xenia/third_party/crunch/crnlib/crn_image_utils.h

194 lines
6.3 KiB
C
Raw Normal View History

2014-01-21 07:02:34 +00:00
// File: crn_image_utils.h
// See Copyright Notice and license at the end of inc/crnlib.h
#pragma once
#include "crn_image.h"
#include "crn_data_stream_serializer.h"
namespace crnlib
{
enum pixel_format;
namespace image_utils
{
enum read_flags_t
{
cReadFlagForceSTB = 1,
cReadFlagsAllFlags = 1
};
bool read_from_stream_stb(data_stream_serializer& serializer, image_u8& img);
bool read_from_stream_jpgd(data_stream_serializer& serializer, image_u8& img);
bool read_from_stream(image_u8& dest, data_stream_serializer& serializer, uint read_flags = 0);
bool read_from_file(image_u8& dest, const char* pFilename, uint read_flags = 0);
// Reads texture from memory, results returned stb_image.c style.
// *pActual_comps is set to 1, 3, or 4. req_comps must range from 1-4.
uint8* read_from_memory(const uint8* pImage, int nSize, int* pWidth, int* pHeight, int* pActualComps, int req_comps, const char* pFilename);
enum
{
cWriteFlagIgnoreAlpha = 0x00000001,
cWriteFlagGrayscale = 0x00000002,
cWriteFlagJPEGH1V1 = 0x00010000,
cWriteFlagJPEGH2V1 = 0x00020000,
cWriteFlagJPEGH2V2 = 0x00040000,
cWriteFlagJPEGTwoPass = 0x00080000,
cWriteFlagJPEGNoChromaDiscrim = 0x00100000,
cWriteFlagJPEGQualityLevelMask = 0xFF000000,
cWriteFlagJPEGQualityLevelShift = 24,
};
const int cLumaComponentIndex = -1;
inline uint create_jpeg_write_flags(uint base_flags, uint quality_level) { CRNLIB_ASSERT(quality_level <= 100); return base_flags | ((quality_level << cWriteFlagJPEGQualityLevelShift) & cWriteFlagJPEGQualityLevelMask); }
bool write_to_file(const char* pFilename, const image_u8& img, uint write_flags = 0, int grayscale_comp_index = cLumaComponentIndex);
bool has_alpha(const image_u8& img);
bool is_normal_map(const image_u8& img, const char* pFilename = NULL);
void renorm_normal_map(image_u8& img);
struct resample_params
{
resample_params() :
m_dst_width(0),
m_dst_height(0),
m_pFilter("lanczos4"),
m_filter_scale(1.0f),
m_srgb(true),
m_wrapping(false),
m_first_comp(0),
m_num_comps(4),
m_source_gamma(2.2f), // 1.75f
m_multithreaded(true)
{
}
uint m_dst_width;
uint m_dst_height;
const char* m_pFilter;
float m_filter_scale;
bool m_srgb;
bool m_wrapping;
uint m_first_comp;
uint m_num_comps;
float m_source_gamma;
bool m_multithreaded;
};
bool resample_single_thread(const image_u8& src, image_u8& dst, const resample_params& params);
bool resample_multithreaded(const image_u8& src, image_u8& dst, const resample_params& params);
bool resample(const image_u8& src, image_u8& dst, const resample_params& params);
bool compute_delta(image_u8& dest, image_u8& a, image_u8& b, uint scale = 2);
class error_metrics
{
public:
error_metrics() { utils::zero_this(this); }
void print(const char* pName) const;
// If num_channels==0, luma error is computed.
// If pHist != NULL, it must point to a 256 entry array.
bool compute(const image_u8& a, const image_u8& b, uint first_channel, uint num_channels, bool average_component_error = true);
uint mMax;
double mMean;
double mMeanSquared;
double mRootMeanSquared;
double mPeakSNR;
inline bool operator== (const error_metrics& other) const
{
return mPeakSNR == other.mPeakSNR;
}
inline bool operator< (const error_metrics& other) const
{
return mPeakSNR < other.mPeakSNR;
}
inline bool operator> (const error_metrics& other) const
{
return mPeakSNR > other.mPeakSNR;
}
};
void print_image_metrics(const image_u8& src_img, const image_u8& dst_img);
double compute_block_ssim(uint n, const uint8* pX, const uint8* pY);
double compute_ssim(const image_u8& a, const image_u8& b, int channel_index);
void print_ssim(const image_u8& src_img, const image_u8& dst_img);
enum conversion_type
{
cConversion_Invalid = -1,
cConversion_To_CCxY,
cConversion_From_CCxY,
cConversion_To_xGxR,
cConversion_From_xGxR,
cConversion_To_xGBR,
cConversion_From_xGBR,
cConversion_To_AGBR,
cConversion_From_AGBR,
cConversion_XY_to_XYZ,
cConversion_Y_To_A,
cConversion_A_To_RGBA,
cConversion_Y_To_RGB,
cConversion_To_Y,
cConversionTotal
};
void convert_image(image_u8& img, conversion_type conv_type);
template<typename image_type>
inline uint8* pack_image(const image_type& img, const pixel_packer& packer, uint& n)
{
n = 0;
if (!packer.is_valid())
return NULL;
const uint width = img.get_width(), height = img.get_height();
uint dst_pixel_stride = packer.get_pixel_stride();
uint dst_pitch = width * dst_pixel_stride;
n = dst_pitch * height;
uint8* pImage = static_cast<uint8*>(crnlib_malloc(n));
uint8* pDst = pImage;
for (uint y = 0; y < height; y++)
{
const typename image_type::color_t* pSrc = img.get_scanline(y);
for (uint x = 0; x < width; x++)
pDst = (uint8*)packer.pack(*pSrc++, pDst);
}
return pImage;
}
image_utils::conversion_type get_conversion_type(bool cooking, pixel_format fmt);
image_utils::conversion_type get_image_conversion_type_from_crn_format(crn_format fmt);
double compute_std_dev(uint n, const color_quad_u8* pPixels, uint first_channel, uint num_channels);
uint8* read_image_from_memory(const uint8* pImage, int nSize, int* pWidth, int* pHeight, int* pActualComps, int req_comps, const char* pFilename);
} // namespace image_utils
} // namespace crnlib