Acquire();
cpu::MMIOHandler::global_handler()->InvalidateRange(address, size, false); // TODO(Triang3l): Remove InvalidateRange when legacy (old Vulkan renderer)
// watches are removed.
cpu::MMIOHandler::global_handler()->InvalidateRange(address, size);
TriggerWatches(address, size, true, false);
if (!parent_heap_->Protect(GetPhysicalAddress(address), size, protect, if (!parent_heap_->Protect(GetPhysicalAddress(address), size, protect,
old_protect)) { old_protect)) {
@ -1389,47 +1474,219 @@ bool PhysicalHeap::Protect(uint32_t address, uint32_t size, uint32_t protect,
return BaseHeap::Protect(address, size, protect); return BaseHeap::Protect(address, size, protect);
} }
void PhysicalHeap::WatchWrite(uint32_t address, uint32_t size, void PhysicalHeap::WatchPhysicalWrite(uint32_t physical_address,
cpu::MMIOHandler* mmio_handler) { uint32_t length) {
address &= 0x1FFFFFFF; uint32_t physical_address_offset = GetPhysicalAddress(heap_base_);
if (address >= heap_size_) { if (physical_address < physical_address_offset) {
// E0000000 is not exactly 512 MB long. if (physical_address_offset - physical_address >= length) {
return; return;
} }
size = std::min(size, heap_size_ - address); length -= physical_address_offset - physical_address;
if (size == 0) { physical_address = physical_address_offset;
}
uint32_t heap_relative_address = physical_address - physical_address_offset;
if (heap_relative_address >= heap_size_ + 1) {
return;
}
length = std::min(length, heap_size_ + 1 - heap_relative_address);
if (length == 0) {
return; return;
} }
uint32_t system_page_size = uint32_t(xe::memory::page_size()); // Include the 0xE0000000 mapping offset because watches are placed on OS
uint32_t system_page_first = address / system_page_size; // pages.
uint32_t system_page_last = (address + size - 1) / system_page_size; uint32_t system_address_offset = heap_base_ >= 0xE0000000 ? 0x1000 : 0;
uint32_t system_page_first =
(heap_relative_address + system_address_offset) / system_page_size_;
uint32_t system_page_last =
(heap_relative_address + length - 1 + system_address_offset) /
system_page_size_;
system_page_last = std::min(system_page_last, system_page_count_ - 1);
assert_true(system_page_first <= system_page_last);
uint32_t block_index_first = system_page_first >> 6;
uint32_t block_index_last = system_page_last >> 6;
auto global_lock = global_critical_region_.Acquire(); auto global_lock = global_critical_region_.Acquire();
// Watch all writable pages of the system page size within the requested // Protect the pages.
// range. uint8_t* protect_base = membase_ + heap_base_;
uint32_t range_start = UINT32_MAX; uint32_t protect_system_page_first = UINT32_MAX;
for (uint32_t i = system_page_first; i <= system_page_last; ++i) { for (uint32_t i = system_page_first; i <= system_page_last; ++i) {
if (page_table_[i * system_page_size / page_size_].current_protect & // Check if need to allow writing to this page.
kMemoryProtectWrite) { bool protect_page =
if (range_start == UINT32_MAX) { (system_pages_watched_write_[i >> 6] & (uint64_t(1) << (i & 63))) == 0;
range_start = i; if (protect_page) {
uint32_t page_number =
xe::sat_sub(i * system_page_size_, system_address_offset) /
page_size_;
if (ToPageAccess(page_table_[page_number].current_protect) !=
xe::memory::PageAccess::kReadWrite) {
protect_page = false;
}
}
if (protect_page) {
if (protect_system_page_first == UINT32_MAX) {
protect_system_page_first = i;
} }
} else { } else {
if (range_start != UINT32_MAX) { if (protect_system_page_first != UINT32_MAX) {
mmio_handler->ProtectAndWatchPhysicalMemory( xe::memory::Protect(
heap_base_ + range_start * system_page_size, protect_base + protect_system_page_first * system_page_size_,
(i - range_start) * system_page_size); (i - protect_system_page_first) * system_page_size_,
range_start = UINT32_MAX; xe::memory::PageAccess::kReadOnly);
protect_system_page_first = UINT32_MAX;
} }
} }
} }
if (range_start != UINT32_MAX) { if (protect_system_page_first != UINT32_MAX) {
mmio_handler->ProtectAndWatchPhysicalMemory( xe::memory::Protect(
heap_base_ + range_start * system_page_size, protect_base + protect_system_page_first * system_page_size_,
(system_page_last - range_start + 1) * system_page_size); (system_page_last + 1 - protect_system_page_first) * system_page_size_,
xe::memory::PageAccess::kReadOnly);
}
// Register the pages as watched.
for (uint32_t i = block_index_first; i <= block_index_last; ++i) {
uint64_t mask = UINT64_MAX;
if (i == block_index_first) {
mask &= ~((uint64_t(1) << (system_page_first & 63)) - 1);
}
if (i == block_index_last && (system_page_last & 63) != 63) {
mask &= (uint64_t(1) << ((system_page_last & 63) + 1)) - 1;
}
system_pages_watched_write_[i] |= mask;
} }
} }
bool PhysicalHeap::TriggerWatches(uint32_t virtual_address, uint32_t length,
bool is_write, bool unprotect) {
// TODO(Triang3l): Support read watches.
assert_true(is_write);
if (!is_write) {
return false;
}
if (virtual_address < heap_base_) {
if (heap_base_ - virtual_address >= length) {
return false;
}
length -= heap_base_ - virtual_address;
virtual_address = heap_base_;
}
uint32_t heap_relative_address = virtual_address - heap_base_;
if (heap_relative_address >= heap_size_ + 1) {
return false;
}
length = std::min(length, heap_size_ + 1 - heap_relative_address);
if (length == 0) {
return false;
}
// Include the 0xE0000000 mapping offset because watches are placed on OS
// pages.
uint32_t system_address_offset = heap_base_ >= 0xE0000000 ? 0x1000 : 0;
uint32_t system_page_first =
(heap_relative_address + system_address_offset) / system_page_size_;
uint32_t system_page_last =
(heap_relative_address + length - 1 + system_address_offset) /
system_page_size_;
system_page_last = std::min(system_page_last, system_page_count_ - 1);
assert_true(system_page_first <= system_page_last);
uint32_t block_index_first = system_page_first >> 6;
uint32_t block_index_last = system_page_last >> 6;
auto global_lock = global_critical_region_.Acquire();
// Check if watching any page, whether need to call the callback at all.
bool any_watched = false;
for (uint32_t i = block_index_first; i <= block_index_last; ++i) {
uint64_t block = system_pages_watched_write_[i];
if (i == block_index_first) {
block &= ~((uint64_t(1) << (system_page_first & 63)) - 1);
}
if (i == block_index_last && (system_page_last & 63) != 63) {
block &= (uint64_t(1) << ((system_page_last & 63) + 1)) - 1;
}
if (block) {
any_watched = true;
break;
}
}
if (!any_watched) {
return false;
}
// Trigger callbacks.
// TODO(Triang3l): Accumulate the range that is safe to unwatch from the
// callbacks.
uint32_t physical_address_offset = GetPhysicalAddress(heap_base_);
uint32_t physical_address_start =
xe::sat_sub(system_page_first * system_page_size_,
system_address_offset) +
physical_address_offset;
uint32_t physical_length = std::min(
xe::sat_sub(system_page_last * system_page_size_ + system_page_size_,
system_address_offset) +
physical_address_offset - physical_address_start,
heap_size_ + 1 - (physical_address_start - physical_address_offset));
for (auto physical_write_watch : memory_->physical_write_watches_) {
physical_write_watch->callback(physical_write_watch->callback_context,
physical_address_start, physical_length);
}
// Unprotect ranges that need unprotection.
if (unprotect) {
uint8_t* protect_base = membase_ + heap_base_;
uint32_t unprotect_system_page_first = UINT32_MAX;
for (uint32_t i = system_page_first; i <= system_page_last; ++i) {
// Check if need to allow writing to this page.
bool unprotect_page = (system_pages_watched_write_[i >> 6] &
(uint64_t(1) << (i & 63))) != 0;
if (unprotect_page) {
uint32_t page_number =
xe::sat_sub(i * system_page_size_, system_address_offset) /
page_size_;
if (ToPageAccess(page_table_[page_number].current_protect) !=
xe::memory::PageAccess::kReadWrite) {
unprotect_page = false;
}
}
if (unprotect_page) {
if (unprotect_system_page_first == UINT32_MAX) {
unprotect_system_page_first = i;
}
} else {
if (unprotect_system_page_first != UINT32_MAX) {
xe::memory::Protect(
protect_base + unprotect_system_page_first * system_page_size_,
(i - unprotect_system_page_first) * system_page_size_,
xe::memory::PageAccess::kReadWrite);
unprotect_system_page_first = UINT32_MAX;
}
}
}
if (unprotect_system_page_first != UINT32_MAX) {
xe::memory::Protect(
protect_base + unprotect_system_page_first * system_page_size_,
(system_page_last + 1 - unprotect_system_page_first) *
system_page_size_,
xe::memory::PageAccess::kReadWrite);
}
}
// Mark pages as not write-watched.
for (uint32_t i = block_index_first; i <= block_index_last; ++i) {
uint64_t mask = 0;
if (i == block_index_first) {
mask |= (uint64_t(1) << (system_page_first & 63)) - 1;
}
if (i == block_index_last && (system_page_last & 63) != 63) {
mask |= ~((uint64_t(1) << ((system_page_last & 63) + 1)) - 1);
}
system_pages_watched_write_[i] &= mask;
}
return true;
}
} // namespace xe } // namespace xe

View File

@ -25,6 +25,8 @@ class ByteStream;
namespace xe { namespace xe {
class Memory;
enum SystemHeapFlag : uint32_t { enum SystemHeapFlag : uint32_t {
kSystemHeapVirtual = 1 << 0, kSystemHeapVirtual = 1 << 0,
kSystemHeapPhysical = 1 << 1, kSystemHeapPhysical = 1 << 1,
@ -163,9 +165,10 @@ class BaseHeap {
protected: protected:
BaseHeap(); BaseHeap();
void Initialize(uint8_t* membase, uint32_t heap_base, uint32_t heap_size, void Initialize(Memory* memory, uint8_t* membase, uint32_t heap_base,
uint32_t page_size); uint32_t heap_size, uint32_t page_size);
Memory* memory_;
uint8_t* membase_; uint8_t* membase_;
uint32_t heap_base_; uint32_t heap_base_;
uint32_t heap_size_; uint32_t heap_size_;
@ -181,8 +184,8 @@ class VirtualHeap : public BaseHeap {
~VirtualHeap() override; ~VirtualHeap() override;
// Initializes the heap properties and allocates the page table. // Initializes the heap properties and allocates the page table.
void Initialize(uint8_t* membase, uint32_t heap_base, uint32_t heap_size, void Initialize(Memory* memory, uint8_t* membase, uint32_t heap_base,
uint32_t page_size); uint32_t heap_size, uint32_t page_size);
}; };
// A heap for ranges of memory that are mapped to physical ranges. // A heap for ranges of memory that are mapped to physical ranges.
@ -198,8 +201,9 @@ class PhysicalHeap : public BaseHeap {
~PhysicalHeap() override; ~PhysicalHeap() override;
// Initializes the heap properties and allocates the page table. // Initializes the heap properties and allocates the page table.
void Initialize(uint8_t* membase, uint32_t heap_base, uint32_t heap_size, void Initialize(Memory* memory, uint8_t* membase, uint32_t heap_base,
uint32_t page_size, VirtualHeap* parent_heap); uint32_t heap_size, uint32_t page_size,
VirtualHeap* parent_heap);
bool Alloc(uint32_t size, uint32_t alignment, uint32_t allocation_type, bool Alloc(uint32_t size, uint32_t alignment, uint32_t allocation_type,
uint32_t protect, bool top_down, uint32_t* out_address) override; uint32_t protect, bool top_down, uint32_t* out_address) override;
@ -215,11 +219,18 @@ class PhysicalHeap : public BaseHeap {
bool Protect(uint32_t address, uint32_t size, uint32_t protect, bool Protect(uint32_t address, uint32_t size, uint32_t protect,
uint32_t* old_protect = nullptr) override; uint32_t* old_protect = nullptr) override;
void WatchWrite(uint32_t address, uint32_t size, void WatchPhysicalWrite(uint32_t physical_address, uint32_t length);
cpu::MMIOHandler* mmio_handler); // Returns true if any page in the range was watched.
bool TriggerWatches(uint32_t virtual_address, uint32_t length, bool is_write,
bool unprotect = true);
protected: protected:
VirtualHeap* parent_heap_; VirtualHeap* parent_heap_;
uint32_t system_page_size_;
uint32_t system_page_count_;
// Protected by global_critical_region.
std::vector<uint64_t> system_pages_watched_write_;
}; };
// Models the entire guest memory system on the console. // Models the entire guest memory system on the console.
@ -322,9 +333,46 @@ class Memory {
// Cancels a write watch requested with AddPhysicalAccessWatch. // Cancels a write watch requested with AddPhysicalAccessWatch.
void CancelAccessWatch(uintptr_t watch_handle); void CancelAccessWatch(uintptr_t watch_handle);
// Registers a global callback for physical memory writes. See typedef void (*PhysicalWriteWatchCallback)(void* context_ptr,
// cpu/mmio_handler.h for more details about physical memory write watches. uint32_t physical_address_start,
void* RegisterPhysicalWriteWatch(cpu::PhysicalWriteWatchCallback callback, uint32_t length);
// Physical memory write watching, allowing subsystems to invalidate cached
// data that depends on memory contents.
//
// Placing a watch simply marks the pages (of the system page size) as
// watched, individual watched ranges (or which specific subscribers are
// watching specific pages) are not stored. Because of this, callbacks may be
// triggered multiple times for a single range, and for any watched page every
// registered callbacks is triggered. This is a very simple one-shot method
// for use primarily for cache invalidation - there may be spurious firing,
// for example, if the game only changes the protection level without writing
// anything.
//
// A range of pages can be watched at any time, but pages are only unwatched
// when watches are triggered (since multiple subscribers can depend on the
// same memory, and one subscriber shouldn't interfere with another).
//
// Callbacks can be triggered for one page (if the guest just stores words) or
// for multiple pages (for file reading, protection level changes).
//
// Only guest physical memory mappings are watched - the host-only mapping is
// not protected so it can be used to bypass the write protection (for file
// reads, for example - in this case, watches are triggered manually).
//
// Note that when a watch is triggered, the watched page is unprotected only
// in the heap where the address is located. Since different virtual memory
// mappings of physical memory can have different protection levels for the
// same pages, and watches must not be placed on read-only or totally
// inaccessible pages, there are significant difficulties with synchronizing
// all the three ranges, but it's generally not needed.
//
// TODO(Triang3l): Allow the callbacks to unwatch regions larger than one page
// (for instance, 64 KB) so there are less access violations. All callbacks
// must agree to unwatch larger ranges because in some cases (like regions
// near the locations that render targets have been resolved to) it is
// necessary to invalidate only a single page and none more.
void* RegisterPhysicalWriteWatch(PhysicalWriteWatchCallback callback,
void* callback_context); void* callback_context);
// Unregisters a physical memory write watch previously added with // Unregisters a physical memory write watch previously added with
@ -336,11 +384,8 @@ class Memory {
// protection of it changes), the registered watch callbacks are triggered for // protection of it changes), the registered watch callbacks are triggered for
// the page (or pages, for file reads and protection changes) where something // the page (or pages, for file reads and protection changes) where something
// has been written to. This protects physical memory only under // has been written to. This protects physical memory only under
// virtual_membase_, so writing to physical_membase_ can be written to bypass // virtual_membase_, so writing to physical_membase_ can be done to bypass the
// the protection placed by the watches. Read-only and inaccessible pages are // protection placed by the watches.
// silently ignored, only attempts to write to read-write pages will trigger
// watch callbacks.
// AVOID CALLING WITH MUTEXES LOCKED!!!
void WatchPhysicalMemoryWrite(uint32_t physical_address, uint32_t length); void WatchPhysicalMemoryWrite(uint32_t physical_address, uint32_t length);
// Allocates virtual memory from the 'system' heap. // Allocates virtual memory from the 'system' heap.
@ -372,6 +417,10 @@ class Memory {
int MapViews(uint8_t* mapping_base); int MapViews(uint8_t* mapping_base);
void UnmapViews(); void UnmapViews();
bool AccessViolationCallback(size_t host_address, bool is_write);
static bool AccessViolationCallbackThunk(void* context, size_t host_address,
bool is_write);
private: private:
std::wstring file_name_; std::wstring file_name_;
uint32_t system_page_size_ = 0; uint32_t system_page_size_ = 0;
@ -410,6 +459,14 @@ class Memory {
} heaps_; } heaps_;
friend class BaseHeap; friend class BaseHeap;
friend class PhysicalHeap;
struct PhysicalWriteWatchEntry {
PhysicalWriteWatchCallback callback;
void* callback_context;
};
xe::global_critical_region global_critical_region_;
std::vector<PhysicalWriteWatchEntry*> physical_write_watches_;
}; };
} // namespace xe } // namespace xe