xenia-canary/src/xenia/core/memory.cc

190 lines
5.3 KiB
C++

/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2013 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include <xenia/core/memory.h>
#include <xenia/core/mutex.h>
#if !XE_PLATFORM(WIN32)
#include <sys/mman.h>
#endif // WIN32
#define MSPACES 1
#define USE_LOCKS 0
#define USE_DL_PREFIX 1
#define HAVE_MORECORE 0
#define HAVE_MMAP 0
#define HAVE_MREMAP 0
#define malloc_getpagesize 4096
#define DEFAULT_GRANULARITY 64 * 1024
#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
#include <third_party/dlmalloc/malloc.c.h>
/**
* Memory map:
* 0x00000000 - 0x40000000 (1024mb) - virtual 4k pages
* 0x40000000 - 0x80000000 (1024mb) - virtual 64k pages
* 0x80000000 - 0x8C000000 ( 192mb) - xex 64k pages
* 0x8C000000 - 0x90000000 ( 64mb) - xex 64k pages (encrypted)
* 0x90000000 - 0xA0000000 ( 256mb) - xex 4k pages
* 0xA0000000 - 0xC0000000 ( 512mb) - physical 64k pages
*
* We use the host OS to create an entire addressable range for this. That way
* we don't have to emulate a TLB. It'd be really cool to pass through page
* sizes or use madvice to let the OS know what to expect.
*/
struct xe_memory {
xe_ref_t ref;
size_t length;
void* ptr;
xe_mutex_t* heap_mutex;
mspace heap;
};
xe_memory_ref xe_memory_create(xe_pal_ref pal, xe_memory_options_t options) {
uint32_t offset;
uint32_t mspace_size;
xe_memory_ref memory = (xe_memory_ref)xe_calloc(sizeof(xe_memory));
xe_ref_init((xe_ref)memory);
memory->length = 0xC0000000;
#if XE_PLATFORM(WIN32)
memory->ptr = VirtualAlloc(0, memory->length,
MEM_COMMIT | MEM_RESERVE,
PAGE_READWRITE);
#else
memory->ptr = mmap(0, memory->length, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
XEEXPECT(memory->ptr != MAP_FAILED);
#endif // WIN32
XEEXPECTNOTNULL(memory->ptr);
memory->heap_mutex = xe_mutex_alloc(0);
XEEXPECTNOTNULL(memory->heap_mutex);
// Allocate the mspace for our heap.
// We skip the first page to make writes to 0 easier to find.
offset = 64 * 1024;
mspace_size = 512 * 1024 * 1024 - offset;
memory->heap = create_mspace_with_base(
(uint8_t*)memory->ptr + offset, mspace_size, 0);
return memory;
XECLEANUP:
xe_memory_release(memory);
return NULL;
}
void xe_memory_dealloc(xe_memory_ref memory) {
if (memory->heap_mutex && memory->heap) {
xe_mutex_lock(memory->heap_mutex);
destroy_mspace(memory->heap);
memory->heap = NULL;
xe_mutex_unlock(memory->heap_mutex);
}
if (memory->heap_mutex) {
xe_mutex_free(memory->heap_mutex);
memory->heap_mutex = NULL;
}
#if XE_PLATFORM(WIN32)
XEIGNORE(VirtualFree(memory->ptr, memory->length, MEM_RELEASE));
#else
munmap(memory->ptr, memory->length);
#endif // WIN32
}
xe_memory_ref xe_memory_retain(xe_memory_ref memory) {
xe_ref_retain((xe_ref)memory);
return memory;
}
void xe_memory_release(xe_memory_ref memory) {
xe_ref_release((xe_ref)memory, (xe_ref_dealloc_t)xe_memory_dealloc);
}
size_t xe_memory_get_length(xe_memory_ref memory) {
return memory->length;
}
uint8_t *xe_memory_addr(xe_memory_ref memory, size_t guest_addr) {
return (uint8_t*)memory->ptr + guest_addr;
}
uint32_t xe_memory_search_aligned(xe_memory_ref memory, size_t start,
size_t end, const uint32_t *values,
const size_t value_count) {
XEASSERT(start <= end);
const uint32_t *p = (const uint32_t*)xe_memory_addr(memory, start);
const uint32_t *pe = (const uint32_t*)xe_memory_addr(memory, end);
while (p != pe) {
if (*p == values[0]) {
const uint32_t *pc = p + 1;
size_t matched = 1;
for (size_t n = 1; n < value_count; n++, pc++) {
if (*pc != values[n]) {
break;
}
matched++;
}
if (matched == value_count) {
return (uint32_t)((uint8_t*)p - (uint8_t*)memory->ptr);
}
}
p++;
}
return 0;
}
// TODO(benvanik): reserve/commit states/large pages/etc
uint32_t xe_memory_heap_alloc(xe_memory_ref memory, uint32_t base_addr,
uint32_t size, uint32_t flags) {
if (base_addr) {
return base_addr;
}
XEASSERT(base_addr == 0);
XEASSERT(flags == 0);
XEIGNORE(xe_mutex_lock(memory->heap_mutex));
uint8_t* p = (uint8_t*)mspace_malloc(memory->heap, size);
XEIGNORE(xe_mutex_unlock(memory->heap_mutex));
if (!p) {
return 0;
}
return (uint32_t)((uintptr_t)p - (uintptr_t)memory->ptr);
}
uint32_t xe_memory_heap_free(xe_memory_ref memory, uint32_t addr,
uint32_t flags) {
XEASSERT(flags == 0);
uint8_t* p = (uint8_t*)memory->ptr + addr;
size_t real_size = mspace_usable_size(p);
if (!real_size) {
return 0;
}
XEIGNORE(xe_mutex_lock(memory->heap_mutex));
mspace_free(memory->heap, p);
XEIGNORE(xe_mutex_unlock(memory->heap_mutex));
return (uint32_t)real_size;
}